예제 #1
0
파일: views.py 프로젝트: diveki/webdev
def plot_daily_income_per_month(income_summary, page_obj, freq='daily'):
    title = page_obj.object_list[0]
    colors = ["#c9d9d3", "#718dbf", "#e84d60"]
    stacks = list(income_summary.columns.drop('Total'))

    if freq == 'monthly':
        income_summary.index = [
            hf.first_day_of_month(x) for x in income_summary.index
        ]
        income_summary.index = income_summary.index.rename('date')

    source = ColumnDataSource(income_summary)
    plot = figure(title=title,
                  plot_width=500,
                  plot_height=400,
                  x_axis_type="datetime")

    renderers = plot.varea_stack(stacks,
                                 x='date',
                                 source=source,
                                 color=colors[:len(stacks)],
                                 legend=[x + ' ' for x in stacks])
    plot.legend.location = 'top_left'
    plot.left[0].formatter.use_scientific = False

    plot.add_tools(BoxZoomTool())
    plot.add_tools(ResetTool())
    hover = HoverTool(tooltips=[('Date', '@date')])
    plot.add_tools(hover)
    script, div = components(plot)
    return script, div
예제 #2
0
def render_karate_graph():
    G = nx.karate_club_graph()

    SAME_CLUB_COLOR, DIFFERENT_CLUB_COLOR = "black", "red"
    edge_attrs = {}
    for start_node, end_node, _ in G.edges(data=True):
        edge_color = SAME_CLUB_COLOR if G.nodes[start_node][
            "club"] == G.nodes[end_node]["club"] else DIFFERENT_CLUB_COLOR
        edge_attrs[(start_node, end_node)] = edge_color

    nx.set_edge_attributes(G, edge_attrs, "edge_color")

    # Show with Bokeh
    plot = Plot(plot_width=400, plot_height=400,
                x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1))
    plot.title.text = "Graph Interaction Demonstration"

    node_hover_tool = HoverTool(
        tooltips=[("index", "@index"), ("club", "@club")])
    plot.add_tools(node_hover_tool, BoxZoomTool(), ResetTool())

    graph_renderer = from_networkx(
        G, nx.spectral_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.glyph = Circle(
        size=15, fill_color=Spectral4[0])
    graph_renderer.edge_renderer.glyph = MultiLine(
        line_color="edge_color", line_alpha=0.8, line_width=1)
    plot.renderers.append(graph_renderer)
    return plot
예제 #3
0
    def _set_tools(self):
        wheel_zoom = WheelZoomTool()
        pan = PanTool()
        box_zoom = BoxZoomTool()
        box_select = BoxSelectTool()
        crosshair = CrosshairTool()
        tap = TapTool()
        save = SaveTool()
        reset = ResetTool()
        self.lasso_select = LassoSelectTool(
            renderers=self.circles,          # default = all available renderers
            select_every_mousemove=False,    # to enhance performance
        )

        self.lasso_select.overlay.line_alpha=0.9
        self.lasso_select.overlay.line_color="black"
        self.lasso_select.overlay.fill_alpha=0.2
        self.lasso_select.overlay.fill_color="grey"

        hover = self._get_hover_tool()
        self.tools = (
            pan, box_zoom, self.lasso_select, box_select,
            crosshair, save, reset, tap, wheel_zoom
        )
        self.plot.add_tools(*self.tools)
예제 #4
0
    def makedoc(doc):
        source = ColumnDataSource(dataframe)
        image_holder = ColumnDataSource({
            'image': [],
            'x': [],
            'y': [],
            'dx': [],
            'dy': []
        })
        tools = [
            ResetTool(),
            PanTool(),
            WheelZoomTool(),
            TapTool(),
            BoxSelectTool(),
            PolySelectTool(),
            UndoTool(),
            RedoTool()
        ]
        pca = figure(title='PCA',
                     x_range=[minx - 0.05 * rangex, maxx + 0.05 * rangex],
                     y_range=[miny - 0.05 * rangey, maxy + 0.05 * rangey],
                     sizing_mode='scale_both',
                     tools=tools)
        glyphs = pca.circle(source=source, x='x', y='y')

        sel = figure(title='Selected image',
                     x_range=[0, 1],
                     y_range=[0, 1],
                     sizing_mode='scale_both')
        image_canvas = sel.image_rgba('image',
                                      'x',
                                      'y',
                                      'dx',
                                      'dy',
                                      source=image_holder)

        def load_selected(attr, old, new):
            print('new index: ', new.indices)
            if len(new.indices) == 1:  # could be empty selection
                update_image_canvas_single(new.indices[0],
                                           data=dataframe,
                                           source=image_holder)
            elif len(new.indices) > 1:
                update_image_canvas_multi(new.indices,
                                          data=dataframe,
                                          source=image_holder)

        glyphs.data_source.on_change('selected', load_selected)

        fig = row([pca, sel], sizing_mode='stretch_both')
        doc.title = 'Bokeh microscopium app'
        doc.add_root(fig)
예제 #5
0
    def _set_tools(self):
        wheel_zoom = WheelZoomTool()
        pan = PanTool()
        box_zoom = BoxZoomTool()
        box_select = BoxSelectTool()
        crosshair = CrosshairTool()
        tap = TapTool()
        save = SaveTool()
        reset = ResetTool()     # TODO: add only to one plot, maybe with n_plot

        self.lasso_select = LassoSelectTool(
            renderers=self.circles,                  # default all available renderers
            select_every_mousemove=False,            # enhance performance
        )

        tooltips = '''
            <style>
                .bk-tooltip>div:not(:nth-child(-n+5)) {{
                    display:none;
                }}

                /* .bk-tooltip-custom + .bk-tooltip-custom {{
                    display: none;  sometimes everything is hidden with this
                }} */

                .bk-tooltip>div {{
                    background-color: #dff0d8;
                    padding: 5px;
                }}
            </style>

            <b>INDEX: </b> @INDEX <br>
            <b>{x}: </b> @{x} <br>
            <b>{x}_FLAG_W: </b> @{x}_FLAG_W <br>
            <b>{y}: </b> @{y} <br>
            <b>{y}_FLAG_W: </b> @{y}_FLAG_W <br>
        '''.format(x=self.x, y=self.y)

        hover = HoverTool(                  # TODO: try to make this toggleable
            renderers=self.circles,
            toggleable=True,
            mode='mouse',
            tooltips=tooltips,
        )

        tools = (
            pan, box_zoom, self.lasso_select, box_select,
            crosshair, save, reset, tap, wheel_zoom
        )
        self.plot.add_tools(*tools)
예제 #6
0
    def plot_pulses2(self, km=False):

        import matplotlib
        matplotlib.use('Agg')
        import matplotlib.pyplot as plt
        from bokeh.resources import CDN
        from bokeh.embed import components
        from bokeh.mpl import to_bokeh
        from bokeh.models.tools import WheelZoomTool, ResetTool, PanTool, HoverTool, SaveTool

        lines = self.get_lines()

        N = len(lines)
        npoints = self.total_units / self.km2unit if km else self.total_units
        fig = plt.figure(figsize=(12, 2 + N * 0.5))
        ax = fig.add_subplot(111)
        labels = ['IPP']

        for i, line in enumerate(lines):
            labels.append(line.get_name(channel=True))
            l = ax.plot((0, npoints), (N - i - 1, N - i - 1))
            points = [(tup[0], tup[1] - tup[0])
                      for tup in line.pulses_as_points(km=km) if tup != (0, 0)]
            ax.broken_barh(points, (N - i - 1, 0.5),
                           edgecolor=l[0].get_color(),
                           facecolor='none')

        n = 0
        f = ((self.ntx + 50) / 100) * 5 if (
            (self.ntx + 50) / 100) * 10 > 0 else 2
        for x in np.arange(0, npoints,
                           self.ipp if km else self.ipp * self.km2unit):
            if n % f == 0:
                ax.text(x, N, '%s' % n, size=10)
            n += 1

        labels.reverse()
        ax.set_yticks(range(len(labels)))
        ax.set_yticklabels(labels)
        ax.set_xlabel = 'Units'
        plot = to_bokeh(fig, use_pandas=False)
        plot.tools = [
            PanTool(dimensions=['width']),
            WheelZoomTool(dimensions=['width']),
            ResetTool(),
            SaveTool()
        ]
        plot.toolbar_location = "above"

        return components(plot, CDN)
예제 #7
0
    def addplot(self, curve, *args):
        TOOLTIPS = [
        ("(curve)", "($name)"),
        ("(value)", "($x)")]
        logIndex=len(self.plotlist)
        r = lambda: random.randint(0,255)
        colr='#{:02x}{:02x}{:02x}'.format(r(), r(), r())
        if self.unitDict[curve] in ('ohmm', 'OHMM'):
            self.figDict["fig{0}".format(logIndex)]=figure(x_axis_type="log", x_axis_location='above')
        else:
            self.figDict["fig{0}".format(logIndex)] = figure(tooltips=TOOLTIPS, x_axis_location='above')
        # Define 1st LHS y-axis
        self.figDict["fig{0}".format(logIndex)].yaxis.axis_label = str(self.curvename[0])+' (' + str(self.unitDict[self.curvename[0]])+ ')'
        self.figDict["fig{0}".format(logIndex)].y_range = Range1d(start=max(self.df[self.curvename[0]]), end=min(self.df[self.curvename[0]]),  bounds=(None,None))

        # Define x-axis
        self.figDict["fig{0}".format(logIndex)].xaxis.axis_label = str(curve) + ' ('+ str(self.unitDict[curve])+')'
        self.figDict["fig{0}".format(logIndex)].x_range = Range1d(start=min(self.df[curve]), end=max(self.df[curve]))
        #fig.xaxis.ticker=SingleIntervalTicker(interval=30)
        self.figDict["fig{0}".format(logIndex)].xaxis.axis_label_text_color = colr
        # Define x-axis curve
        self.figDict["fig{0}".format(logIndex)].line(
            y = self.df[self.curvename[0]],
            x = self.df[curve],
            name = str(curve),
            color = colr
            )
        for curves in args:
            colr='#{:02x}{:02x}{:02x}'.format(r(), r(), r())
            #add more x-axis
            self.figDict["fig{0}".format(logIndex)].extra_x_ranges [str(curves)] = Range1d(start=min(self.df[curves]), end=max(self.df[curves]))
            self.figDict["fig{0}".format(logIndex)].add_layout(LinearAxis( x_range_name=curves, 
                                      axis_label=str(curves) + ' ('+ str(self.unitDict[curves])+')', axis_label_text_color = colr), 'above')

            # Define other x-axis curve
            self.figDict["fig{0}".format(logIndex)].line(
                y = self.df[self.curvename[0]],
                x = self.df[curves],
                name = curves,
                x_range_name = str(curves),
                color = colr
            )
        self.plotlist.append(self.figDict["fig{0}".format(logIndex)])
        self.figDict["fig{0}".format(logIndex)].tools=[WheelZoomTool(),PanTool(),ResetTool()]
        self.figDict["fig{0}".format(logIndex)].add_tools(HoverTool(tooltips=TOOLTIPS))
        
        return self.figDict["fig{0}".format(logIndex)]
예제 #8
0
    def newplot(self, data, log, unit, *args):
        curve= data[log]
        TOOLTIPS = [
        ("(curve)", "($name)"),
        ("(value)", "($x)")]
        logIndex=len(self.plotlist)
        r = lambda: random.randint(0,255)
        colr='#{:02x}{:02x}{:02x}'.format(r(), r(), r())
        self.figDict["fig{0}".format(logIndex)] = figure(tooltips=TOOLTIPS, x_axis_location='above')
        # Define 1st LHS y-axis
        self.figDict["fig{0}".format(logIndex)].yaxis.axis_label = str(self.curvename[0])+' (' + str(self.unitDict[self.curvename[0]])+ ')'
        self.figDict["fig{0}".format(logIndex)].y_range = Range1d(start=max(curve.index), end=min(curve.index),  bounds=(None,None))
        
        # Define x-axis
        self.figDict["fig{0}".format(logIndex)].xaxis.axis_label = str(log) + ' ('+ str(unit)+')'
        self.figDict["fig{0}".format(logIndex)].x_range = Range1d(start=min(curve), end=max(curve))
        #fig.xaxis.ticker=SingleIntervalTicker(interval=30)
        self.figDict["fig{0}".format(logIndex)].xaxis.axis_label_text_color = colr
        # Define x-axis curve
        self.figDict["fig{0}".format(logIndex)].line(
            y = curve.index,
            x = curve,
            name = str(log),
            color = colr
            )
        for curved in args:
            curves=data[curved]
            colr='#{:02x}{:02x}{:02x}'.format(r(), r(), r())
            #add more x-axis
            self.figDict["fig{0}".format(logIndex)].extra_x_ranges [str(curved)] = Range1d(start=min(curves), end=max(curves))
            self.figDict["fig{0}".format(logIndex)].add_layout(LinearAxis( x_range_name=curved, 
                                      axis_label=str(curved) + ' ('+ str(unit)+')', axis_label_text_color = colr), 'above')

            # Define other x-axis curve
            self.figDict["fig{0}".format(logIndex)].line(
                y = curves.index,
                x = curves,
                name = curved,
                x_range_name = str(curved),
                color = colr
            )
        self.plotlist.append(self.figDict["fig{0}".format(logIndex)])
        self.figDict["fig{0}".format(logIndex)].tools=[WheelZoomTool(),PanTool(),ResetTool()]
        self.figDict["fig{0}".format(logIndex)].add_tools(HoverTool(tooltips=TOOLTIPS))
        
        return self.figDict["fig{0}".format(logIndex)]
예제 #9
0
파일: viz.py 프로젝트: nicelgueta/botsorted
    def plot_perf(
        data: pd.DataFrame,
        mod: DirectReinforcementModel,
        tail: int = config["chartTail"],
        modelName: str = f"{config['modelName']} v{config['modelVersion']}",
    ) -> str:  # returns HTML str
        data = data.tail(tail)
        data = DataVisualiser.add_positions_to_data(mod, data)
        data = DataVisualiser.add_performance_to_data(mod, data)
        p1 = figure(
            x_axis_type="datetime",
            title="Cumulative Returns by Strategy",
            plot_width=800,
            plot_height=500,
        )
        p1.grid.grid_line_alpha = 0.3
        p1.xaxis.axis_label = "Date"
        p1.yaxis.axis_label = "Cumulative Returns"

        p1.toolbar.logo = None
        p1.tools = [
            PanTool(),
            # SaveTool(),
            WheelZoomTool(),
            ResetTool(),
            CrosshairTool(),
        ]

        p1.line(  # pylint: disable=too-many-function-args
            datet(data.closeTimeIso),
            data.modelReturnsCumSum,
            color="#33A02C",
            legend_label=modelName,
        )
        p1.line(  # pylint: disable=too-many-function-args
            datet(data.closeTimeIso),
            data.buyHoldReturns,
            color="#FB9A99",
            legend_label="HODL",
        )

        return file_html(p1, CDN), data
예제 #10
0
파일: views.py 프로젝트: diveki/webdev
def plot_stacked_area(df,
                      stack_category,
                      x_axis,
                      colors,
                      title='',
                      xaxis_type=''):
    data = {'x_axis': x_axis}
    for cat in stack_category:
        data[cat] = list(df[cat].values)

    if xaxis_type == 'datetime':
        p = figure(x_range=x_axis,
                   plot_height=350,
                   title=title,
                   toolbar_location='below',
                   tools="pan,wheel_zoom,box_zoom,reset",
                   tooltips="$name - @x_axis: @$name",
                   x_axis_type='datetime')
    else:
        p = figure(x_range=x_axis,
                   plot_height=350,
                   title=title,
                   toolbar_location='below',
                   tools="pan,wheel_zoom,box_zoom,reset",
                   tooltips="$name @x_axis: @$name")

    renderers = p.vbar_stack(stack_category,
                             x="x_axis",
                             width=0.9,
                             color=colors,
                             source=data,
                             legend=[bvalue(x) for x in stack_category])

    p.left[0].formatter.use_scientific = False

    p.add_tools(BoxZoomTool())
    p.add_tools(ResetTool())

    script, div = components(p)
    return script, div
예제 #11
0
def render_from_fb_combined():
    print('rendering from facebook_combined.txt')
    df = pd.read_csv('facebook_combined.txt', sep=" ", header=None)
    G = nx.from_pandas_edgelist(df.head(1000), 0, 1)
    print(nx.info(G))

    plot = Plot(background_fill_color="white",
                sizing_mode="stretch_both",
                x_range=Range1d(-0.5, 0.5), y_range=Range1d(-0.5, 0.5))

    graph_renderer = from_networkx(
        G, nx.spring_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.glyph = Circle(
        size=15, fill_color=Spectral4[0])
    graph_renderer.edge_renderer.glyph = MultiLine(
        line_alpha=0.8, line_width=1)

    plot.add_tools(WheelZoomTool())
    plot.add_tools(ResetTool())
    plot.add_tools(PanTool())
    plot.add_tools(HoverTool(
        tooltips=[("user", "datracka"), ("url", "https://twitter.com/datracka")]))
    plot.add_tools(PointDrawTool(
        renderers=[], empty_value='black'))

    plot.axis.axis_line_width = 0
    plot.grid.grid_line_width = 0
    plot.xaxis.major_tick_line_color = None  # turn off x-axis major ticks
    plot.xaxis.minor_tick_line_color = None  # turn off x-axis minor ticks
    plot.yaxis.major_tick_line_color = None  # turn off y-axis major ticks
    plot.yaxis.minor_tick_line_color = None  # turn off y-axis minor ticks
    plot.xaxis.major_label_text_color = None  # Remove label x axis
    plot.yaxis.major_label_text_color = None  # Remove label x axis
    plot.border_fill_color = None
    plot.outline_line_color = None

    plot.renderers.append(graph_renderer)

    return plot
예제 #12
0
 def __create_tools(cls, **hoverkwargs):
     return [
         TapTool(),
         BoxSelectTool(dimensions='width'),
         BoxSelectTool(dimensions='height'),
         BoxSelectTool(),
         WheelZoomTool(),
         BoxZoomTool(),
         ResetTool(),
         SaveTool(),
         HoverTool(tooltips=[('workflow', '@Workflow'),
                             ('activity', '@Activity'),
                             ('result', '@Result'),
                             ('duration', '@DurationStr'),
                             ('started', '@StartedOnTimestampStr'),
                             ('ended', '@EndedOnTimeStampStr')],
                   formatters={
                       'started': 'printf',
                       'ended': 'printf'
                   },
                   show_arrow=True,
                   **hoverkwargs)
     ]
예제 #13
0
파일: plotting.py 프로젝트: ratt-ru/ragavi
def create_bk_fig(x=None, xlab=None, x_min=None, x_max=None,
                  ylab=None, fh=None, fw=None,
                  title=None, pw=None, ph=None, x_axis_type="linear",
                  y_axis_type="linear", x_name=None, y_name=None, **kwargs):
    """ Generates a bokeh figure

    Parameters
    ----------
    x :obj:`DataArray`
        Contains x-axis data
    xlab : :obj:`str`
        X-axis label
    x_min : :obj:`float`
        Min x value
    x_max : :obj:`float`
        Max x value
    ylab : :obj:`str`
        Y-axis label
    fh: :obj:`int`
        True height of figure without legends, axes titles etc
    fw: :obj:`int`
        True width of figure without legends, axes etc
    title: :obj:`str`
        Title of plot
    pw: :obj:`int`
        Plot width including legends, axes etc
    ph: :obj:`int`
        Plot height including legends, axes etc
    x_axis_type: :obj:`str`
        Type of x-axis can be linear, log, or datetime
    y_axis_type: :obj:`str`
        Can be linear, log or datetime
    x_name: :obj:`str`
        Name of the column used for the x-axis. Mostly used to form tooltips
    y_name: :obj:`str`
        Name of the column used for the y-axis. Also used for tooltips
    add_grid: :obj:`bool`
        Whether or not to add grid
    add_title: :obj:`bool`
        Whether or not to add title to plot
    add_xaxis: :obj:`bool`
        Whether or not to add x-axis and tick marks
    add_yaxis: :obj:`bool`
        Add y-axis or not
    fix_plotsize: :obj:`bool`
        Enforce certain dimensions on plot. This is useful for ensuring a plot
        is not obscure by axes and other things. If activated, plot's
        dimensions will not be responsive. It utilises fw and fh.

    Returns
    -------
    p : :obj:`Plot`
        A bokeh Plot object

    """

    add_grid = kwargs.pop("add_grid", False)
    add_title = kwargs.pop("add_title", True)
    add_xaxis = kwargs.pop("add_xaxis", False)
    add_yaxis = kwargs.pop("add_yaxis", False)
    fix_plotsize = kwargs.pop("fix_plotsize", True)
    # addition plot specs
    pl_specs = kwargs.pop("pl_specs", {})
    # additional axis specs
    ax_specs = kwargs.pop("ax_specs", {})
    # ticker specs
    ti_specs = kwargs.pop("ti_specs", {})

    plot_specs = dict(background="white", border_fill_alpha=0.1,
                      border_fill_color="white", min_border=3,
                      name="plot", outline_line_dash="solid",
                      outline_line_width=2, outline_line_color="#017afe",
                      outline_line_alpha=0.4, output_backend="canvas",
                      sizing_mode="stretch_width", title_location="above",
                      toolbar_location="above")
    plot_specs.update(pl_specs)

    axis_specs = dict(minor_tick_line_alpha=0, axis_label_text_align="center",
                      axis_label_text_font="monospace",
                      axis_label_text_font_size="10px",
                      axis_label_text_font_style="normal",
                      major_label_orientation="horizontal")
    axis_specs.update(ax_specs)

    tick_specs = dict(desired_num_ticks=5)
    tick_specs.update(ti_specs)

    # Define frame width and height
    # This is the actual size of the plot without the titles et al
    if fix_plotsize and not(fh or fw):
        fw = int(0.98 * pw)
        fh = int(0.93 * ph)

    # define the axes ranges
    x_range = DataRange1d(name="p_x_range", only_visible=True)

    y_range = DataRange1d(name="p_y_range", only_visible=True)

    if x_min is not None and x_max is not None and x_name.lower() in ["channel", "frequency"]:
        x_range = Range1d(name="p_x_range", start=x_min, end=x_max)
        y_range.only_visible = False

    # define items to add on the plot
    p_htool = HoverTool(tooltips=[(x_name, "$x"),
                                  (y_name, "$y")],
                        name="p_htool", point_policy="snap_to_data")

    if x_name.lower() == "time":
        p_htool.tooltips[0] = (x_name, "$x{%d-%m-%Y %H:%M}")
        p_htool.formatters = {"$x": "datetime"}

    p_toolbar = Toolbar(name="p_toolbar",
                        tools=[p_htool, BoxSelectTool(), BoxZoomTool(),
                               # EditTool(), # BoxEditTool(), # RangeTool(),
                               LassoSelectTool(), PanTool(), ResetTool(),
                               SaveTool(), UndoTool(), WheelZoomTool()])
    p_ticker = BasicTicker(name="p_ticker", **tick_specs)

    # select the axis scales for x and y
    if x_axis_type == "linear":
        x_scale = LinearScale(name="p_x_scale")
        # define the axes and tickers
        p_x_axis = LinearAxis(axis_label=xlab, name="p_x_axis",
                              ticker=p_ticker, **axis_specs)
    elif x_axis_type == "datetime":
        x_scale = LinearScale(name="p_x_scale")
        # define the axes and tickers
        p_x_axis = DatetimeAxis(axis_label=xlab, name="p_x_axis",
                                ticker=p_ticker, **axis_specs)
    elif x_axis_type == "log":
        x_scale = LogScale(name="p_x_scale")
        p_x_axis = LogAxis(axis_label=xlab, name="p_x_axis",
                           ticker=p_ticker, **axis_specs)

    if y_axis_type == "linear":
        y_scale = LinearScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = LinearAxis(axis_label=ylab, name="p_y_axis",
                              ticker=p_ticker, **axis_specs)
    elif x_axis_type == "datetime":
        y_scale = LinearScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = DatetimeAxis(axis_label=xlab, name="p_y_axis",
                                ticker=p_ticker, **axis_specs)
    elif y_axis_type == "log":
        y_scale = LogScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = LogAxis(axis_label=ylab, name="p_y_axis",
                           ticker=p_ticker, **axis_specs)

    # Create the plot object
    p = Plot(plot_width=pw, plot_height=ph, frame_height=fh, frame_width=fw,
             toolbar=p_toolbar, x_range=x_range, x_scale=x_scale,
             y_range=y_range, y_scale=y_scale, **plot_specs)

    if add_title:
        p_title = Title(align="center", name="p_title", text=title,
                        text_font_size="24px",
                        text_font="monospace", text_font_style="bold",)
        p.add_layout(p_title, "above")

    if add_xaxis:
        p.add_layout(p_x_axis, "below")

    if add_yaxis:
        p.add_layout(p_y_axis, "left")

    if add_grid:
        p_x_grid = Grid(dimension=0, ticker=p_ticker)
        p_y_grid = Grid(dimension=1, ticker=p_ticker)
        p.add_layout(p_x_grid)
        p.add_layout(p_y_grid)

    return p
예제 #14
0
def create_HRDPS_graph(df):
    source = ColumnDataSource(df)
    # create plot 1
    p1 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    p1.title.text = '48H Temperature'
    p1.xaxis.axis_label = 'Date/Time'
    p1.yaxis.axis_label = 'Temperature \N{DEGREE SIGN}C'
    # add lines
    glyph_1 = p1.line(x='DATETIME',
                      y='TMP',
                      source=source,
                      color='OrangeRed',
                      line_width=1.5)
    glyph_1a = p1.scatter(x='DATETIME',
                          y='TMP',
                          source=source,
                          line_color="darkRed",
                          fill_color="OrangeRed",
                          size=4)
    # tools
    hover1 = HoverTool(renderers=[glyph_1],
                       tooltips=[('\N{DEGREE SIGN}C', '@TMP'),
                                 ('Time', '@DATETIME{%F %T}')],
                       formatters={'@DATETIME': 'datetime'},
                       mode='vline')
    p1.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p1.toolbar.logo = None
    p1.toolbar.active_drag = None
    p1.toolbar.active_scroll = None
    p1.toolbar.active_tap = None
    p1.add_tools(hover1)
    # legend 1
    legend = Legend(items=[("Temp", [glyph_1, glyph_1a])],
                    location="center",
                    orientation="horizontal")
    p1.add_layout(legend, 'below')
    # create tab from plot
    tab1 = Panel(child=p1, title="Temperature")
    # create plot 2
    p2 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    p2.title.text = '48H Precipitation'
    p2.xaxis.axis_label = 'Date/Time'
    p2.yaxis.axis_label = 'Amount (mm/cm)'
    # Add lines
    glyph_1 = p2.line(x='DATETIME',
                      y='RQP',
                      source=source,
                      color='blue',
                      line_width=1.5)
    glyph_1a = p2.scatter(x='DATETIME',
                          y='RQP',
                          source=source,
                          line_color="darkblue",
                          fill_color="blue",
                          size=4)
    glyph_2 = p2.line(x='DATETIME',
                      y='SQP',
                      source=source,
                      color='lavender',
                      line_width=1.5)
    glyph_2a = p2.scatter(x='DATETIME',
                          y='SQP',
                          source=source,
                          line_color="lightsteelblue",
                          fill_color="lavender",
                          size=4)
    p2.varea(x='DATETIME',
             y1='SQP',
             source=source,
             color='GhostWhite',
             alpha=0.5)
    band = Band(base='DATETIME',
                upper='RQP',
                source=source,
                level='overlay',
                fill_alpha=0.3,
                fill_color='SkyBlue')
    p2.add_layout(band)
    # tools
    hover2a = HoverTool(renderers=[glyph_1],
                        tooltips=[('mm Rain', '@RQP'),
                                  ('mm Freezing Rain', '@FQP'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    hover2b = HoverTool(renderers=[glyph_2],
                        tooltips=[('cm Snow', '@SQP'), ('mm Ice/Hail', '@IQP'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    p2.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p2.toolbar.logo = None
    p2.toolbar.active_drag = None
    p2.toolbar.active_scroll = None
    p2.toolbar.active_tap = None
    p2.add_tools(hover2a, hover2b)
    # legend 2
    legend = Legend(items=[("Rain", [glyph_1, glyph_1a]),
                           ("Snow", [glyph_2, glyph_2a])],
                    location="center",
                    orientation="horizontal")
    p2.add_layout(legend, 'below')
    # Create tab from plot
    tab2 = Panel(child=p2, title="Precipitation")
    # create plot 3
    p3 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    p3.title.text = '48H Wind/Cloud'
    p3.xaxis.axis_label = 'Date/Time'
    p3.yaxis.axis_label = 'Speed (km/h) / % Coverage'
    # Add lines
    glyph_1 = p3.line(x='DATETIME',
                      y='WS',
                      source=source,
                      color='green',
                      line_width=1.5)
    glyph_1a = p3.scatter(x='DATETIME',
                          y='WS',
                          source=source,
                          line_color="darkgreen",
                          fill_color="green",
                          size=4)
    glyph_2 = p3.line(x='DATETIME',
                      y='CLOUD',
                      source=source,
                      color='grey',
                      line_width=1.5)
    glyph_2a = p3.scatter(x='DATETIME',
                          y='CLOUD',
                          source=source,
                          line_color="darkgrey",
                          fill_color="grey",
                          size=4)
    band = Band(base='DATETIME',
                upper='CLOUD',
                source=source,
                level='underlay',
                fill_alpha=0.3,
                fill_color='lightgrey')
    p3.add_layout(band)
    # tools
    hover3a = HoverTool(renderers=[glyph_1],
                        tooltips=[('Wind Speed', '@WS'),
                                  ('Wind Direction', '@WD'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    hover3b = HoverTool(renderers=[glyph_2],
                        tooltips=[('% Coverage', '@CLOUD'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    p3.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p3.toolbar.logo = None
    p3.toolbar.active_drag = None
    p3.toolbar.active_scroll = None
    p3.toolbar.active_tap = None
    p3.add_tools(hover3a, hover3b)
    # legend 3
    legend = Legend(items=[("Wind", [glyph_1, glyph_1a]),
                           ("Cloud", [glyph_2, glyph_2a])],
                    location="center",
                    orientation="horizontal")
    p3.add_layout(legend, 'below')
    # Create tab from plot
    tab3 = Panel(child=p3, title="Wind/Cloud")
    # merge to final plot
    plot = Tabs(tabs=[tab1, tab2, tab3])
    # return graph
    html = file_html(plot, CDN)
    return html
예제 #15
0
def create_NAM_graph(df):
    source = ColumnDataSource(df)
    # Create plot 1
    y_overlimit = 0.05
    p1 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    if len(df) > 65:
        p1.title.text = '10 Day Temperature'
    else:
        p1.title.text = '3.5 Day Temperature'
    p1.xaxis.axis_label = 'Date/Time'
    p1.yaxis.axis_label = 'Temperature \N{DEGREE SIGN}C'
    # add lines
    glyph_1 = p1.line(x='DATETIME',
                      y='TMP',
                      source=source,
                      color='OrangeRed',
                      line_width=1.5)
    glyph_1a = p1.scatter(x='DATETIME',
                          y='TMP',
                          source=source,
                          line_color="darkRed",
                          fill_color="OrangeRed",
                          size=4)
    p1.y_range = Range1d(df['TMP'].min() * (1 - y_overlimit),
                         df['TMP'].max() * (1 + y_overlimit))
    # SECOND AXIS
    y_column2_range = "HGT_0C_DB" + "_range"
    p1.extra_y_ranges = {
        y_column2_range:
        Range1d(start=df['HGT_0C_DB'].min() * (1 - y_overlimit),
                end=df['HGT_0C_DB'].max() * (1 + y_overlimit))
    }
    p1.add_layout(
        LinearAxis(y_range_name=y_column2_range, axis_label='Elevation (m)'),
        "right")
    # add lines
    glyph_2 = p1.line(x='DATETIME',
                      y="HGT_0C_DB",
                      source=source,
                      line_width=1.5,
                      y_range_name=y_column2_range,
                      color="gold")
    glyph_2a = p1.scatter(x='DATETIME',
                          y='HGT_0C_DB',
                          source=source,
                          y_range_name=y_column2_range,
                          line_color="goldenrod",
                          fill_color="gold",
                          size=4)
    # tools
    hover1a = HoverTool(renderers=[glyph_1],
                        tooltips=[('\N{DEGREE SIGN}C', '@TMP'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    hover1b = HoverTool(renderers=[glyph_2],
                        tooltips=[('m', '@HGT_0C_DB'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    p1.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p1.toolbar.logo = None
    p1.toolbar.active_drag = None
    p1.toolbar.active_scroll = None
    p1.toolbar.active_tap = None
    p1.add_tools(hover1a, hover1b)
    # legend 1
    legend = Legend(items=[("Temp", [glyph_1, glyph_1a]),
                           ("Frz Lvl", [glyph_2, glyph_2a])],
                    location="center",
                    orientation="horizontal")
    p1.add_layout(legend, 'below')
    # create tab from plot
    tab1 = Panel(child=p1, title="Temperature")
    # create plot 2
    p2 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    if len(df) > 65:
        p2.title.text = '10 Day Precipitation'
    else:
        p2.title.text = '3.5 Day Precipitation'
    p2.xaxis.axis_label = 'Date/Time'
    p2.yaxis.axis_label = 'Amount (mm/cm)'
    # add lines
    glyph_1 = p2.line(x='DATETIME',
                      y='RQP',
                      source=source,
                      color='blue',
                      line_width=1.5)
    glyph_1a = p2.scatter(x='DATETIME',
                          y='RQP',
                          source=source,
                          line_color="darkblue",
                          fill_color="blue",
                          size=4)
    glyph_2 = p2.line(x='DATETIME',
                      y='SQP',
                      source=source,
                      color='lavender',
                      line_width=1.5)
    glyph_2a = p2.scatter(x='DATETIME',
                          y='SQP',
                          source=source,
                          line_color="lightsteelblue",
                          fill_color="lavender",
                          size=4)
    p2.varea(x='DATETIME',
             y1='SQP',
             source=source,
             color='GhostWhite',
             alpha=0.5)
    band = Band(base='DATETIME',
                upper='RQP',
                source=source,
                level='overlay',
                fill_alpha=0.3,
                fill_color='SkyBlue')
    p2.add_layout(band)
    # tools
    hover2a = HoverTool(renderers=[glyph_1],
                        tooltips=[('mm Rain', '@RQP'),
                                  ('mm Freezing Rain', '@FQP'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    hover2b = HoverTool(renderers=[glyph_2],
                        tooltips=[('cm Snow', '@SQP'), ('mm Ice/Hail', '@IQP'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    p2.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p2.toolbar.logo = None
    p2.toolbar.active_drag = None
    p2.toolbar.active_scroll = None
    p2.toolbar.active_tap = None
    p2.add_tools(hover2a, hover2b)
    # legend 2
    legend = Legend(items=[("Rain", [glyph_1, glyph_1a]),
                           ("Snow", [glyph_2, glyph_2a])],
                    location="center",
                    orientation="horizontal")
    p2.add_layout(legend, 'below')
    # create tab from plot
    tab2 = Panel(child=p2, title="Precipitation")
    # plot 3
    p3 = figure(x_axis_type='datetime',
                plot_width=600,
                plot_height=400,
                toolbar_location='above',
                sizing_mode='scale_width')
    if len(df) > 65:
        p1.title.text = '10 Day Wind/Cloud'
    else:
        p1.title.text = '3.5 Day Wind/Cloud'
    p3.xaxis.axis_label = 'Date/Time'
    p3.yaxis.axis_label = 'Speed (km/h) / % Coverage'
    # add lines
    glyph_1 = p3.line(x='DATETIME',
                      y='WS',
                      source=source,
                      color='green',
                      line_width=1.5)
    glyph_1a = p3.scatter(x='DATETIME',
                          y='WS',
                          source=source,
                          line_color="darkgreen",
                          fill_color="green",
                          size=4)
    glyph_2 = p3.line(x='DATETIME',
                      y='CLOUD',
                      source=source,
                      color='grey',
                      line_width=1.5)
    glyph_2a = p3.scatter(x='DATETIME',
                          y='CLOUD',
                          source=source,
                          line_color="darkgrey",
                          fill_color="grey",
                          size=4)
    band = Band(base='DATETIME',
                upper='CLOUD',
                source=source,
                level='underlay',
                fill_alpha=0.3,
                fill_color='lightgrey')
    p3.add_layout(band)
    # tools
    hover3a = HoverTool(renderers=[glyph_1],
                        tooltips=[('Wind Speed', '@WS'),
                                  ('Wind Direction', '@WD'), ('Gusts', '@WG'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    hover3b = HoverTool(renderers=[glyph_2],
                        tooltips=[('% Coverage', '@CLOUD'),
                                  ('Time', '@DATETIME{%F %T}')],
                        formatters={'@DATETIME': 'datetime'},
                        mode='vline')
    p3.toolbar.logo = None
    p3.tools = [ZoomInTool(), ZoomOutTool(), PanTool(), ResetTool()]
    p3.toolbar.active_drag = None
    p3.toolbar.active_scroll = None
    p3.toolbar.active_tap = None
    p3.add_tools(hover3a, hover3b)
    # legend 3
    legend = Legend(items=[("Wind", [glyph_1, glyph_1a]),
                           ("Cloud", [glyph_2, glyph_2a])],
                    location="center",
                    orientation="horizontal")
    p3.add_layout(legend, 'below')
    # tab from plot
    tab3 = Panel(child=p3, title="Wind/Cloud")
    # merge tabs into one plot
    plot = Tabs(tabs=[tab1, tab2, tab3])
    # return plot
    html = file_html(plot, CDN)
    return html
예제 #16
0
from bokeh.models.sources import ColumnDataSource
from bokeh.models import Range1d, Legend, NumeralTickFormatter, DatetimeTickFormatter, Title
from bokeh.models.tools import PanTool, BoxZoomTool, WheelZoomTool, ResetTool, HoverTool
from bokeh.layouts import row
from bokeh.palettes import Dark2

import datetime
import psycopg2
import pandas as pd
import numpy as np

# Interactive tools to use
hover = HoverTool(tooltips=[('Stock Name',
                             '@stock_name'), ('Time',
                                              '@timestamp'), ('Price', '@y')])
tools = [PanTool(), BoxZoomTool(), ResetTool(), WheelZoomTool(), hover]

name_mapper = dict(NFLX='Netflix',
                   GE='General Electric',
                   NVDA='NVIDIA',
                   INTC='Intel Corporation',
                   AAPL='Apple',
                   AMZN='Amazon')
p = figure(title="STOCKSTREAMER v0.0",
           tools=tools,
           plot_width=1000,
           y_range=Range1d(-50, 1200),
           x_range=Range1d(0, 1),
           plot_height=680,
           toolbar_location='below',
           toolbar_sticky=False)
예제 #17
0
def plot():

    # Read data as if uploaded file is now used, Data set 1
    data1 = read_csv('app/static/uploads/Data1.csv', sep=',', skipinitialspace=1)

    xdata1 = data1.values[:,1]    # Extract Data
    ydata1 = data1.values[:,2]
    colour1 = ['black']*len(xdata1)

    # Read data as if uploaded file is now used, Data set 2
    data2 = read_csv('app/static/uploads/Data2.csv', sep=',', skipinitialspace=1)

    xdata2 = data2.values[:,1]
    ydata2 = data2.values[:,2]
    colour2 = ['green']*len(xdata2)

    # Read data as if uploaded file is now used, Data set 3
    data3 = read_csv('app/static/uploads/Data3.csv', sep=',', skipinitialspace=1)

    xdata3 = data3.values[:,1]
    ydata3 = data3.values[:,2]
    colour3 = ['red']*len(xdata3)

    # Prepare Data3
    # xdata3 = linspace(0, 100, 10)
    # ydata3 = sin(10*xdata3)

    # Data_pandas = DataFrame({'Time': xdata3,
    #                        'Value': ydata3})

    # Data_pandas.to_csv('app/static/uploads/Data3.csv')


    # Assign read data to ColumnDataSource objects
    sourceData1 = ColumnDataSource(data=dict(x=xdata1, y=ydata1, color=colour1))
    sourceData2 = ColumnDataSource(data=dict(x=xdata2, y=ydata2, color=colour2))
    sourceData3 = ColumnDataSource(data=dict(x=xdata3, y=ydata3, color=colour3))

    my_plot = figure(tools=[BoxSelectTool(dimensions=['width'], select_every_mousemove=True), PanTool(), ResetTool(), WheelZoomTool(), BoxZoomTool()],
                     title='Time series data',
                     x_range=(xdata1.min(), xdata1.max()),
                     y_range=(ydata1.min(), ydata1.max()),
                     width=1200)      # Create figure object; DEBUG: select_every_mousemove=False

    my_plot.extra_y_ranges = {# 'Data1': Range1d(start=ydata1.min(), end=ydata1.max()),
                              'Data2': Range1d(start=ydata2.min(), end=ydata2.max()),
                              'Data3': Range1d(start=ydata3.min(), end=ydata3.max())}

    my_plot.circle(x='x', y='y', color='color', source=sourceData1,
                   size=8, alpha=0.8, legend='Data 1')  # Add circle elements (glyphs) to the figure

    my_plot.circle(x='x', y='y', color='color', source=sourceData2,
                   size=5, alpha=0.8, y_range_name='Data2', legend='Data 2')

    my_plot.circle(x='x', y='y', color='color', source=sourceData3,
                   size=8, alpha=0.5, y_range_name='Data3', legend='Data 3')
    my_plot.line(x='x', y='y', color='red', source= sourceData3,
                 alpha=0.5, y_range_name='Data3', legend='Data 3')


    sourceFit = ColumnDataSource(data=dict(xfit=[], yfit=[]))
    my_plot.circle(x='xfit', y='yfit', source=sourceFit, color='orange', alpha=0.3)

    # my_plot.add_layout(LinearAxis(y_range_name='Data1', axis_line_color=colour1[0]), 'left')
    my_plot.add_layout(LinearAxis(y_range_name='Data2', axis_line_color=colour2[0], axis_line_width=3), 'left')
    my_plot.add_layout(LinearAxis(y_range_name='Data3', axis_line_color=colour3[0], axis_line_width=3), 'left')


    # sourceAnnotate = ColumnDataSource(data=dict(text=['Foo', 'Bah'], x=[50, 50], y=[0.5, 0], x_offset=[0,0], y_offset=[0,0], text_font_size=['15pt', '15pt'],

    #                                            text_color=['orange', 'orange']))
    # my_plot.text(source=sourceAnnotate, text='text', x='x', y='y', x_offset='x_offset', y_offset='y_offset', text_font_size='text_font_size', text_color='text_color')

    sourceData1.callback = CustomJS(args=dict(sourceFit=sourceFit), code=("""FirstOrderEyeball(cb_obj, sourceFit)"""))

    # sourceData.callback = CustomJS(args=dict(sourceFit=sourceFit, sourceAnnotate=sourceAnnotate), code=("""FirstOrderEyeball(cb_obj, sourceFit, sourceAnnotate)"""))

    script, div = components(my_plot)  # Break figure up into component HTML to be added to template
    return render_template("int_scatter.html", myScript=script, myDiv=div)
예제 #18
0
def create_figures(source,
                   source_columns,
                   fig_len=fig_len,
                   fig_height=fig_height,
                   data_colors=data_colors,
                   hover_data=hover_data,
                   alpha=0.6,
                   figure_collector=figure_collector,
                   fig_title=fig_title,
                   sub_title=sub_title):

    # title = create_text(fig_title, text_color='#2b2d2f', text_font_size='40px', fig_height=60)
    # sub_title = create_text(sub_title, text_color='grey', text_font_size='20px', fig_height=40)
    # figure_collector.append(title)
    # figure_collector.append(sub_title)

    num_figures = len(source_columns)
    num = 0

    while num < num_figures:
        # create figure
        fig = figure(plot_width=fig_len,
                     plot_height=fig_height,
                     x_axis_type='datetime',
                     name='data_series',
                     output_backend="webgl")
        fig.sizing_mode = 'scale_width'
        # add tools
        tools = [
            PanTool(),
            BoxZoomTool(),
            WheelZoomTool(),
            SaveTool(),
            ResetTool()
        ]
        fig.add_tools(*tools)

        # create the scatter plot
        scatter = Circle(x='publishedAt',
                         y=source_columns[num],
                         line_color=data_colors[num],
                         fill_color=data_colors[num],
                         size=6,
                         fill_alpha=alpha,
                         line_alpha=alpha)
        scatter_render = fig.add_glyph(source_or_glyph=source, glyph=scatter)
        # hover only over scatter plot
        hover = HoverTool(renderers=[scatter_render],
                          tooltips=hover_data,
                          formatters={'@publishedAt': 'datetime'})
        fig.add_tools(hover)
        # open video url on tap scatter points
        taptool = TapTool(renderers=[scatter_render])
        taptool.callback = OpenURL(url=url)
        fig.add_tools(taptool)

        # create line plot without hover or top
        # line = Line(x='publishedAt', y=source_columns[num], line_color=data_colors[num], line_width=2, line_alpha=1)
        # line_render = fig.add_glyph(source_or_glyph=source, glyph=line)

        # add series title
        title = Text(x=data['publishedAt'].min(),
                     y=0.2,
                     text=[figure_titles[num]],
                     text_color=data_colors[num],
                     text_font_size='35px')
        fig.add_glyph(title)

        # decrease clutter
        fig.outline_line_color = None
        fig.xgrid.grid_line_color = None
        fig.ygrid.grid_line_color = None
        fig.yaxis.visible = False
        fig.xaxis.visible = False

        # format x-axis ticks
        fig.xaxis.major_tick_line_color = "grey"
        fig.xaxis.major_label_text_font_size = "15pt"
        fig.xaxis.major_label_text_color = "grey"

        # collect figures in a list
        figure_collector.append(fig)
        num += 1
    return figure_collector
예제 #19
0
    def plot_corr(self,
                  X,
                  names=None,
                  title='Feature Correlations',
                  width=None,
                  height=None):
        """Correlation matrix plot

        Args:
          X: 
          names:  (Default value = None)
          title:  (Default value = 'Feature Correlations')
          width:  (Default value = None)
          height:  (Default value = None)

        Returns:

        """

        n, d = X.shape
        xcorr = np.corrcoef(X.T)
        XX, YY = np.meshgrid(np.arange(1, d + 1), np.arange(1, d + 1))
        colors = []
        alphas = []
        for corr in xcorr.ravel():
            if corr > 0:
                colors.append(self.binary_colors[0])
                alphas.append(corr)
            elif corr < 0:
                colors.append(self.binary_colors[1])
                alphas.append(-corr)
            else:
                colors.append('lightgrey')
                alphas.append(self.alpha)

        dsource = ColumnDataSource(data=dict(xname=XX.ravel(),
                                             yname=YY.ravel(),
                                             colors=colors,
                                             alphas=alphas,
                                             corrs=xcorr.ravel()))

        hover_tooltips = dict({
            'xname': '@xname',
            'yname': '@yname',
            'corr': '@corrs'
        })

        f = self._get_figure_instance(title=title,
                                      x_range=names,
                                      y_range=names,
                                      xlabel='',
                                      ylabel='',
                                      width=width,
                                      height=height)
        f.tools = [PanTool(), ResetTool()]
        f.add_tools(HoverTool(tooltips=hover_tooltips))
        f.grid.grid_line_color = None
        f.axis.axis_line_color = None
        f.axis.major_tick_line_color = None
        f.axis.major_label_text_font_size = "6pt"
        f.axis.major_label_standoff = 0
        f.xaxis.major_label_orientation = -np.pi / 2

        f.rect('xname',
               'yname',
               0.9,
               0.9,
               source=dsource,
               color='colors',
               alpha='alphas',
               line_color=None,
               hover_line_color='black',
               hover_color='colors')
        return f
예제 #20
0
    def __init__(self, dataset, parameters):

        self.dataset = dataset

        # Set up the controls
        self.specials = Selector(
            name="Specials",
            kind="specials",
            css_classes=["specials"],
            entries={
                "Color-magnitude diagram": "cmd",
                "Period vs. radius": "pr",
                "Period vs. transit duration": "pdt",
            },
            default="Color-magnitude diagram",
        )
        self.data = Selector(
            name="Datasets",
            kind="datasets",
            css_classes=["data"],
            entries={"TOI Catalog": "toi", "Confirmed Planets": "confirmed"},
            default="Confirmed Planets",
        )
        self.xaxis = Selector(
            name="Build-Your-Own",
            kind="parameters",
            css_classes=["build-your-own"],
            entries=parameters,
            default="ra",
            title="X Axis",
        )
        self.yaxis = Selector(
            kind="parameters",
            css_classes=["build-your-own"],
            entries=parameters,
            default="dec",
            title="Y Axis",
        )
        self.size = Selector(
            name="Sides",
            kind="parameters",
            css_classes=["sides"],
            entries=parameters,
            default="dist",
            title="Marker Size",
            none_allowed=True,
        )
        self.color = Selector(
            kind="parameters",
            css_classes=["sides"],
            entries=parameters,
            default="dist",
            title="Marker Color",
            none_allowed=True,
        )

        # Set up the plot
        self.source = ColumnDataSource(
            data=dict(x=[], y=[], size=[], color=[])
        )
        self.plot = figure(
            plot_height=600,
            plot_width=700,
            title="",
            tooltips=[("TIC ID", "@ticid")],
            sizing_mode="scale_both",
        )
        self.plot.circle(
            x="x",
            y="y",
            source=self.source,
            size="size",
            color=linear_cmap(
                field_name="color", palette=Viridis256, low=0, high=1
            ),
            line_color=None,
        )
        self.plot.add_tools(
            BoxSelectTool(),
            BoxZoomTool(),
            LassoSelectTool(),
            PanTool(),
            PolySelectTool(),
            TapTool(),
            WheelZoomTool(),
            WheelPanTool(),
            ZoomInTool(),
            ZoomOutTool(),
            HoverTool(),
            CrosshairTool(),
            ResetTool(),
        )

        # Register the callback
        for control in [
            self.specials,
            self.data,
            self.xaxis,
            self.yaxis,
            self.size,
            self.color,
        ]:
            control.widget.on_change("value", self.callback)

        # Load and display the data
        self.callback(None, None, None)
예제 #21
0
from bokeh.models.tools import BoxZoomTool, PanTool, ResetTool
from bokeh.plotting import figure, output_file, show

# prepare some data
x = [1, 2, 3, 4, 5]
y = [4, 5, 5, 7, 2]

# set output to static HTML file
output_file("first_steps.html")

# create a plot
p = figure(
    title="Modifying tools example",
    tools=[BoxZoomTool(), ResetTool()],
    sizing_mode="stretch_width",
    max_width=500,
    plot_height=250,
)

# add an additional pan tool
# only vertical panning is allowed
p.add_tools(PanTool(dimensions="width"))

# add a renderer
p.circle(x, y, size=10)

# show the results
show(p)
예제 #22
0
MULT_HEIGHT = 1.5

MARKERS = [
    "o", "v", "^", "<", ">", "1", "2", "3", "4", "8", "s", "p", "P", "*", "h",
    "H", "+", "x", "X", "D", "d"
]
COLORS = Category20[
    19]  #["red", "yellow", "blue", "green", "rosybrown","darkorange", "fuchsia", "grey", ]

TOOLS = [
    PanTool(),
    BoxZoomTool(),
    WheelZoomTool(),
    UndoTool(),
    RedoTool(),
    ResetTool(),
    SaveTool(),
    HoverTool(tooltips=[("Price", "$y"), ("Time", "$x")])
]

NAME_RESULT_SHOW_VARS = "resultat_show_variables_pi_plus_{}_pi_minus_{}.html"

#------------------------------------------------------------------------------
#                   definitions of functions
#------------------------------------------------------------------------------

#------------------------------------------------------------------------------
#                   definitions of functions
#------------------------------------------------------------------------------

# _____________________________________________________________________________
예제 #23
0
    def setup_plot(
        self,
        x_axis_type="linear",
        y_axis_type="linear",
        x_flip=False,
        y_flip=False,
    ):
        # Set up the plot
        self.plot = figure(
            plot_height=620,
            min_width=600,
            title="",
            x_axis_type=x_axis_type,
            y_axis_type=y_axis_type,
            tools="",
            sizing_mode="stretch_both",
        )

        # Enable Bokeh tools
        self.plot.add_tools(PanTool(), TapTool(), ResetTool())

        # Axes orientation and labels
        self.plot.x_range.flipped = x_flip
        self.plot.y_range.flipped = y_flip
        self.plot.xaxis.axis_label = self.xaxis.value
        self.plot.yaxis.axis_label = self.yaxis.value

        # Plot the data
        self.plot.circle(
            x="x",
            y="y",
            source=self.source,
            size="size",
            color=linear_cmap(field_name="color",
                              palette=Viridis256,
                              low=0,
                              high=1),
            line_color=None,
        )

        # -- HACKZ --

        # Update the plot element in the HTML layout
        if hasattr(self.parent, "layout"):
            self.parent.layout.children[0].children[-1] = self.plot

        # Make the cursor a grabber when panning
        code_pan_start = """
            Bokeh.grabbing = true
            var elm = document.getElementsByClassName('bk-canvas-events')[0]
            elm.style.cursor = 'grabbing'
        """
        code_pan_end = """
            if(Bokeh.grabbing) {
                Bokeh.grabbing = false
                var elm = document.getElementsByClassName('bk-canvas-events')[0]
                elm.style.cursor = 'grab'
            }
        """
        self.plot.js_on_event("panstart", CustomJS(code=code_pan_start))
        self.plot.js_on_event("panend", CustomJS(code=code_pan_end))

        # Add a hover tool w/ a pointer cursor
        code_hover = """
        if((Bokeh.grabbing == 'undefined') || !Bokeh.grabbing) {
            var elm = document.getElementsByClassName('bk-canvas-events')[0]
            if (cb_data.index.indices.length > 0) {
                elm.style.cursor = 'pointer'
                Bokeh.pointing = true
            } else {
                if((Bokeh.pointing == 'undefined') || !Bokeh.pointing)
                    elm.style.cursor = 'grab'
                else
                    Bokeh.pointing = false
            }
        }
        """
        self.plot.add_tools(
            HoverTool(
                callback=CustomJS(code=code_hover),
                tooltips=[("TIC ID", "@ticid")],
            ))
div = activity.loc[cat.groups["Dividends"]]

bins = dates_of_interest(cadence=option, start=start, end=end)
yr_bins = []
div_bins = []
for yr, value in bins.items():
    mask = (div["date"] >= value["start"]) & (div["date"] <= value["end"])
    div_bins.append(div.loc[mask]["netAmount"].agg(np.sum))
    yr_bins.append(yr)

# Categories: https://docs.bokeh.org/en/latest/docs/user_guide/categorical.html
from bokeh.models.tools import BoxZoomTool, ResetTool
from bokeh.plotting import figure

p = figure(x_range=yr_bins, tools=[BoxZoomTool(), ResetTool()], plot_width=800)

p.vbar(x=yr_bins, top=div_bins, width=0.9)

p.xgrid.grid_line_color = None
p.y_range.start = 0

st.bokeh_chart(p, use_container_width=True)
"""
# Trade Volume
"""
"trades cadence:", option

trades = activity.loc[cat.groups["Trades"]]
# https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html
trades.groupby("action").size()
예제 #25
0
# =============================================================================
multi_plot = Plot(plot_width=800,
                  plot_height=400,
                  background_fill_color='silver')
multi_glyph = MultiLine(xs='waves', ys='ys', line_width=2, line_color='label')
multi_plot.add_glyph(spectra_visible_multi, multi_glyph)
xaxis, yaxis = LinearAxis(), LinearAxis()
multi_plot.add_layout(xaxis, 'below')
multi_plot.xaxis.axis_label = 'Wavelength (nm)'
multi_plot.add_layout(yaxis, 'left')
multi_plot.yaxis.axis_label = 'Intensity (CPS)'
multi_plot.add_layout(Grid(dimension=0, ticker=xaxis.ticker))
multi_plot.add_layout(Grid(dimension=1, ticker=yaxis.ticker))
multi_plot.add_tools(BoxZoomTool())
multi_plot.add_tools(WheelZoomTool())
multi_plot.add_tools(ResetTool())
multi_plot.add_tools(SaveTool())
multi_plot.add_layout(span)
# =============================================================================
# ~~  Clustering figures
# ~  labeled_materials_image: map image of predicted material labels
# ~  elbow inertia vs n_materials plot
# ~  varBar bar plot of pca explained variances
# =============================================================================
labeled_materials_image, label_mapper = basicMap(labeled_materials, 400,
                                                 'image')
# elbow = figure(x_axis_label='Number of Materials', y_axis_label='Learning Inertia',
#                plot_width=400, plot_height=200, toolbar_location=None)
# elbow.line('num_clusters', 'inertia', source=elbow_plot)
varBar = figure(plot_width=400, plot_height=200, toolbar_location=None)
varBar.vbar(x='x', top='top', source=pca_variance, width=0.9)
예제 #26
0
def create_daily_res_plot(res_forecast, load_forecast):
    """
    Graph the res injection forecast.

    Arguments:
        res_forecast (list): list of renewable energy injection forecast
        load_forecast (list): list of load forecast
    """
    # Datetime range
    time_of_day = []

    # Create x-axis
    # beginning of day
    today = datetime.datetime.today()
    beginning_of_day = datetime.datetime(year=today.year,
                                         month=today.month,
                                         day=today.day)

    for i in range(len(res_forecast)):
        time_of_day.append(beginning_of_day +
                           datetime.timedelta(minutes=i * 30))

    # Compute 75 percentile
    percentile = np.percentile(res_forecast, 75)

    # Initialize dictionaries
    normal_dict = {'x': [], 'y': [], 'percentage': []}
    peak_dict = {'x': [], 'y': [], 'percentage': []}

    for i in range(len(res_forecast)):
        if res_forecast[i] >= percentile:
            peak_dict['x'].append(time_of_day[i])
            peak_dict['y'].append(res_forecast[i])
            peak_dict['percentage'].append(
                percentage_of(res_forecast[i], load_forecast[i]))
        else:
            normal_dict['x'].append(time_of_day[i])
            normal_dict['y'].append(res_forecast[i])
            normal_dict['percentage'].append(
                percentage_of(res_forecast[i], load_forecast[i]))

    # Hover tool to properly display time of day and value on hover
    hover = HoverTool(
        tooltips=[("Time of day", "@x{%H:%M}"), ("Forecast Value", "@y MWh"),
                  ("Percentage of Daily Load", "@percentage{1.11} %")],
        formatters={'@x': 'datetime'},
    )

    # Create the figure
    plot = figure(
        x_axis_label="Time of Day",
        y_axis_label="Megawatts Per Hour",
        x_axis_type='datetime',
        sizing_mode="stretch_width",
        tools=[
            hover,
            BoxZoomTool(),
            ResetTool(),
            LassoSelectTool(),
            WheelZoomTool(),
            PanTool(),
            SaveTool()
        ],
    )

    plot.xaxis.formatter = DatetimeTickFormatter(
        minutes=["%H:%M"],
        hours=["%H:%M"],
    )

    # Set x-range and y-range
    plot.y_range = Range1d(min(res_forecast) - 200, max(res_forecast) + 100)
    plot.x_range = Range1d(time_of_day[0] - datetime.timedelta(minutes=5),
                           time_of_day[-1] + datetime.timedelta(minutes=5))

    # Set a grid
    plot.grid.minor_grid_line_color = '#eeeeee'

    # Set the font and style of labels
    plot.axis.axis_label_text_font = "raleway"
    plot.axis.axis_label_text_font_style = "normal"

    # Set the font of ticks on the axis
    plot.axis.major_label_text_font = "raleway"

    # Set the desired ticks
    plot.xaxis.ticker = DatetimeTicker(desired_num_ticks=24)
    plot.yaxis.ticker = AdaptiveTicker(desired_num_ticks=20)

    # Add a line plot
    plot.line(time_of_day,
              res_forecast,
              line_alpha=0.2,
              color="#264b01",
              line_width=1.5)

    # Add two circle plots one for the normal values and one for those that
    # are at or above the 75-percentile
    plot.circle('x', 'y', source=normal_dict, size=8, color="#264b01")
    plot.circle('x', 'y', source=peak_dict, size=15, color="#264b01")

    return components(plot)
예제 #27
0
ts_cnt = np.arange(3)
cross = [CrosshairTool() for n in ts_cnt]
hover = [
    HoverTool(tooltips=[('time', '$x'), ('sample', '@x')]),
    HoverTool(tooltips=[('time', '$x'), ('val',
                                         '@p1'), ('raw', '@raw_lp_decim_p1')]),
    HoverTool(tooltips=[('time', '$x'), ('val',
                                         '@p2'), ('raw', '@raw_lp_decim_p2')])
]
xzoom = [BoxZoomTool(dimensions=['width']) for n in ts_cnt]
xwzoom = [WheelZoomTool(dimensions=['width']) for n in ts_cnt]
xsel = [BoxSelectTool(dimensions=['width']) for n in ts_cnt]
xtsel = [TapTool() for n in ts_cnt]
xpan = [PanTool(dimensions=['width']) for n in ts_cnt]
save = [SaveTool() for n in ts_cnt]
reset = [ResetTool() for n in ts_cnt]
tools = [[
    cross[n], hover[n], xpan[n], xzoom[n], xwzoom[n], xsel[n], xtsel[n],
    save[n], reset[n]
] for n in ts_cnt]

data_update_in_progress = False

play_all_button = Button(label='Play', button_type='success', width=60)
play_all_button.on_click(play_all)
play_all_sox_button = Button(label='Play sox', button_type='success', width=60)
play_all_sox_button.on_click(play_all_sox)
audio_first_checkbox = CheckboxGroup(labels=['audio first'], active=[0])
audio_first_checkbox.on_click(audio_first_selected)

fsel.on_change('value', file_selected)
# ;----------;
# {{{1
tooltips_top = [
    ('open', '@open{0.2f}'),
    ('high', '@high{0.2f}'),
    ('low', '@low{0.2f}'),
    ('close', '@close{0.2f}'),
    ('ma-slow', '@ma_slow{0.2f}'),
    ('ma-fast', '@ma_fast{0.2f}'),
    ('time', '@time{%F %T}')
]

box_zoom = BoxZoomTool()
pan_tool = PanTool(dimensions='width')
wheel_zoom = WheelZoomTool()
reset_tool = ResetTool()
crosshair = CrosshairTool()
save = SaveTool()
hover_tool = HoverTool(
    tooltips=tooltips_top,
    formatters={'@time': 'datetime'}
)
box_selection = BoxSelectTool()

tools_top = [
    box_zoom,
    pan_tool,
    wheel_zoom,
    reset_tool,
    crosshair,
    save,
def make_region_plot(src, src_gene, src_tss, src_rna, fixed_yaxis=None):
    '''
    Construct pileup plot based on src
    '''

    # output_file(html_output)

    # flatten list of lists in count column of src, find max value of absolute expression
    frag_count_range = max(
        map(abs, [x for count in src.data['count'] for x in count]))
    if len(src_rna.data['y_plus']) > 0:
        rna_count_range = max(max(src_rna.data['y_plus']),
                              max(abs(src_rna.data['y_minus'])))
    else:
        rna_count_range = 0

    count_range = max(frag_count_range, rna_count_range)

    if fixed_yaxis:
        ymin = -1 * (fixed_yaxis)
        ymax = fixed_yaxis
    else:
        ymin = -(count_range + 1)
        ymax = count_range + 1

    # draw blank figure of correct size with tools
    p = figure(y_range=(ymin, ymax),
               plot_width=900,
               plot_height=700,
               tools=[
                   BoxSelectTool(),
                   BoxZoomTool(),
                   PanTool(),
                   WheelZoomTool(),
                   SaveTool(),
                   ResetTool()
               ],
               toolbar_location='above')

    legends = []

    # format axis and colors
    p.xaxis.axis_label = 'position'
    p.xaxis.major_label_orientation = pi / 4
    p.xaxis[0].formatter.use_scientific = False
    # p.xaxis[0].ticker=FixedTicker(ticks=range(start, end, 100))
    p.yaxis.axis_label = 'log normalized activity'

    patches = p.patches(source=src,
                        xs='position',
                        ys='count',
                        fill_color='color',
                        line_color=None,
                        alpha=0.50)
    legends.append(
        LegendItem(label='promoter activity (plus strand)',
                   renderers=[patches],
                   index=0))
    legends.append(
        LegendItem(label='promoter activity (minus strand)',
                   renderers=[patches],
                   index=1))

    # draw RNA lines
    if len(src_rna.data['x_minus']) > 0:
        plus_line = p.line(x='x_plus',
                           y='y_plus',
                           line_color='#528ecb',
                           line_width=2,
                           source=src_rna)
        legends.append(
            LegendItem(label='RNA-seq (plus strand)',
                       renderers=[plus_line],
                       index=0))
        minus_line = p.line(x='x_minus',
                            y='y_minus',
                            line_color='#ef8137',
                            line_width=2,
                            source=src_rna)
        legends.append(
            LegendItem(label='RNA-seq (minus strand)',
                       renderers=[minus_line],
                       index=1))

    # add second y-axis for TSS strength
    max_tss = max(map(abs, src_tss.data['y0']))
    p.extra_y_ranges = {
        'tss': Range1d(start=-(max_tss * 4), end=(max_tss * 4))
    }
    p.add_layout(LinearAxis(y_range_name='tss', axis_label='TSS expression'),
                 'right')

    # draw vertical rectangle
    p.quad(top='top',
           bottom='bottom',
           left='left',
           right='right',
           color='color',
           source=src_tss,
           y_range_name='tss')
    # draw horizontal line for arrow
    p.segment(x0='x0',
              y0='y0',
              x1='x1',
              y1='y1',
              color='color',
              source=src_tss,
              line_width=4,
              y_range_name='tss')
    # center of triangle is endpoint of segment
    tri = p.triangle(x='x1',
                     y='y1',
                     size=9,
                     angle='angle',
                     angle_units='deg',
                     color='color',
                     source=src_tss,
                     y_range_name='tss')
    legends.append(LegendItem(label='inactive TSS', renderers=[tri], index=9))
    legends.append(LegendItem(label='active TSS', renderers=[tri], index=0))

    # plot genes
    p.rect(x='gene_center',
           y='gene_center_y',
           width='gene_width',
           color='gene_color',
           height=10,
           height_units='screen',
           source=src_gene)
    p.triangle(x='tri_x',
               y=0,
               size=20,
               angle='angle',
               angle_units='deg',
               fill_color='gene_color',
               line_color=None,
               source=src_gene)
    p.text(x='gene_center',
           y='gene_center_y',
           text='gene_name',
           text_color='black',
           text_align='center',
           text_baseline='middle',
           text_font_size='10pt',
           source=src_gene)

    p.add_layout(Legend(items=legends), 'below')

    return p
예제 #30
0
파일: svm_main.py 프로젝트: otoja/fyd
 source = ColumnDataSource(
         data=dict(
                   months = userData['months'],
                   apps_ = userData['applications'],
                   names_ = userData['names'] 
                   )
                           )
 
 hover = HoverTool(tooltips=[
                             ("Name", "@names_"),
                             ("Months unemployed", "$x{int}"),
                             ("Submissions", "$y{int}")
                             ]
                   )
 
 TOOLS = [BoxSelectTool(), WheelZoomTool(), ResetTool(), hover]
 
 p = figure(plot_width=800, plot_height=900, title="NAV risk assessment", tools=TOOLS)
 p.xaxis.axis_label = 'Unemployed duration (months)'
 p.yaxis.axis_label = 'Number of applications submitted'
 
 colormap = {0:'green',1:'red'}
 colors = [colormap[x] for x in userData['labels']]
 
 p.circle('months', 'apps_', color=colors, fill_alpha=0.2, size=10,source=source)
 p.circle(X,Y,color='blue',size=10)
 
 output_file("NAVrisk.html", title="NAVrisk.py example")
 show(p)
 
 # Create HTML elements to export