예제 #1
0
def check_res50_features(model_name, GPU=0):
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = '{}'.format(GPU)
    import keras

    input_size_fit = (224, 224)

    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])

    if model_name == 'deeplab':
        input_size = (321, 321)
        overlap = 0
    else:
        input_size = (572, 572)
        overlap = 184
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],
        cSize=input_size,
        numPixOverlap=overlap,
        extSave=['jpg', 'jpg', 'jpg', 'png'],
        isTrain=True,
        gtInd=3,
        pad=overlap // 2)
    patchDir = extrObj.run(blCol)

    file_name = os.path.join(patchDir, 'fileList.txt')
    with open(file_name, 'r') as f:
        files = f.readlines()

    res50 = keras.applications.resnet50.ResNet50(include_top=True,
                                                 weights='imagenet')
    pred_list = np.zeros(len(files))
    for file_cnt, file_line in enumerate(tqdm(files)):
        img = np.zeros((input_size[0], input_size[1], 3), dtype=np.uint8)
        for cnt, file in enumerate(file_line.strip().split(' ')[:3]):
            img[:, :, cnt] = imageio.imread(os.path.join(patchDir,
                                                         file)) - img_mean[cnt]

        img = np.expand_dims(crop_center(img, input_size_fit[0],
                                         input_size_fit[1]),
                             axis=0)

        fc1000 = res50.predict(img).reshape((-1, )).tolist()
        pred_list[file_cnt] = np.argmax(fc1000)
    return pred_list
예제 #2
0
def main(flags):
    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    z = tf.placeholder(tf.float32, shape=[None, flags.z_dim], name='z')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UGAN.UGAN({
        'X': X,
        'Z': z
    },
                                     trainable=mode,
                                     model_name=flags.model_name,
                                     input_size=flags.input_size,
                                     batch_size=flags.batch_size,
                                     learn_rate=flags.learning_rate,
                                     decay_step=flags.decay_step,
                                     decay_rate=flags.decay_rate,
                                     epochs=flags.epochs,
                                     start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(
        255)  # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])  # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],  # extract all 4 channels
        cSize=flags.input_size,  # patch size as 572*572
        numPixOverlap=int(model.get_overlap() / 2),  # overlap as 92
        extSave=['jpg', 'jpg', 'jpg',
                 'png'],  # save rgb files as jpg and gt as png
        isTrain=True,
        gtInd=3,
        pad=model.get_overlap())  # pad around the tiles
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                      'force_tile')
    # use first 5 tiles for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(6, 37)])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(0, 6)])

    with tf.name_scope('image_loader'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_train = uabDataReader.ImageLabelReader(
            [3], [0, 1, 2],
            patchDir,
            file_list_train,
            flags.input_size,
            flags.tile_size,
            flags.batch_size,
            dataAug='flip,rotate',
            block_mean=np.append([0], img_mean))
        # no augmentation needed for validation
        dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2],
                                                          patchDir,
                                                          file_list_valid,
                                                          flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size,
                                                          dataAug=' ',
                                                          block_mean=np.append(
                                                              [0], img_mean))

    # train
    start_time = time.time()

    model.train_config('X', 'Z', flags.n_train, flags.n_valid,
                       flags.input_size, uabRepoPaths.modelPath)
    model.run(
        train_reader=dataReader_train,
        valid_reader=dataReader_valid,
        pretrained_model_dir=None,
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=5,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
예제 #3
0
def main(flags):
    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    y = tf.placeholder(
        tf.int32,
        shape=[None, flags.input_size[0], flags.input_size[1], 1],
        name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_ASSN.SSAN_UNet({
        'X': X,
        'Y': y
    },
                                          trainable=mode,
                                          model_name=flags.model_name,
                                          input_size=flags.input_size,
                                          batch_size=flags.batch_size,
                                          learn_rate=flags.learning_rate,
                                          decay_step=flags.decay_step,
                                          decay_rate=flags.decay_rate,
                                          epochs=flags.epochs,
                                          start_filter_num=flags.sfn,
                                          lada=flags.lada,
                                          slow_iter=flags.slow_iter)
    model.create_graph(['X', 'Y'], class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],
        cSize=flags.input_size,
        numPixOverlap=int(model.get_overlap()),
        extSave=['jpg', 'jpg', 'jpg', 'png'],
        isTrain=True,
        gtInd=3,
        pad=model.get_overlap() // 2)
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx_city, file_list = uabCrossValMaker.uabUtilGetFolds(
        patchDir, 'fileList.txt', 'city')
    idx_tile, _ = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                   'force_tile')
    idx = [j * 10 + i for i, j in zip(idx_city, idx_tile)]
    # use first city for validation
    filter_train = []
    filter_train_target = []
    filter_valid = []
    for i in range(5):
        for j in range(1, 37):
            if i != flags.finetune_city and j > 5:
                filter_train.append(j * 10 + i)
            elif i == flags.finetune_city and j > 5:
                filter_train_target.append(j * 10 + i)
            elif i == flags.finetune_city and j <= 5:
                filter_valid.append(j * 10 + i)
    # use first city for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, filter_train)
    filter_list_train_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, filter_train_target)
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, filter_valid)

    dataReader_train = uabDataReader.ImageLabelReader([3], [0, 1, 2],
                                                      patchDir,
                                                      file_list_train,
                                                      flags.input_size,
                                                      flags.batch_size,
                                                      dataAug='flip,rotate',
                                                      block_mean=np.append(
                                                          [0], img_mean),
                                                      batch_code=0)
    dataReader_train_target = uabDataReader.ImageLabelReader(
        [3], [0, 1, 2],
        patchDir,
        filter_list_train_valid,
        flags.input_size,
        flags.batch_size,
        dataAug='flip,rotate',
        block_mean=np.append([0], img_mean),
        batch_code=0)
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2],
                                                      patchDir,
                                                      file_list_valid,
                                                      flags.input_size,
                                                      flags.batch_size,
                                                      dataAug=' ',
                                                      block_mean=np.append(
                                                          [0], img_mean),
                                                      batch_code=0)

    # train
    start_time = time.time()
    model.load_weights(flags.pred_model_dir.format(flags.finetune_city),
                       layers2load='1,2,3,4,5,6,7,8,9',
                       load_final_layer=True)
    model.train_config('X',
                       'Y',
                       flags.n_train,
                       flags.n_valid,
                       flags.input_size,
                       uabRepoPaths.modelPath,
                       loss_type='xent',
                       par_dir='Inria_GAN/SSAN')
    model.run(
        train_reader=dataReader_train,
        train_reader_source=dataReader_train,
        train_reader_target=dataReader_train_target,
        valid_reader=dataReader_valid,
        pretrained_model_dir=
        None,  # train from scratch, no need to load pre-trained model
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=flags.save_epoch,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
                                          input_size=chip_size,
                                          batch_size=batch_size,
                                          learn_rate=learn_rate,
                                          decay_step=decay_step,
                                          decay_rate=decay_rate,
                                          epochs=epochs,
                                          start_filter_num=start_filter_num)
model.create_graph('X', class_num=2)
# If you only want to load a specific number of layers, you have to do load_weight() here
# don't give pretrained_model_dir and layers2keep when calling model.run(), that will cause problem
model.load_weights(pre_trained_model_dir, layers2keep)

# create collection
# the original file is in /ei-edl01/data/uab_datasets/inria
blCol = uab_collectionFunctions.uabCollection('inria')
opDetObj = bPreproc.uabOperTileDivide(
    255)  # inria GT has value 0 and 255, we map it back to 0 and 1
# [3] is the channel id of GT
rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                 'Map GT to (0, 1)', [3],
                                                 opDetObj)
rescObj.run(blCol)
img_mean = blCol.getChannelMeans([0, 1, 2])  # get mean of rgb info
print(blCol.readMetadata()
      )  # now inria collection has 4 channels, the last one is GT with (0, 1)

# extract patches
extrObj = uab_DataHandlerFunctions.uabPatchExtr(
    [0, 1, 2, 4],  # extract all 4 channels
    cSize=chip_size,  # patch size as 572*572
    numPixOverlap=int(model.get_overlap() / 2),  # overlap as 92
    extSave=['jpg', 'jpg', 'jpg',
예제 #5
0
def main(flags):
    city_list = ['austin', 'chicago', 'kitsap', 'tyrol-w', 'vienna']
    flags.llh_file_dir = flags.llh_file_dir.format(flags.finetune_city)
    weight = np.load(flags.llh_file_dir)

    # make network
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({'X': X, 'Y': y},
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)          # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])         # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4], # extract all 4 channels
                                                    cSize=flags.input_size, # patch size as 572*572
                                                    numPixOverlap=int(model.get_overlap()/2),  # overlap as 92
                                                    extSave=['jpg', 'jpg', 'jpg', 'png'], # save rgb files as jpg and gt as png
                                                    isTrain=True,
                                                    gtInd=3,
                                                    pad=model.get_overlap()) # pad around the tiles
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx_city, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'city')
    idx_tile, _ = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'force_tile')
    idx = [j * 10 + i for i, j in zip(idx_city, idx_tile)]
    # use first city for validation
    filter_train = []
    filter_valid = []
    for i in range(5):
        for j in range(1, 37):
            if i != flags.finetune_city and j > 5:
                filter_train.append(j * 10 + i)
            elif i == flags.finetune_city and j <= 5:
                filter_valid.append(j * 10 + i)
    # use first city for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(idx, file_list, filter_train)
    file_list_valid = uabCrossValMaker.make_file_list_by_key(idx, file_list, filter_valid)

    dataReader_train = uabDataReader.ImageLabelReaderPatchSampleControl(
        [3], [0, 1, 2], patchDir, file_list_train, flags.input_size, flags.batch_size,
        weight, dataAug='flip,rotate', block_mean=np.append([0], img_mean))
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_valid, flags.input_size,
                                                      flags.batch_size, dataAug=' ',
                                                      block_mean=np.append([0], img_mean), batch_code=0)

    # train
    start_time = time.time()
    model.train_config('X', 'Y', flags.n_train, flags.n_valid, flags.input_size, uabRepoPaths.modelPath,
                       loss_type='xent', par_dir='Inria_Domain_Selection')
    model.run(train_reader=dataReader_train,
              valid_reader=dataReader_valid,
              pretrained_model_dir=flags.pred_model_dir.format(flags.finetune_city),
              isTrain=True,
              img_mean=img_mean,
              verb_step=100,  # print a message every 100 step(sample)
              save_epoch=5,  # save the model every 5 epochs
              gpu=GPU,
              tile_size=flags.tile_size,
              patch_size=flags.input_size
              )

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration/60/60))
예제 #6
0
def main(flags):
    city_dict = {
        'austin': 0,
        'chicago': 1,
        'kitsap': 2,
        'tyrol-w': 3,
        'vienna': 4
    }
    city_alpha = [0.2, 0.5, 0.1, 0.1, 0.1]

    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    y = tf.placeholder(
        tf.int32,
        shape=[None, flags.input_size[0], flags.input_size[1], 1],
        name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({
        'X': X,
        'Y': y
    },
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(
        255)  # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])  # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],
        cSize=flags.input_size,
        numPixOverlap=int(model.get_overlap()),
        extSave=['jpg', 'jpg', 'jpg', 'png'],
        isTrain=True,
        gtInd=3,
        pad=model.get_overlap() / 2)
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                      'force_tile')
    # use first 5 tiles for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(6, 37)])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(0, 6)])

    dataReader_train = uabDataReader.ImageLabelReaderCitySampleControl(
        [3], [0, 1, 2],
        patchDir,
        file_list_train,
        flags.input_size,
        flags.batch_size,
        city_dict,
        city_alpha,
        dataAug='flip,rotate',
        block_mean=np.append([0], img_mean))
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReaderCitySampleControl(
        [3], [0, 1, 2],
        patchDir,
        file_list_valid,
        flags.input_size,
        flags.batch_size,
        city_dict,
        city_alpha,
        dataAug=' ',
        block_mean=np.append([0], img_mean))

    # train
    start_time = time.time()

    model.train_config('X',
                       'Y',
                       flags.n_train,
                       flags.n_valid,
                       flags.input_size,
                       uabRepoPaths.modelPath,
                       loss_type='xent',
                       par_dir='Inria_Domain')
    model.run(
        train_reader=dataReader_train,
        valid_reader=dataReader_valid,
        pretrained_model_dir=PRED_DIR,
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=5,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size,
    )

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
예제 #7
0
def main(flags):
    copyfile(
        os.path.join(
            flags.pred_file_dir,
            '1iter_pred_building_binary_{}.npy'.format(flags.leave_city)),
        os.path.join(
            flags.pred_file_dir,
            'iter_pred_building_binary_{}.npy'.format(flags.leave_city)))
    flags.pred_file_dir = os.path.join(
        flags.pred_file_dir,
        'iter_pred_building_binary_{}.npy'.format(flags.leave_city))

    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    y = tf.placeholder(
        tf.int32,
        shape=[None, flags.input_size[0], flags.input_size[1], 1],
        name='y')
    y2 = tf.placeholder(tf.float32, shape=[None, 1], name='y2')
    mode = tf.placeholder(tf.bool, name='mode')
    model = UnetModelCrop_Iter({
        'X': X,
        'Y': y,
        'Y2': y2
    },
                               trainable=mode,
                               model_name=flags.model_name,
                               input_size=flags.input_size,
                               batch_size=flags.batch_size,
                               learn_rate=flags.learning_rate,
                               decay_step=flags.decay_step,
                               decay_rate=flags.decay_rate,
                               epochs=flags.epochs,
                               start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(
        255)  # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])  # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],  # extract all 4 channels
        cSize=flags.input_size,  # patch size as 572*572
        numPixOverlap=int(model.get_overlap() / 2),  # overlap as 92
        extSave=['jpg', 'jpg', 'jpg',
                 'png'],  # save rgb files as jpg and gt as png
        isTrain=True,
        gtInd=3,
        pad=model.get_overlap())  # pad around the tiles
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                      'city')
    # use first city for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(5) if i != flags.leave_city])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [flags.leave_city])

    dataReader_train = uabDataReader.ImageLabelReader([3], [0, 1, 2],
                                                      patchDir,
                                                      file_list_train,
                                                      flags.input_size,
                                                      flags.batch_size,
                                                      dataAug='flip,rotate',
                                                      block_mean=np.append(
                                                          [0], img_mean),
                                                      batch_code=0)
    dataReader_train_building = uabDataReader.ImageLabelReaderBuildingCustom(
        [3], [0, 1, 2],
        patchDir,
        file_list_valid,
        flags.input_size,
        flags.batch_size,
        dataAug='flip,rotate',
        percent_file=flags.pred_file_dir,
        block_mean=np.append([0], img_mean),
        patch_prob=0.1,
        binary=True)
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2],
                                                      patchDir,
                                                      file_list_valid,
                                                      flags.input_size,
                                                      flags.batch_size,
                                                      dataAug=' ',
                                                      block_mean=np.append(
                                                          [0], img_mean),
                                                      batch_code=0)

    # train
    start_time = time.time()

    model.train_config('X',
                       'Y',
                       'Y2',
                       flags.n_train,
                       flags.n_valid,
                       flags.input_size,
                       uabRepoPaths.modelPath,
                       loss_type='xent',
                       par_dir='Inria_Domain_LOO')
    model.run(
        train_reader=dataReader_train,
        train_reader_building=dataReader_train_building,
        valid_reader=dataReader_valid,
        pretrained_model_dir=flags.
        finetune_dir,  # train from scratch, no need to load pre-trained model
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=5,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
예제 #8
0
def main(flags, weight_dict):
    path_to_save = os.path.join(flags.weight_dir, 'shift_dict.pkl')
    shift_dict = ersa_utils.load_file(path_to_save)

    # make network
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    Z = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='Z')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelDTDA({'X': X, 'Z': Z, 'Y': y},
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', 'Z', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)          # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])         # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4],
                                                    cSize=flags.input_size,
                                                    numPixOverlap=int(model.get_overlap()),
                                                    extSave=['jpg', 'jpg', 'jpg', 'png'],
                                                    isTrain=True,
                                                    gtInd=3,
                                                    pad=model.get_overlap() // 2)
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'force_tile')
    # use first 5 tiles for validation
    file_list_source = uabCrossValMaker.make_file_list_by_key(idx, file_list, [i for i in range(6, 37)])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(idx, file_list, [i for i in range(0, 6)])

    # AIOI dataset
    blCol = uab_collectionFunctions.uabCollection(CITY_LIST[flags.leave_city])

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 3],
                                                    cSize=flags.input_size,
                                                    numPixOverlap=int(model.get_overlap()),
                                                    extSave=['jpg', 'jpg', 'jpg', 'png'],
                                                    isTrain=True,
                                                    gtInd=3,
                                                    pad=model.get_overlap() // 2)
    patchDir_target = extrObj.run(blCol)
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir_target, 'fileList.txt', 'force_tile')
    file_list_target = uabCrossValMaker.make_file_list_by_key(idx, file_list, [i for i in range(5)])

    with tf.name_scope('image_loader'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_source = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_source, flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size, dataAug='flip,rotate',
                                                          block_mean=np.append([0], img_mean))
        # no augmentation needed for validation
        dataReader_target = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir_target, file_list_target, flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size, dataAug='flip,rotate',
                                                          block_mean=np.append([0], img_mean))

        dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_valid, flags.input_size,
                                                           flags.tile_size,
                                                           flags.batch_size, dataAug='flip,rotate',
                                                           block_mean=np.append([0], img_mean))

    # train
    start_time = time.time()

    model.train_config('X', 'Y', 'Z', flags.n_train, flags.n_valid, flags.input_size, uabRepoPaths.modelPath,
                       loss_type='xent', par_dir='domain_baseline/contorl_valid', lam=flags.lam)
    model.load_source_weights(flags.model_dir, shift_dict, gpu=flags.GPU)
    model.run(train_reader_source=dataReader_source,
              train_reader_target=dataReader_target,
              valid_reader=dataReader_valid,
              pretrained_model_dir=None,        # train from scratch, no need to load pre-trained model
              isTrain=True,
              img_mean=img_mean,
              verb_step=100,                    # print a message every 100 step(sample)
              save_epoch=5,                     # save the model every 5 epochs
              gpu=flags.GPU,
              tile_size=flags.tile_size,
              patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration/60/60))
예제 #9
0
                   shape=[None, chip_size[0], chip_size[1], 1],
                   name='y')
mode = tf.placeholder(tf.bool, name='mode')
model = uabMakeNetwork_ResFCN.ResFcnModel({
    'X': X,
    'Y': y
},
                                          trainable=mode,
                                          input_size=chip_size,
                                          batch_size=5)
model.create_graph('X', class_num=2)

# create collection
# the original file is in /ei-edl01/data/uab_datasets/inria
blCol = uab_collectionFunctions.uabCollection('inria')
opDetObj = bPreproc.uabOperTileDivide(255)
rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                 'Map GT to (0, 1)', [3],
                                                 opDetObj)
rescObj.run(blCol)
print(blCol.readMetadata())

# extract patches
extrObj = uab_DataHandlerFunctions.uabPatchExtr(
    [0, 1, 2, 4],  # extract all 4 channels
    cSize=chip_size,  # patch size as 224*224
    numPixOverlap=0,  # overlap as 0
    extSave=['jpg', 'jpg', 'jpg',
             'png'],  # save rgb files as jpg and gt as png
    isTrain=True,
    gtInd=3)
예제 #10
0
def main(flags):
    # ------------------------------------------Network---------------------------------------------#
    # make network
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UnetMTL.UnetModelMTL({'X':X, 'Y':y},
                                                trainable=mode,
                                                model_name=flags.model_name,
                                                input_size=flags.input_size,
                                                batch_size=flags.batch_size,
                                                learn_rate=flags.learning_rate,
                                                decay_step=flags.decay_step,
                                                decay_rate=flags.decay_rate,
                                                epochs=flags.epochs,
                                                start_filter_num=flags.sfn,
                                                source_num=flags.s_num,
                                                source_name=flags.s_name,
                                                source_control=flags.s_control)
    model.create_graph('X', class_num=flags.num_classes, start_filter_num=flags.sfn)

    # ------------------------------------------Dataset Inria---------------------------------------------#
    # create collection for inria
    blCol_inria = uab_collectionFunctions.uabCollection('inria')
    opDetObj_inria = bPreproc.uabOperTileDivide(255)
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj_inria)
    rescObj.run(blCol_inria)
    img_mean_inria = blCol_inria.getChannelMeans([0, 1, 2])

    # extract patches
    extrObj_inria = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4],
                                                          cSize=flags.input_size,
                                                          numPixOverlap=int(model.get_overlap()),
                                                          extSave=['jpg', 'jpg', 'jpg', 'png'],
                                                          isTrain=True,
                                                          gtInd=3,
                                                          pad=int(model.get_overlap() / 2))
    patchDir_inria = extrObj_inria.run(blCol_inria)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx_inria, file_list_inria = uabCrossValMaker.uabUtilGetFolds(patchDir_inria, 'fileList.txt', 'force_tile')
    # use first 5 tiles for validation
    file_list_train_inria = uabCrossValMaker.make_file_list_by_key(idx_inria, file_list_inria,
                                                                   [i for i in range(20, 136)])
    file_list_valid_inria = uabCrossValMaker.make_file_list_by_key(idx_inria, file_list_inria,
                                                                   [i for i in range(0, 20)])

    with tf.name_scope('image_loader_inria'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_train_inria = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir_inria, file_list_train_inria,
                                                                flags.input_size, flags.tile_size, flags.batch_size,
                                                                dataAug='flip,rotate',
                                                                block_mean=np.append([0], img_mean_inria))
        # no augmentation needed for validation
        dataReader_valid_inria = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir_inria, file_list_valid_inria,
                                                                flags.input_size, flags.tile_size,
                                                                flags.batch_size, dataAug=' ',
                                                                block_mean=np.append([0], img_mean_inria))

    # ------------------------------------------Dataset Road---------------------------------------------#
    # create collection for road
    blCol_road = uab_collectionFunctions.uabCollection('road_5000')
    opDetObj_road = bPreproc.uabOperTileDivide(255)
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj_road)
    rescObj.run(blCol_road)
    img_mean_road = blCol_road.getChannelMeans([0, 1, 2])

    # extract patches
    extrObj_road = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4],
                                                         cSize=flags.input_size,
                                                         numPixOverlap=int(model.get_overlap()),
                                                         extSave=['jpg', 'jpg', 'jpg', 'png'],
                                                         isTrain=True,
                                                         gtInd=3,
                                                         pad=int(model.get_overlap() / 2))
    patchDir_road = extrObj_road.run(blCol_road)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx_road, file_list_road = uabCrossValMaker.uabUtilGetFolds(patchDir_road, 'fileList.txt', 'city')
    # use first 5 tiles for validation
    file_list_train_road = uabCrossValMaker.make_file_list_by_key(idx_road, file_list_road, [1])
    file_list_valid_road = uabCrossValMaker.make_file_list_by_key(idx_road, file_list_road, [0, 2])

    with tf.name_scope('image_loader_road'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_train_road = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir_road, file_list_train_road,
                                                                flags.input_size, flags.tile_size, flags.batch_size,
                                                                dataAug='flip,rotate',
                                                                block_mean=np.append([0], img_mean_road))
        # no augmentation needed for validation
        dataReader_valid_road = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir_road, file_list_valid_road,
                                                                flags.input_size, flags.tile_size,
                                                                flags.batch_size, dataAug=' ',
                                                                block_mean=np.append([0], img_mean_road))

    # ------------------------------------------Train---------------------------------------------#
    start_time = time.time()

    model.train_config('X', 'Y', flags.n_train, flags.n_valid, flags.input_size, uabRepoPaths.modelPath,
                       loss_type='xent')
    model.run(train_reader=[dataReader_train_inria, dataReader_train_road],
              valid_reader=[dataReader_valid_inria, dataReader_valid_road],
              pretrained_model_dir=None,        # train from scratch, no need to load pre-trained model
              isTrain=True,
              img_mean=[img_mean_inria, img_mean_road],
              verb_step=100,                    # print a message every 100 step(sample)
              save_epoch=5,                     # save the model every 5 epochs
              gpu=GPU,
              tile_size=flags.tile_size,
              patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration/60/60))
예제 #11
0
def make_res50_features(model_name, task_dir, GPU=0, force_run=False):
    feature_file_name = os.path.join(task_dir,
                                     'res50_inria_{}.csv'.format(model_name))
    patch_file_name = os.path.join(task_dir,
                                   'res50_inria_{}.txt'.format(model_name))

    if model_name == 'deeplab':
        input_size = (321, 321)
        overlap = 0
    else:
        input_size = (572, 572)
        overlap = 184
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],
        cSize=input_size,
        numPixOverlap=overlap,
        extSave=['jpg', 'jpg', 'jpg', 'png'],
        isTrain=True,
        gtInd=3,
        pad=overlap // 2)
    patchDir = extrObj.run(blCol)
    idx, _ = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                              'force_tile')

    if not os.path.exists(feature_file_name) or not os.path.exists(
            patch_file_name) or force_run:
        os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
        os.environ['CUDA_VISIBLE_DEVICES'] = '{}'.format(GPU)
        import keras

        input_size_fit = (224, 224)

        file_name = os.path.join(patchDir, 'fileList.txt')
        with open(file_name, 'r') as f:
            files = f.readlines()

        res50 = keras.applications.resnet50.ResNet50(include_top=True,
                                                     weights='imagenet')
        fc2048 = keras.models.Model(
            inputs=res50.input, outputs=res50.get_layer('flatten_1').output)
        with open(feature_file_name, 'w+') as f:
            with open(patch_file_name, 'w+') as f2:
                for file_line in tqdm(files):
                    patch_name = file_line.split('.')[0][:-5]
                    img = np.zeros((input_size[0], input_size[1], 3),
                                   dtype=np.uint8)
                    for cnt, file in enumerate(
                            file_line.strip().split(' ')[:3]):
                        img[:, :, cnt] = imageio.imread(
                            os.path.join(patchDir, file)) - img_mean[cnt]

                    img = np.expand_dims(crop_center(img, input_size_fit[0],
                                                     input_size_fit[1]),
                                         axis=0)

                    fc1000 = fc2048.predict(img).reshape((-1, )).tolist()
                    writer = csv.writer(f, lineterminator='\n')
                    writer.writerow(['{}'.format(x) for x in fc1000])
                    f2.write('{}\n'.format(patch_name))

    return feature_file_name, patch_file_name, input_size[0], patchDir, idx