예제 #1
0
		'pop'     : (gapminder.loc[yr].population / 20000000) + 2,
		'gdp'     : gapminder.loc[date_start].gdp,
		'child mortality' : gapminder.loc[date_start].child_mortality,
		'region'  : gapminder.loc[yr].region,
		}
    
    source.data = new_data

    
    plot.x_range.start = min(gapminder[x])
    plot.x_range.end = max(gapminder[x])
    plot.y_range.start = min(gapminder[y])
    plot.y_range.end = max(gapminder[y])

    
    plot.title.text = '%s VS. %s in %d' % (y,x,yr)

#setting up the slider
slider = Slider(start=date_start,end=date_end,step=1,value=date_start,title='Year')			

#making thing interactive using the update function
slider.on_change('value',update_value)  
x_value.on_change('value', update_value)
y_value.on_change('value', update_value)

plot.add_tools(hover)

layout = row(widgetbox(x_value,y_value,slider), plot)
curdoc().add_root(layout)
curdoc().title = "Gapminder"
    def get(self, request):

        s1 = ColumnDataSource(data=test_data)

        TOOLTIPS = [
            ("index", "$index"),
            ("(x,y)", "($x, $y)"),
            ("patient id", "@patient_id"),
        ]

        p1 = figure(
            # plot_width=400,
            # plot_height=400,
            tools=tools,
            title="Select Here",
            tooltips=TOOLTIPS,
        )
        p1.circle('x', 'y', source=s1, alpha=0.6, size=15)

        s2 = ColumnDataSource(data=dict(x=[], y=[]))
        p2 = figure(plot_width=400,
                    plot_height=400,
                    x_range=(0, 100),
                    y_range=(0, 100),
                    tools="",
                    title="Watch Here")
        p2.circle('x', 'y', source=s2, alpha=0.6)

        s1.selected.js_on_change(
            'indices',
            CustomJS(args=dict(s1=s1, s2=s2),
                     code="""
                var tbody = $('#tbl_selected_items').children('tbody');
                             
                 var table = tbody.length ? tbody : $('#tbl_selected_items');
                 var row = '<tr>'+
                    '<td>%%seq%%</td>'+
                    '<td>%%patient_id%%</td>'+
                    '<td>%%x%%</td>'+
                    '<td>%%y%%</td>'
                '</tr>';
                 
                $('#tbl_selected_items tbody').empty();
                 
                var inds = cb_obj.indices;
                var d1 = s1.data;
                var d2 = s2.data;
                d2['x'] = []
                d2['y'] = []
                var row_no = 0;
                for (var i = 0; i < inds.length; i++) {
                    var x = d1['x'][inds[i]];
                    var y = d1['y'][inds[i]];
                    var patient_id = d1['patient_id'][inds[i]];
                    d2['x'].push(x);
                    d2['y'].push(y);
                    
                    //row_no += 1;
                    table.append(row.compose({
                    'seq': (i+1),
                    'patient_id': patient_id,
                    'x': x,
                    'y': y}));
                }
                s2.change.emit();
            """))

        dx_min = test_data['x'].min()
        dx_max = test_data['x'].max()

        def callback_range_slider(source=test_data, window=None):

            print("call================", source)

        range_slider = RangeSlider(
            title="Filter range X",
            value=[dx_min, dx_max],
            start=dx_min,
            end=dx_max,
            step=1,
            callback=CustomJS.from_py_func(callback_range_slider))

        #         callback_range_slider = CustomJS(args=dict(data=test_data), code="""
        #             var d = data;
        #             var range_data = cb_obj.value;
        #             range_data_min = range_data[0];
        #             range_data_max = range_data[1];
        #             console.log(range_data[0]);
        #             console.log(range_data[1]);
        #         """)
        #
        #         range_slider.js_on_change('value', callback_range_slider)

        # range_slider.on_change('value', callback_range_slider)

        callback_button = CustomJS(args=dict(data=test_data),
                                   code="""
            var a = cb_obj.value;
            console.log(a[0]);
            console.log(a[1]);
        """)

        button_search = Button(label="Filter",
                               width=100,
                               disabled=False,
                               callback=callback_button)

        slider = Slider(start=0, end=100, value=1, step=1, title="Range x")
        select = Select(title="Gender:",
                        value="all",
                        options=["all", "male", "female"])
        row_criteria = row(range_slider, slider, select)
        layout = column(row_criteria, button_search, row(p1, p2))
        script, div = components(layout)

        return render(request, 'report_radiomic_brain.html', {
            'script': script,
            'div': div
        })
예제 #3
0
from bokeh.io import curdoc
from bokeh.plotting import Figure, output_file, show, ColumnDataSource
from bokeh.models import HBox
from bokeh.models.widgets import Slider, Select
# from bokeh.sampledata.autompg import autompg as am

cir_x = [10]
cir_y = [10]
cir_size = [10]

cir_source = ColumnDataSource(data=dict(x1=cir_x, y1=cir_y, sz=cir_size))

p1 = Figure(plot_width=300, plot_height=300)
p1.circle('x1', 'y1', size='sz', color='red', source=cir_source)

my_slider = Slider(start=0, end=100, step=1, value=50, title="Circle Radius")


def update_size(attrname, old, new):
    new_sz = [my_slider.value]
    cir_source.data = dict(x1=cir_x, y1=cir_y, sz=new_sz)


for w in [my_slider]:
    w.on_change('value', update_size)

hlayout = HBox(my_slider, p1)

output_file('circle1.html')
curdoc().add_root(hlayout)
#show(hlayout)
source = ColumnDataSource(data=dict(bins=fruits, counts=[1, 10, 20, 30]))
#fruits = [tp, fp, tn, fn]
# counts = [tp, fp, tn, fn]

source.data = dict(fruits=fruits, counts=[tp, fp, fn, tn])

p = figure(tools='crosshair,pan,wheel_zoom,zoom_in,zoom_out,box_zoom,undo,redo,reset,tap,save,box_select,lasso_select',x_range=fruits, plot_height=450, title="Counts")
p.vbar(x='fruits', top='counts', width=0.9, source=source, legend="fruits",
       line_color='white',fill_color=factor_cmap('fruits', palette=Spectral6, factors=fruits))

labels = LabelSet(x='fruits', y='counts', text='counts', level='glyph',
        x_offset=-15, y_offset=0, source=source, render_mode='canvas')
p.add_layout(labels)      
       
p.title.text = "Model Accuracy %f" % accuracy_score(y_test_original,predictions)
tsize = Slider(title="Test Size", start=0.05, end=0.50, value=0.2, step=0.05)
input = Slider(title="Degree", start=1, end=10, value=3, step=1)
ent = Select(title="Kernel", options=sorted(axis_map.keys()), value="rbf")
button = Button(label="Submit Parameters", button_type="success")
button2 = Button(label="Play_Depth", button_type="success")
multi_select = MultiSelect(title="Features to drop:", value=[],options=[('a','avg_dist'),('b','avg_rating_by_driver'),('c','avg_rating_of_driver'),('d','avg_surge'),('e','surge_pct'),('f','trips_in_first_30_days'),('g','luxury_car_user'),('h','weekday_pct'),('i','city_Astapor'),('k','city_Winterfell'),('l','phone_Android'),('m','phone_iPhone'),('n','phone_no_phone')])
p.add_tools(HoverTool(tooltips = [
    ("Count", "@counts"),
]))
def update_points():
    E = ent.value
    N = int(input.value)
    T = float(tsize.value)
    ms= multi_select.value
    print(ms)
    ms = [str(i) for i in ms]
예제 #5
0
def create_slider(time_unit="hour"):
    start, end, value, step, title = _get_slider_params(time_unit)
    return Slider(start=start, end=end, value=value, step=step, title=title)
def attention_tab(beers):
	
	# Dataset for density plot based on Genres and range of ratings
	# and bandwidth for density estimation
	def make_dataset(
		genre_list, 
		range_start, 
		range_end, 
		bandwidth
		):

		xs = []
		ys = []
		colors = []
		labels = []

		for i, genre in enumerate(genre_list):
			subset = beers[beers['style_genre'] == genre]
			subset = subset[subset['ratings'].between(range_start, 
														range_end)]

			kde = gaussian_kde(subset['ratings'], bw_method=bandwidth)
			
			# Evenly space x values
			x = np.linspace(range_start, range_end, 6500)
			# Evaluate pdf at every value of x
			y = kde.pdf(x)

			# Append the values to plot
			xs.append(list(x))
			ys.append(list(y))

			# Append the colors and label
			colors.append(genre_colors[i])
			labels.append(genre)

		new_src = ColumnDataSource(data={'x': xs, 'y': ys, 
								   'color': colors, 'label': labels})

		return new_src

	def make_plot(src):
		p = figure(plot_width = 700, plot_height = 650,
				   title = 'Distribution of Beer Genre Attention',
				   x_axis_label = 'Attention of Genre (Number of Ratings of Beer)', y_axis_label = 'Density')


		p.multi_line('x', 'y', color = 'color', legend = 'label', 
					 line_width = 3,
					 source = src)

		# Hover tool with next line policy
		hover = HoverTool(tooltips=[('Genre', '@label'), 
									('Ratings', '$x'),
									('Density', '$y')],
						  line_policy = 'next')

		# Add the hover tool and styling
		p.add_tools(hover)

		p = p_style(p)

		return p
	
	def update(attr, old, new):
		# List of genres to plot
		genres_to_plot = [genre_selection.labels[i] for i in 
							genre_selection.active]
		
		# If no bandwidth is selected, use the default value
		if bandwidth_choose.active == []:
			bandwidth = None
		# If the bandwidth select is activated, use the specified bandwith
		else:
			bandwidth = bandwidth_select.value
			
		
		new_src = make_dataset(genres_to_plot,
									range_start = range_select.value[0],
									range_end = range_select.value[1],
									bandwidth = bandwidth)
		
		src.data.update(new_src.data)
		
	def p_style(p):
		# Title 
		p.title.align = 'center'
		p.title.text_font_size = '20pt'
		p.title.text_font = 'serif'

		# Axis titles
		p.xaxis.axis_label_text_font_size = '14pt'
		p.xaxis.axis_label_text_font_style = 'bold'
		p.yaxis.axis_label_text_font_size = '14pt'
		p.yaxis.axis_label_text_font_style = 'bold'

		# Tick labels
		p.xaxis.major_label_text_font_size = '12pt'
		p.yaxis.major_label_text_font_size = '12pt'

		return p
	
	# genres and colors
	available_genres = list(set(beers['style_genre']))
	available_genres.sort()

	genre_colors = Category20_16
	genre_colors.sort()

	# Genres to plot
	genre_selection = CheckboxGroup(labels=available_genres, 
									   active = [0, 1])
	genre_selection.on_change('active', update)
	
	range_select = RangeSlider(start = 0, end = 500, value = (0, 200),
							   step = 50, title = 'Range of Attention (Number of Ratings)')
	range_select.on_change('value', update)
	
	# intial genres and data source
	initial_genres = [genre_selection.labels[i] for 
						i in genre_selection.active]
	
	# Bandwidth of kernel
	bandwidth_select = Slider(start = 0.1, end = 5, 
							  step = 0.1, value = 2,
							  title = 'Bandwidth for Density Plot')
	bandwidth_select.on_change('value', update)
	
	# Whether to set the bandwidth or have it done automatically
	bandwidth_choose = CheckboxButtonGroup(
		labels=['Choose Bandwidth (Else Auto)'], active = [])
	bandwidth_choose.on_change('active', update)

	# Make the density data source
	src = make_dataset(initial_genres, 
						range_start = range_select.value[0],
						range_end = range_select.value[1],
						bandwidth = bandwidth_select.value) 
	
	sidetext = Div(
		text="""Please use the filters below to adjust the <b>Attention Density Plot</b> as needed.""",
		width=250, height=50)

	# Make the density plot
	p = make_plot(src)
	
	# Add style to the plot
	p = p_style(p)
	
	# Put controls in a single element
	controls = WidgetBox(sidetext, genre_selection, range_select, 
						 bandwidth_select, bandwidth_choose)
	
	# Create a row layout
	layout = row(controls, p)
	
	# Make a tab with the layout 
	tab = Panel(child=layout, title = 'Distribution of Beer Genre Attention')

	return tab
예제 #7
0
    id2word = {v: k for k, v in word2id.items()}
    embeddings = np.vstack(vectors)
    return embeddings, id2word, word2id


nmax = 50000  # maximum number of word embeddings to load
src_path = 'results/eng_titles.vec'
tgt_path = 'results/fr_titles.vec'  #ar_titles.vec for arabic
src_embeddings, src_id2word, src_word2id = load_vec(src_path, nmax)
tgt_embeddings, tgt_id2word, tgt_word2id = load_vec(tgt_path, nmax)

#User interface and visualization (using Bokeh)
user_query = TextInput(value='medicine', title="Search for an article: ")
no_of_articles = Slider(title="Number of articles",
                        start=1,
                        end=50,
                        value=5,
                        step=1)
source = ColumnDataSource(
    data=dict(x=[], y=[], names=[], size=[], word_labels_display=[], rank=[]))
columns = [
    TableColumn(field="rank", title="No.", width=2),
    TableColumn(
        field="names",
        title="Articles",
        formatter=HTMLTemplateFormatter(
            template=
            '<a href="https://fr.wikipedia.org/wiki/<%= names %>" target="_blank"><%= value %></a>'
        )),
]
data_table = DataTable(source=source,
예제 #8
0
p3.ygrid.visible = False
p3.yaxis.visible = False

p3.xaxis.major_tick_line_color = None  # turn off y-axis major ticks
p3.xaxis.minor_tick_line_color = None  # turn off y-axis minor ticks
p3.xaxis.major_label_text_font_size = '0pt'  # turn off y-axis tick labels
p3.xgrid.visible = False
p3.xaxis.visible = False

plot.background_fill_color = '#2F2F2F'
plot.border_fill_color = '#2F2F2F'

# Set up widgets
electricfield = Slider(title="Initial electric field",
                       value=1.0,
                       start=0.0,
                       end=5.0,
                       step=0.1)
wavelength = Slider(title="Wavelength (nm)",
                    value=400,
                    start=400,
                    end=700,
                    step=5.0)
distance = Slider(title="Distance Between Slits (nm)",
                  value=500,
                  start=500,
                  end=5000,
                  step=50)
length = Slider(title="Distance between slits and screen",
                value=1.0,
                start=0.0,
예제 #9
0
        gateways.append((None, "--- Choose a Gateway ---"))
        for d in cursor:
            gateways.append((d["id"], d["name"]))
        redisconn.set("gateways", json.dumps(gateways))
    except errors.ServerSelectionTimeoutError as e:
        print("MongoDB Server timed out: %s" % e)
        notificationDiv.text = "MongoDB Server timed out: %s" % e
        sys.exit(-1)

gatewayControl = Select(title="Choose a Gateway", options=gateways)
deviceControl = Select(title="Choose a Device")
indicatorControl = Select(title="Choose an indicator")
submitButton = Button(label="Submit", button_type="primary")
timemachine = Slider(title="How many minutes back would you like to travel",
                     start=1,
                     end=30,
                     value=1,
                     step=1,
                     callback_policy="mouseup")
controls = [
    gatewayControl, deviceControl, indicatorControl, timemachine, submitButton,
    notificationDiv
]

statsDiv = Div(width=1100, text="")


def getStats():
    gatewayCount = db.gateways.count()
    deviceCount = db.devices.count()
    datasetCount = db.datasets.count()
    dataitemCount = db.dataitems.count()
예제 #10
0
<p>
Prepared by <b>Rajat Kabra</b>.<br/>
Presented to <b>Prof. Kevin Smith</b>.<br/>
Under <b>Assignment 4 of CS 235</b>.
</p>
<br/>""")

div = Div(
    text=
    """Your <a href="https://en.wikipedia.org/wiki/HTML">HTML</a>-supported text is initialized with the <b>text</b> argument.  The
remaining div arguments are <b>width</b> and <b>height</b>. For this example, those values
are <i>200</i> and <i>100</i> respectively.""",
    width=200,
    height=100)

tsize = Slider(title="Period", start=1, end=7, value=7, step=1)
button = Button(label="Filter Hover View", button_type="success")
radio_group = RadioGroup(
    labels=["Name", "Atomic Number", "Atomic Mass", "Metal", "CPK Color"],
    active=0)
periods = ["I", "II", "III", "IV", "V", "VI", "VII"]
groups = [str(x) for x in range(1, 19)]

df = elements.copy()
df["atomic mass"] = df["atomic mass"].astype(str)
df["group"] = df["group"].astype(str)
df["period"] = [periods[x - 1] for x in df.period]
df = df[df.group != "-"]
df = df[df.symbol != "Lr"]
df = df[df.symbol != "Lu"]
예제 #11
0
파일: main.py 프로젝트: PanKosa/pd4
p.xaxis.formatter=DatetimeTickFormatter(
         hourmin = ['%H:%M']
    )

#flights = psql.read_sql("SELECT * FROM Arr_Delays_vs_time_h", conn)
flights = psql.read_sql("SELECT * FROM Arr_Delays_vs_time_h24102007", conn)

flights["time_str"] = "0000" + flights["time"].astype(str)
flights["time_str"] = flights.time_str.str[-4:]
flights["time_str"] = flights.time_str.str[0:2] + ":" + flights.time_str.str[2:4]
flights["time"] = pd.to_datetime(flights.time_str, format='%H:%M').dt.time

# Create Input controls
carrier = Select(title="Carrier", value="CO",options=open(str(dirname(abspath(__file__))) + "/carriers.txt").read().split())
box_size = Slider(title="Box size", start=3, end=100, value=15, step=1)

# Create Column Data Source that will be used by the plot
source = ColumnDataSource(data=dict(dep=[], delay_smooth=[],  delay=[], name=[], time_str=[], num_of_flights=[], num_of_flights_smooth=[]))

p.scatter(x="dep", y="delay", line_width=2, source = source, legend="Raw Data")
g1 = p.line(x="dep", y="delay_smooth", line_width=2, line_color="red", source = source, legend="Smooth")

tooltips = OrderedDict([
    ('Dep.: ', '@time_str'),
    ('Est. Arr. Delay: ', '@delay_smooth'),
])
p.add_tools( HoverTool(tooltips=tooltips, renderers=[g1]))

p.title.text = 'Predicted Delays'
p.legend.location = "top_left"
예제 #12
0
x = list(range(start, start + len(data['circle_radius'])))

source = ColumnDataSource(
    data=dict(image=[data['image'][0]],
              circle_radius=[data['circle_radius'][0]],
              major_radius=[data['major_radius'][0]],
              minor_radius=[data['minor_radius'][0]],
              frame_num=[x[0]],
              circle_radius_text=["{:.2f}".format(data['circle_radius'][0])],
              major_radius_text=["{:.2f}".format(data['major_radius'][0])],
              minor_radius_text=["{:.2f}".format(data['minor_radius'][0])]))

slider = Slider(start=start,
                end=(start + len(x) - 1),
                value=start,
                step=1,
                title="Frame")

# circle fit plot
plot_line_circle = figure(width=800, height=300)
plot_line_circle.line(x=x, y=data['circle_radius'])
plot_line_circle.circle(x='frame_num',
                        y='circle_radius',
                        size=20,
                        fill_color="firebrick",
                        fill_alpha=0.5,
                        line_color=None,
                        source=source)
labels_circle = LabelSet(x='frame_num',
                         y='circle_radius',
예제 #13
0
    session.store_objects(mdssource)


def on_btn_clear():
    current_topic = None
    mdssource.selected = []
    session.store_objects(mdssource)


btn_prev.on_click(on_btn_prev)
btn_next.on_click(on_btn_next)
btn_clear.on_click(on_btn_clear)

slider = Slider(title="Slide to adjust relevance metric",
                value=0.25,
                start=0.0,
                end=1.0,
                step=0.01)

topics = HBox(height=50, children=[btn_prev, btn_next, btn_clear])
metric = HBox(height=50, children=[slider])

left_panel = VBox(children=[topics, intertopic_distance_map])
right_panel = VBox(children=[metric, top_R_terms])

layout = HBox(children=[left_panel, right_panel])

document.add(layout)
session.store_document(document)

if __name__ == "__main__":
예제 #14
0
                    title="Titre",
                    formatter=HTMLTemplateFormatter(
                        template='<div><%= title %></div>')),
        TableColumn(field="body",
                    title="Corps",
                    formatter=HTMLTemplateFormatter(
                        template='<div><%= body %></div>')),
    ]

    p2 = DataTable(source=s2, columns=columns, width=1200)
    #    p2= DataTable(source=s2, columns=columns, width=wi, height=400)

    end_slider = max(df.n_vote)
    nvote_slider = Slider(start=0,
                          end=end_slider,
                          value=0,
                          step=10,
                          title="Nombre de votes minimum",
                          callback=filtervote)
    filtervote.args["nvote"] = nvote_slider
    vote_slider = Slider(start=50,
                         end=100,
                         value=50,
                         title="Approbation/rejet(%)",
                         callback=filtervote)
    filtervote.args["vote"] = vote_slider

    toggle = Toggle(label="Cacher points non significatifs",
                    callback=filtervote,
                    width=50)
    toggle_expl = Div(
        text=
예제 #15
0
파일: main.py 프로젝트: Yoshinta/GWaviz
              x_axis_label='freq(Hz)',
              y_axis_label='strain',
              plot_width=500,
              plot_height=400)
pn23.line(x='freq', y='amp', source=sourcep2, color='green', line_width=3)
pn23.toolbar.logo = None

pn24 = figure(title='Phase',
              x_axis_label='freq(Hz)',
              y_axis_label='rad',
              plot_width=500,
              plot_height=400)
pn24.line(x='freq', y='phase', source=sourcep2, color='red', line_width=3)
pn24.toolbar.logo = None

q_sliderFD = Slider(start=1, end=10, value=1, step=.5, title="Mass ratio (q)")
e_sliderFD = Slider(start=0.,
                    end=0.9,
                    value=0,
                    step=.05,
                    title="Eccentricity (e)")
model_selectFD = Select(title="FD Models", options=fd_approximants())


def update_slider(attrname, old, new):
    # Get the current slider values
    q = q_sliderFD.value
    e = e_sliderFD.value
    approximant = model_selectFD.value
    freq, hp_real, hc_real, hp_imag, hc_imag, amp, phase = generate_analytic_waveform(
        mass_rat=q, eccentricity=e, approximant=approximant)
예제 #16
0
파일: main.py 프로젝트: DBFritz/Radmonpi
### Download data
## TODO: Implementar!
download_button = Button(label="Download data", button_type="success")
download_button.callback = CustomJS(code=open(
    os.path.join(os.path.dirname(__file__), 'download_events.js')).read())

download_button_wo = Button(label="Download data (without images)",
                            button_type="success")
download_button_wo.callback = CustomJS(code=open(
    os.path.join(os.path.dirname(__file__), 'download_wo_events.js')).read())

#########################
##     MEASURE TAB    ###
#########################
button_begin_measure = RadioButtonGroup(labels=["STOP", "BEGIN"], active=0)
slider_gain = Slider(start=1, end=1023, value=1, step=1, title="Gain")
slider_evsize = Slider(start=1, end=100, value=2, step=1, title="Minimum size")
slider_trigger = RangeSlider(start=0,
                             end=1023,
                             value=(150, 200),
                             step=1,
                             title="Detection threshold/trigger")


def run(cmd, filename, endbutton):
    try:
        logfile = open(os.path.join(os.path.dirname(__file__), filename), "w")
        p = subprocess.Popen(cmd.split(),
                             universal_newlines=True,
                             stdout=logfile)
        ret_code = p.poll()
예제 #17
0
파일: main_bcp.py 프로젝트: PanKosa/pd4
p.xaxis.formatter = DatetimeTickFormatter(hourmin=['%H:%M'])

#flights = psql.read_sql("SELECT * FROM Arr_Delays_vs_time_h", conn)
flights = psql.read_sql("SELECT * FROM Arr_Delays_vs_time_h24102007", conn)

flights["time"] = "0000" + flights["time"].astype(str)
flights["time"] = flights.time.str[-4:]
flights["time"] = flights.time.str[0:2] + ":" + flights.time.str[2:4]
flights["time"] = pd.to_datetime(flights.time, format='%H:%M').dt.time

# Create Input controls
genre = Select(
    title="Airport",
    value="CO",
    options=open('/home/pkosewski/python/pd4/carriers.txt').read().split())
box_size = Slider(title="Box size", start=3, end=100, value=15, step=1)

# Create Column Data Source that will be used by the plot
source = ColumnDataSource(
    data=dict(dep=[], delay_smooth=[], delay=[], name=[]))

#ML = Line(x="dep", y="delay", line_color="color", line_width=2)

ML = Line(x="dep", y="delay", line_width=2)
Smooth = Line(x="dep", y="delay_smooth", line_width=2, line_color="red")

g1 = p.add_glyph(source, ML)
g2 = p.add_glyph(source, Smooth)

legend = Legend(legends=[("curve1", [g1]), ("curve2", [g2])])
p.legend.location = "top_left"
예제 #18
0
def interactive_county_map(dfm,
                           key='GPCD',
                           slider_key='Year',
                           initial_query='Year == 2014',
                           title='California GPCD',
                           tools="pan,wheel_zoom,box_zoom,reset,hover,save",
                           width=600,
                           height=600,
                           zscale='linear'):
    """ Plots interactive map given dataframe with COunty boundary fields as wall as 
    key value and slider_key present in columns"""
    palette = Viridis256
    palette = palette[::-1]

    if zscale == 'log':
        color_mapper = LogColorMapper(palette=palette,
                                      low=dfm[key].min(),
                                      high=dfm[key].max())
    else:
        color_mapper = LinearColorMapper(palette=palette,
                                         low=dfm[key].min(),
                                         high=dfm[key].max())

    source = ColumnDataSource(dfm.dropna(), id='src')
    source_flt = ColumnDataSource(dfm.query(initial_query).fillna(-1),
                                  id='src_flt')

    p = figure(title=title,
               tools=tools,
               x_axis_location=None,
               y_axis_location=None,
               width=width,
               height=height)
    p.grid.grid_line_color = None

    p.patches('x',
              'y',
              source=source_flt,
              fill_color={
                  'field': key,
                  'transform': color_mapper
              },
              fill_alpha=0.7,
              line_color="white",
              line_width=0.5)

    hover = p.select_one(HoverTool)
    hover.point_policy = "follow_mouse"
    hover.tooltips = [
        ("County", "@County"),
        ("{}".format(key), "@{}".format(key)),
    ]

    callback_js_code = """
                     var orig_data = s1.data;
                     var filtered_data = s2.data;
                     var selected = cb_obj["value"];

                     for (var key in orig_data) {{
                         filtered_data[key] = [];
                         for (var i = 0; i < orig_data['County'].length; ++i) {{
                             if (orig_data['{VARNAME}'][i] === selected)  {{
                                 filtered_data[key].push(orig_data[key][i]);
                             }}
                          }}
                     }}
                     s2.trigger("change");
                     """.format(VARNAME=slider_key)

    callback = CustomJS(args=dict(s1=source, s2=source_flt),
                        code=callback_js_code)

    slider = Slider(start=dfm[slider_key].min(),
                    end=dfm[slider_key].max(),
                    value=dfm[slider_key].min(),
                    step=1,
                    title="Select {}".format(slider_key),
                    width=width,
                    callback=callback)

    color_bar = ColorBar(color_mapper=color_mapper,
                         location=(0, 0),
                         orientation='vertical')
    p.add_layout(color_bar, 'right')
    p.toolbar_location = 'left'
    return column(slider, p)
예제 #19
0
# Set up plot
"""Deifnes default player plot that will be shown when the page is rendered for the first time"""

player = map_classes.Player('Kevin Durant')
p1 = player.hex_accuracy('2017-18')

# Set up widgets
"""Creates the objects from bokeh.widgets that will be used to interact with the plot"""

search_bar = TextInput(title="Search (eg. Kevin Durant or GSW)",
                       value='Kevin Durant')
search = Button(label="Go", button_type="success")
slider = Slider(start=2007,
                end=2017,
                value=2017,
                step=1,
                title="Season",
                name="slider",
                callback_policy="mouseup")
button_group1 = RadioButtonGroup(labels=["Player", "Team"], active=0)
button_group2 = RadioButtonGroup(labels=["Accuracy", "Frequency"], active=0)

# Set up layouts and add to document
"""Sets up the widgets and plot in an html document that will be pushed to the website"""

inputs = widgetbox(button_group1,
                   search_bar,
                   search,
                   button_group2,
                   slider,
                   name='Widgets')
             order by 1
"""

#------------ETL process-------------------------------------------------
#df =pd.read_sql(template, conn)
df = pd.read_csv('tests/error.csv')
df['time'] =pd.to_datetime(df.time, format="%Y-%m-%d %H:%M:%S")
df =df.set_index('time')


output_file("anomaly.html")

#-----------------------Load the data into the model----------------------------------


window = Slider(start=0, end=24, value=6,title="window", step=6)
scale = Slider(start=0, end=3, value=1.96,title="scale factor", step=0.03)


#-------------------Rolling mean----------------------------
anomaly = AnomalyTimeSeries(window=window.value, scale=scale.value)
model, series, lower_band, upper_band, anomalies = anomaly.rolling_mean_model(df, '../config/config.ini', 'email')



#model, series, lower_band, upper_band, anomalies = anomaly.rolling_mean_model(df, 'email')

#---------------Start dashboarding----------------------------------------


select_widget = Select(options=["Moving Average","Holt Winter", "Linear Regression", "Ridge Cv", "Lasso Cv", "XGBoost"],
예제 #21
0
executor = SQLExecutor(server, username, password, database)
executor.connect()
data_date = [d[:10] for d in executor.fetch(timeIntervalOnly=True)]
date_form = lambda d: date(*map(int, d.split('-')))

# Widgets
show_btnGroup = RadioButtonGroup(name="Loading",
                                 labels=["show", "hide"],
                                 active=1)
mb_btnGroup = RadioButtonGroup(name="mb_btngroup",
                               labels=["less than", "disable", "greater than"],
                               active=1,
                               margin=(0, 0, 20, 0))
mb_slider = Slider(title="Marginal Balance Change Ratio (%)",
                   start=-100,
                   end=100,
                   value=0,
                   step=10)
cp_btnGroup = RadioButtonGroup(name="cp_btngroup",
                               labels=["less than", "disable", "greater than"],
                               active=1,
                               margin=(0, 0, 20, 0))
cp_slider = Slider(
    title="Closing Price Change Ratio (%)",
    start=-100,
    end=100,
    value=0,
    step=10,
)
date_range_slider = DateRangeSlider(title="Date range",
                                    value=(date_form(data_date[20]),
예제 #22
0
y = np.sin(x)
source = ColumnDataSource(data=dict(x=x, y=y))

# Set up plot
plot = figure(plot_height=400,
              plot_width=400,
              title="my sine wave #1",
              tools="crosshair,pan,reset,save,wheel_zoom",
              x_range=[0, 4 * np.pi],
              y_range=[-2.5, 2.5])

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

# Set up widgets
text = TextInput(title="this is sliders widget #1", value='my sine wave #1')
offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0, step=0.1)
phase = Slider(title="phase", value=0.0, start=0.0, end=2 * np.pi)
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1, step=0.1)


# Set up callbacks
def update_title(attrname, old, new):
    plot.title.text = text.value


text.on_change('value', update_title)


def update_data(attrname, old, new):
    # Get the current slider values
예제 #23
0
    def apply_all(our, add_before=None, add_after=None):
        before = add_before if (add_before != None) else tuple()
        heights = tuple(our.height[i] for i in range(0, len(our.height)))
        radii = tuple(our.radius[i] for i in range(0, len(our.radius)))
        after = add_after if (add_after != None) else tuple()
        inputs1 = widgetbox(*(heights + before))
        inputs2 = widgetbox(*(radii + after))
        curdoc().add_root(row(inputs1, inputs2, p, width=1400))


sliders = MySliders()

p_input = tuple(TextInput(title="Power", value=str(power)) for power in P)

s_platform_z = Slider(title="Water Z", value=wz, start=-3, end=12)
s_magnet_M = Slider(title="Magnet M", value=Ms, start=0, end=1, step=0.01)


def update_plot_data(attr_name, old, new):
    # Get ready to modify data by first loading the data:
    state = program.optimize.last_result.x
    hs = program.optimize.get_hs(state)
    rs = program.optimize.get_rs(state)
    da = program.optimize.get_da(state)
    # Modify the data using values from all the sliders:
    for i in range(0, min(len(sliders.height), len(sliders.radius))):
        s_h = sliders.height[i]
        s_r = sliders.radius[i]
        hs[i] = from_slider(s_h.value)
        rs[i] = s_r.value
예제 #24
0
	# Carriers to plot
	carrier_selection = CheckboxGroup(labels=available_carriers,
									  active=[0, 1])
	carrier_selection.on_change('active', update)

	range_select = RangeSlider(start=-60, end=180, value=(-60, 120),
							   step=5, title='Range of Delays (min)')
	range_select.on_change('value', update)

	# Initial carriers and data source
	initial_carriers = [carrier_selection.labels[i] for
						i in carrier_selection.active]

	# Bandwidth of kernel
	bandwidth_select = Slider(start=0.1, end=5,
							  step=0.1, value=0.5,
							  title='Bandwidth for Density Plot')
	bandwidth_select.on_change('value', update)

	# Whether to set the bandwidth or have it done automatically
	bandwidth_choose = CheckboxButtonGroup(
		labels=['Choose Bandwidth (Else Auto)'], active=[])
	bandwidth_choose.on_change('active', update)



	# FUNDS_EARMARKED_FOR_GOAL
	fund_input = TextInput(value="100000", title="Funds for Goal:")

	contribution_input = TextInput(value="1000", title="Contribution Amount:")
예제 #25
0
def t_value_change(attrname, old, new):
    update_point()


# initialize data source
source_curve = ColumnDataSource(data=dict(x=[], y=[]))
source_point = ColumnDataSource(data=dict(x=[], y=[]))
source_sector = ColumnDataSource(data=dict(x=[], y=[]))
source_lines = ColumnDataSource(data=dict(x_start=[], y_start=[], x_end=[], y_end=[]))
source_text = ColumnDataSource(data=dict(area=[]))

# initialize controls
# slider controlling the current parameter t
t_value_input = Slider(title="parameter t", name='parameter t', value=leibnitz_settings.t_value_init,
                       start=leibnitz_settings.t_value_min, end=leibnitz_settings.t_value_max,
                       step=leibnitz_settings.t_value_step)
t_value_input.on_change('value', t_value_change)
# text input for the x component of the curve
x_component_input = TextInput(value=leibnitz_settings.x_component_input_msg, title="curve x")
x_component_input.on_change('value', curve_change)
# text input for the y component of the curve
y_component_input = TextInput(value=leibnitz_settings.y_component_input_msg, title="curve y")
y_component_input.on_change('value', curve_change)
# dropdown menu for selecting one of the sample curves
sample_curve_input = Dropdown(label="choose a sample function pair or enter one below",
                              menu=leibnitz_settings.sample_curve_names)
sample_curve_input.on_change('value', sample_curve_change)

# initialize plot
toolset = "crosshair,pan,reset,save,wheel_zoom"
예제 #26
0
                          line_color='white',
                          fill_color=factor_cmap(
                              'plot_x',
                              palette=Spectral6,
                              factors=plot_x,
                          ))
exit_population_plot.legend.location = "top_left"
exit_population_plot.legend.orientation = "horizontal"
exit_population_plot.xaxis.axis_label = "Rounds"
exit_population_plot.yaxis.axis_label = "Number of startups (Mass)"
# Set up widgets
text = TextInput(title="title", value='Probes and Population')
# cycle = Slider(title="Cycle", value=0, start=0, end=2, step=1)
cycle = Slider(title="Year",
               bar_color="green",
               value=min_row,
               start=min_row,
               end=max_row,
               step=1)
# Set up widgets

growth_rate_A = Slider(title="Growth Rate A",
                       value=1.5,
                       start=-5.0,
                       end=5.0,
                       step=0.1)
growth_rate_B = Slider(title="Growth Rate A",
                       value=1.0,
                       start=-5.0,
                       end=5.0,
                       step=0.1)
growth_rate_C = Slider(title="Growth Rate A",
예제 #27
0
def integration_with_sliders(rsys,
                             tend,
                             c0,
                             parameters,
                             fig_kwargs=None,
                             slider_kwargs=None,
                             conc_bounds=None,
                             x_axis_type="linear",
                             y_axis_type="linear",
                             integrate_kwargs=None,
                             odesys_extra=None,
                             get_odesys_kw=None,
                             integrate=None):
    """
    Parameters
    ----------
    rsys : ReactionSystem
    tend : float like
    c0 : dict
        Initial concentrations.
    parameters : dict
        Parameter values.
    fig_kwargs : dict
        Keyword-arguments passed to bokeh's ``Figure``.
    slider_kwargs : dict
        Keyword-arguments passed to bokeh's ``Slider``.
    conc_bounds : dict of dicts
        Mapping substance key to dict of bounds ('start', 'end', 'step').
    x_axis_type : str
    y_axis_type : str
    integrate_kwargs : dict
        Keyword-arguments passed to integrate.
    odesys_extra : tuple
        If odesys & extra have already been generated (avoids call to ``get_odesys``).
    get_odesys_kw : dict
        Keyword-arguments passed to ``get_odesys``.
    integrate : callback
        Defaults to ``odesys.integrate``.

    """

    import numpy as np
    from bokeh.plotting import Figure
    from bokeh.models import ColumnDataSource, Column, Row
    from bokeh.models.widgets import Slider

    if slider_kwargs is None:
        slider_kwargs = {}
    if get_odesys_kw is None:
        get_odesys_kw = {}
    if odesys_extra is None:
        odesys, extra = get_odesys(rsys, **get_odesys_kw)
    else:
        odesys, extra = odesys_extra
    if integrate is None:
        integrate = odesys.integrate

    state_keys, rarg_keys, p_units = [
        extra[k] for k in ('param_keys', 'unique', 'p_units')
    ]
    output_conc_unit = get_odesys_kw.get('output_conc_unit', None)
    output_time_unit = get_odesys_kw.get('output_time_unit', None)
    unit_registry = get_odesys_kw.get('unit_registry', None)
    if output_conc_unit is None:
        if unit_registry is not None:
            raise ValueError(
                "if unit_registry is given, output_conc_unit must also be given"
            )
        output_conc_unit = 1
    if output_time_unit is None:
        if unit_registry is not None:
            raise ValueError(
                "if unit_registry is given, output_time_unit must also be given"
            )
        output_conc_unit = 1

    param_keys = list(chain(state_keys, rarg_keys))
    if x_axis_type == 'linear':
        tout = linspace(tend * 0, tend)
    elif x_axis_type == 'log':
        tout = logspace_from_lin(tend * 1e-9, tend)
    else:
        raise NotImplementedError("Unknown x_axis_type: %s" % x_axis_type)

    result = integrate(tout, c0, parameters, **(integrate_kwargs or {}))
    sources = [
        ColumnDataSource(
            data={
                'tout': to_unitless(result.xout, output_time_unit),
                k: to_unitless(result.yout[:, idx], output_conc_unit)
            }) for idx, k in enumerate(rsys.substances)
    ]
    if fig_kwargs is None:
        Cmax = np.max(result.yout)
        x_range = list(
            to_unitless([result.xout[0], result.xout[-1]], output_time_unit))
        y_range = list(to_unitless([Cmax * 0, Cmax * 1.1], output_conc_unit))
        fig_kwargs = dict(plot_height=400,
                          plot_width=400,
                          title="C vs t",
                          tools="crosshair,pan,reset,save,wheel_zoom",
                          x_range=x_range,
                          y_range=y_range,
                          x_axis_type=x_axis_type,
                          y_axis_type=y_axis_type)
    plot = Figure(**fig_kwargs)

    colors = 'red green blue black cyan magenta'.split()
    for idx, k in enumerate(rsys.substances):
        plot.line('tout',
                  k,
                  source=sources[idx],
                  line_width=3,
                  line_alpha=0.6,
                  color=colors[idx % len(colors)])

    def _C(k):
        return to_unitless(c0[k], output_conc_unit)

    if p_units is None:
        p_units = [None] * len(param_keys)
    p_ul = [
        to_unitless(parameters[k], _u) for k, _u in zip(param_keys, p_units)
    ]

    def _dict_to_unitless(d, u):
        return {k: to_unitless(v, u) for k, v in d.items()}

    c0_widgets = OrderedDict()
    for k in rsys.substances:
        if conc_bounds is not None and k in conc_bounds:
            if k in slider_kwargs:
                raise ValueError(
                    "Key '%s' both in slider_kwargs and conc_bounds" % k)
            slider_defaults = _dict_to_unitless(conc_bounds[k],
                                                output_conc_unit)
        else:
            ck = _C(k)
            if ck == 0:
                max_ = max(*[_C(k) for k in rsys.substances])
                slider_defaults = dict(start=0, end=max_, step=max_ / 100)
            else:
                slider_defaults = dict(start=_C(k) / 2,
                                       end=_C(k) * 2,
                                       step=_C(k) / 10)
        c0_widgets[k] = Slider(title=k if output_conc_unit is 1 else k +
                               ' / ' + output_conc_unit.dimensionality.unicode,
                               value=_C(k),
                               **slider_kwargs.get(k, slider_defaults))

    param_widgets = OrderedDict([
        (k,
         Slider(title=k if u is None else k + ' / ' + u.dimensionality.unicode,
                value=v,
                **_dict_to_unitless(
                    slider_kwargs.get(
                        k, dict(start=v / 10, end=v * 10, step=v / 10)), u)))
        for k, v, u in zip(param_keys, p_ul, p_units)
    ])
    all_widgets = list(chain(param_widgets.values(), c0_widgets.values()))

    def update_data(attrname, old, new):
        _c0 = defaultdict(lambda: 0 * output_conc_unit)
        for k, w in c0_widgets.items():
            _c0[k] = w.value * output_conc_unit
        _params = {}
        for (k, w), u in zip(param_widgets.items(), p_units):
            _params[k] = w.value if u is None else w.value * u
        _result = integrate(tout, _c0, _params)
        for idx, k in enumerate(rsys.substances):
            sources[idx].data = {
                'tout': to_unitless(_result.xout, output_time_unit),
                k: to_unitless(_result.yout[:, idx], output_conc_unit)
            }

    for w in all_widgets:
        w.on_change('value', update_data)

    inputs = Column(children=all_widgets)
    return Row(children=[inputs, plot], width=800)
예제 #28
0
checkbox_group = CheckboxGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
radio_group = RadioGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)

checkbox_button_group = CheckboxButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
radio_button_group = RadioButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)

text_input = TextInput(placeholder="Enter value ...")

completions = ["aaa", "aab", "aac", "baa", "caa"]
autocomplete_input = AutocompleteInput(placeholder="Enter value (auto-complete) ...", completions=completions)

select = Select(options=["Option 1", "Option 2", "Option 3"])

multi_select = MultiSelect(options=["Option %d" % (i+1) for i in range(16)], size=6)

slider = Slider(value=10, start=0, end=100, step=0.5)

range_slider = RangeSlider(value=[10, 90], start=0, end=100, step=0.5)

date_slider = DateSlider(value=date(2016, 1, 1), start=date(2015, 1, 1), end=date(2017, 12, 31))

date_range_slider = DateRangeSlider(value=(date(2016, 1, 1), date(2016, 12, 31)), start=date(2015, 1, 1), end=date(2017, 12, 31))

spinner = Spinner(value=100)

color_picker = ColorPicker(color="red", title="Choose color:")

date_picker = DatePicker(value=date(2017, 8, 1))

paragraph = Paragraph(text="some text")
def player_marking(doc,
                   df,
                   headers,
                   id_def,
                   id_att,
                   slider_steps,
                   x_range,
                   y_range,
                   image_url,
                   sport='football',
                   anim_speed=50,
                   attack=True):
    """
                Parameters
        ---------------------------
        :param doc: Plots the graph
        :param df: Gets the user defined dataframe
        :param headers: Give the headers to the dataframe - Headers should be ["x", "y", "team_id", "player_id","time"]

        {x, y - int/float - Player location coordinates x and y
        team_id - int/string - Team Id for both attacking and defending teams
        player_id - int/string - Player Id for both attacking and defending team. Id for ball is optional
        time - int/float - Game time in seconds or any units.}

        :param id_def: Provide id of defending team
        :param id_att: Provide id of attacking team
        :param x_range: Provide x range of the pitch coordinates
        :param y_range: Provide y range of the pitch coordinates
        :param image_url: Provide the location of the background image of the pitch
        :param slider_steps: Provide the slider steps
        :param sport: (football/basketball) - Provide the sport details to change slider function - Default is football(⚽️)
                        Football allows slider timer to move from low to max (0-90 minutes),
                        while sports that have decreasing timer (12 to 0 minutes) should use "basketball".
        :param attack:(True/False) - If 'True', then the attacking team is considered players marking and defending
        team is considered as players being marked. If 'false' then logic is reversed.

        :return: Returns the animation plot

    """
    """
                Value Errors
        ---------------------------

        """
    if not isinstance(df, pd.DataFrame):
        raise ValueError(
            "The expected data type of input data is a dataframe but a {} was provided."
            .format(type(df)))

    accept_dtypes_id = [int, float, str, tuple]

    if type(id_def) not in accept_dtypes_id:
        raise ValueError(
            "The expected data type for defending team-id is either integer, float "
            "or a string but {} was provided.".format(type(id_def)))

    if type(id_att) not in accept_dtypes_id:
        raise ValueError(
            "The expected data type for defending team-id is either integer, float "
            "or a string but {} was provided.".format(type(id_att)))

    if not isinstance(x_range, (list, tuple)):
        raise ValueError(
            "The expected data type for x-range is a list but a {} was provided."
            .format(type(x_range)))

    if not isinstance(y_range, (list, tuple)):
        raise ValueError(
            "The expected data type for y-range is a list but a {} was provided."
            .format(type(y_range)))

    if len(x_range) != 2:
        raise ValueError(
            "Length of x range of coordinates is {} but expected length is 2.".
            format(len(x_range)))

    if len(y_range) != 2:
        raise ValueError(
            "Length of y range of coordinates is {} but expected length is 2.".
            format(len(x_range)))

    if sport not in ['football', 'basketball']:
        raise ValueError(
            "Only football/basketball in accepted as input for sport type, but {} was provided."
            .format(sport))

    if not isinstance(image_url, list):
        image_url = [image_url]

    all_team = pd.DataFrame(df, columns=headers)

    all_team['x'] = pd.to_numeric(all_team['x'])
    all_team['y'] = pd.to_numeric(all_team['y'])
    all_team['time'] = pd.to_numeric(all_team['time'])
    all_team['player_id'] = all_team['player_id'].apply(str)

    all_team['team_id'] = np.where(
        ((all_team['team_id'] != id_att) & (all_team['team_id'] != id_def)),
        -99, all_team['team_id'])
    all_team['player_id'] = np.where(
        ((all_team['team_id'] != id_att) & (all_team['team_id'] != id_def)),
        " ", all_team['player_id'])

    if sport == 'basketball':
        all_team['time'] = -all_team['time']
        all_team = all_team.sort_values(['time', 'team_id', 'player_id'],
                                        ascending=[False, False, True
                                                   ]).reset_index(drop=True)
    else:
        all_team['time'] = all_team['time']
        all_team = all_team.sort_values(['time', 'team_id', 'player_id'],
                                        ascending=[True, False, True
                                                   ]).reset_index(drop=True)

    team_def = all_team[all_team.team_id == id_def]
    team_att = all_team[all_team.team_id == id_att]

    if team_def.empty:
        raise ValueError(
            "Defending team ID is not valid. Please enter a valid team ID")

    elif team_att.empty:
        raise ValueError(
            "Attacking team ID is not valid. Please enter a valid team ID")

    current_time = all_team['time'].min()

    coord_x = all_team[all_team.time == current_time]['x']
    coord_y = all_team[all_team.time == current_time]['y']

    team_def_xy = team_def[team_def.time == current_time]
    team_att_xy = team_att[team_att.time == current_time]

    player_id = all_team[all_team['time'] == current_time]['player_id']

    c = (['dodgerblue'] * len(team_def['player_id'].unique()) +
         ['green'] * len(team_att['player_id'].unique()) + ['gold'])
    """
    For each frame, calculate the nearest player for each given player using cdist
    
    """
    def get_distances(team_def_xy, team_att_xy, attack):

        if attack:
            columns = team_def_xy['player_id'].values.tolist()
            index = team_att_xy['player_id'].values.tolist()
            dist_mat = cdist(team_att_xy[['x', 'y']].values,
                             team_def_xy[['x', 'y']].values)
            source_x, source_y = team_att_xy['x'].values, team_att_xy[
                'y'].values
            merge_df = team_def_xy[['player_id', 'x', 'y']]
        else:
            columns = team_att_xy['player_id'].values.tolist()
            index = team_def_xy['player_id'].values.tolist()
            dist_mat = cdist(team_def_xy[['x', 'y']].values,
                             team_att_xy[['x', 'y']].values)
            source_x, source_y = team_def_xy['x'].values, team_def_xy[
                'y'].values
            merge_df = team_att_xy[['player_id', 'x', 'y']]

        dist_df = pd.DataFrame(dist_mat)
        dist_df.columns = columns
        dist_df.index = index
        nearest_player = dist_df.idxmin(axis=1)
        dist_df['closest_player'] = nearest_player
        dist_df['source_player'] = index
        dist_df['source_x'] = source_x
        dist_df['source_y'] = source_y

        lines_x = pd.merge(dist_df, merge_df, left_on='closest_player',right_on='player_id', sort=False)\
            .rename(columns = {'x':'target_x','y':'target_y'})
        x_lines = list(zip(lines_x['source_x'], lines_x['target_x']))
        y_lines = list(zip(lines_x['source_y'], lines_x['target_y']))

        return x_lines, y_lines

    x_lines, y_lines = get_distances(team_def_xy, team_att_xy, attack)

    source_coord = ColumnDataSource(
        data=dict(x=coord_x, y=coord_y, player_id=player_id, color=c))
    source_lines = ColumnDataSource(data=dict(xs=x_lines, ys=y_lines))
    """
    Remove plot background and alter other styles

    """

    def plot_clean(plot):

        plot.xgrid.grid_line_color = None
        plot.ygrid.grid_line_color = None
        plot.axis.major_label_text_font_size = "10pt"
        plot.axis.major_label_standoff = 0
        plot.border_fill_color = "white"
        plot.title.text_font = "times"
        plot.title.text_font_size = '10pt'
        plot.background_fill_color = "white"
        plot.title.align = 'center'
        return plot

    plot = figure(name='base',
                  plot_height=860,
                  plot_width=1889,
                  title="Player Marking Animation",
                  tools="reset,save,wheel_zoom,pan",
                  x_range=x_range,
                  y_range=y_range,
                  toolbar_location="below")

    image_min_x, image_min_y, image_max_x, image_max_y = min(x_range), min(y_range), \
                                                         (abs(x_range[0]) + abs(x_range[1])), \
                                                         (abs(y_range[0]) + abs(y_range[1]))

    plot.image_url(url=image_url,
                   x=image_min_x,
                   y=image_min_y,
                   w=image_max_x,
                   h=image_max_y,
                   anchor="bottom_left")

    plot.multi_line('xs',
                    'ys',
                    source=source_lines,
                    color='green',
                    line_width=3,
                    line_alpha=.7,
                    line_cap='round',
                    line_dash="dashed")
    plot.scatter('x', 'y', source=source_coord, size=20, fill_color='color')

    labels = LabelSet(x='x',
                      y='y',
                      text='player_id',
                      source=source_coord,
                      y_offset=-8,
                      render_mode='canvas',
                      text_color='black',
                      text_font_size="8pt",
                      text_align='center')

    plot.add_layout(labels)
    plot.axis.visible = False
    plot = plot_clean(plot)

    slider_start = all_team.time.unique().min()
    slider_end = all_team.time.unique().max()
    game_time = Slider(title="Game Time (seconds)",
                       value=slider_start,
                       start=slider_start,
                       end=slider_end,
                       step=slider_steps)
    """
       Update the figure every time slider is updated.
    """

    def update_data(attrname, old, new):

        slider_value = np.round(game_time.value, 2)

        coord_x = all_team[all_team.time == slider_value]['x']
        coord_y = all_team[all_team.time == slider_value]['y']

        team_def_xy = team_def[team_def.time == slider_value]
        team_att_xy = team_att[team_att.time == slider_value]

        x_lines, y_lines = get_distances(team_def_xy, team_att_xy, attack)

        source_coord.data = dict(x=coord_x,
                                 y=coord_y,
                                 player_id=player_id,
                                 color=c)
        source_lines.data = dict(xs=x_lines, ys=y_lines)

    for w in [game_time]:
        w.on_change('value', update_data)
    """
       Animation
    """

    def animate_update():

        time = game_time.value + slider_steps
        if time > all_team.time.max():
            time = all_team.time.min()
        game_time.value = time

    callback_id = None

    def animate():
        global callback_id
        if button.label == '► Play':
            button.label = '❚❚ Pause'
            callback_id = curdoc().add_periodic_callback(
                animate_update, anim_speed)
        else:
            button.label = '► Play'
            curdoc().remove_periodic_callback(callback_id)

    button = Button(label='► Play', width=60)
    button.on_click(animate)

    inputs = widgetbox(row(column(game_time, button)))

    layout = column(row(column(plot, inputs)))

    doc.add_root(layout)
    doc.title = "Game Animation"

    return doc
예제 #30
0
def plot(numFrac, numPF, args):
    W = weightsFromFraction(np.linspace(0, 1, numFrac))
    p1 = figure(height=200, width=200, toolbar_location=None, title='Weights')

    l = p1.line(np.linspace(0, 1, numFrac),
                W[1],
                legend_label="w1",
                color='navy')
    l = p1.line(np.linspace(0, 1, numFrac),
                W[1],
                legend_label="w2",
                color='chocolate')

    B0 = 3  # Tesla
    mapper = LinearColorMapper(palette='Spectral11', low=0, high=1)
    colorBar = ColorBar(color_mapper=mapper, location=(0, 0))
    acquistionTimes = np.arange(start=float(args.tmin),
                                stop=float(args.tmax),
                                step=float(args.dt))
    numTa = len(acquistionTimes)
    partialFourierFactors = np.linspace(start=0.5, stop=1, num=numPF)
    dephasingTimes = np.empty(shape=(numPF, numFrac, numTa, 2),
                              dtype=np.float32)
    firstEchoFractions = np.linspace(start=0, stop=1, num=numFrac)
    NSA = np.empty(shape=(numPF, numFrac, numTa, 2),
                   dtype=np.float32)  # NSA_ss [weighted, unweighted]

    for nt, ta in enumerate(acquistionTimes):
        for nPF, PF in enumerate(partialFourierFactors):
            for nf, f in enumerate(firstEchoFractions):
                dephasingTimes[nPF, nf,
                               nt, :] = getDephasingTimes(ta / 1.0e3, PF, f)
                weights = weightsFromFraction(f)
                NSA[nPF, nf, nt, 0] = np.mean(
                    np.reciprocal(
                        weightedCrbTwoEchoes(B0, dephasingTimes[nPF, nf,
                                                                nt, :],
                                             weights)))  # Weighted NSA_ss
                NSA[nPF, nf, nt, 1] = np.mean(
                    np.reciprocal(
                        weightedCrbTwoEchoes(
                            B0, dephasingTimes[nPF, nf, nt, :],
                            weightsFromFraction(.5))))  # Unweighted NSA_ss
        print(100. * (nt + 1) / numTa)

    pWeighted = figure(height=350,
                       width=350,
                       toolbar_location=None,
                       title='Weighted NSA_ss (3T)')
    pUnWeighted = figure(height=350,
                         width=350,
                         toolbar_location=None,
                         title='Unweighted NSA_ss (3T)')
    pUnWeighted.add_layout(colorBar, 'right')
    CDSimages = [
        ColumnDataSource({'imageData': [NSA[:, :, -1, 0]]}),
        ColumnDataSource({'imageData': [NSA[:, :, -1, 1]]})
    ]
    pWeighted.image(image='imageData',
                    x=0,
                    y=0,
                    dw=numFrac,
                    dh=numPF,
                    color_mapper=mapper,
                    source=CDSimages[0])
    pUnWeighted.image(image='imageData',
                      x=0,
                      y=0,
                      dw=numFrac,
                      dh=numPF,
                      color_mapper=mapper,
                      source=CDSimages[1])

    for p in [pWeighted, pUnWeighted]:
        p.xaxis.ticker = [
            0, (numFrac - 1) / 4, (numFrac - 1) / 2, 3 * (numFrac - 1) / 4,
            numFrac - 1
        ]
        p.xaxis.major_label_overrides = {
            0: '0',
            (numFrac - 1) / 4: '.25',
            (numFrac - 1) / 2: '.5',
            3 * (numFrac - 1) / 4: '.75',
            numFrac - 1: '1'
        }
        p.yaxis.ticker = [0, (numPF - 1) / 2, numPF - 1]
        p.yaxis.major_label_overrides = {
            0: '0.5',
            (numPF - 1) / 2: '.75',
            numPF - 1: '1.0'
        }

    pWeighted.x_range.range_padding = pWeighted.y_range.range_padding = 0
    pUnWeighted.x_range.range_padding = pUnWeighted.y_range.range_padding = 0
    spans = [
        Span(location=-1,
             dimension='height',
             line_color='navy',
             line_dash='dashed'),
        Span(location=-1,
             dimension='height',
             line_color='chocolate',
             line_dash='dashed')
    ]
    pGrad = figure(height=350,
                   width=350,
                   toolbar_location=None,
                   title='Gradients')
    pGrad.add_layout(spans[0])
    pGrad.add_layout(spans[1])
    CDSFirst = ColumnDataSource({'t': [0, 0, .5, .5], 'amp': [0, 1, 1, 0]})
    CDSSecond = ColumnDataSource({'t': [.5, .5, 1, 1], 'amp': [0, -1, -1, 0]})
    pGrad.line(x='t', y='amp', color='navy', line_width=2, source=CDSFirst)
    pGrad.line(x='t',
               y='amp',
               color='chocolate',
               line_width=2,
               source=CDSSecond)

    pCompass = figure(height=350,
                      width=350,
                      toolbar_location=None,
                      title='Fat vectors',
                      x_range=(-1.1, 1.1),
                      y_range=(-1.1, 1.1))
    pCompass.circle(0, 0, radius=1, fill_color=None, line_color='black')
    CDSArrow = [
        ColumnDataSource({
            'x': [0, 0],
            'y': [0, 0]
        }),
        ColumnDataSource({
            'x': [0, 0],
            'y': [0, 0]
        })
    ]
    pCompass.line(x='x', y='y', color='navy', line_width=2, source=CDSArrow[0])
    pCompass.line(x='x',
                  y='y',
                  color='chocolate',
                  line_width=2,
                  source=CDSArrow[1])

    slider = Slider(start=np.min(acquistionTimes),
                    end=np.max(acquistionTimes),
                    value=np.max(acquistionTimes),
                    step=acquistionTimes[1] - acquistionTimes[0],
                    title="Available acquisition time [ms]")

    hoverCallback = CustomJS(args={
        'dephasingTimes': dephasingTimes,
        'firstEchoFractions': firstEchoFractions,
        'partialFourierFactors': partialFourierFactors,
        'spans': spans,
        'arrows': CDSArrow,
        'first': CDSFirst,
        'slider': slider,
        'second': CDSSecond,
    },
                             code="""
                            if ( isFinite(cb_data['geometry']['x']) && isFinite(cb_data['geometry']['y']) ) {
                                let ta = slider.value / 1000.0
                                if (typeof window.taIdx == 'undefined') {
                                    window.taIdx = dephasingTimes[0][0].length - 1;
                                }
                                let fIdx = Math.floor(cb_data["geometry"]['x']) % firstEchoFractions.length;
                                let pfIdx = Math.floor(cb_data["geometry"]['y']);
                                first.data.t[2] = first.data.t[3] = ta*firstEchoFractions[fIdx];
                                second.data.t[0] = second.data.t[1] = ta*firstEchoFractions[fIdx];
                                second.data.t[2] = second.data.t[3] = ta;
                                first.data.amp[1] = first.data.amp[2] = partialFourierFactors[pfIdx] / firstEchoFractions[fIdx];
                                second.data.amp[1] = second.data.amp[2] = - partialFourierFactors[pfIdx] / (1 - firstEchoFractions[fIdx]);
                                spans[0].location = ta/2.0 + dephasingTimes[pfIdx][fIdx][window.taIdx][0];
                                spans[1].location = ta/2.0 + dephasingTimes[pfIdx][fIdx][window.taIdx][1];
                                
                                spans[0].change.emit();
                                spans[1].change.emit();
                                first.change.emit();
                                second.change.emit();
                                let omega = 2*Math.PI*42.58*3*3.4
                                
                                for (let i = 0; i < 2; i++) {
                                    arrows[i].data.x[1] = Math.cos(omega*dephasingTimes[pfIdx][fIdx][window.taIdx][i]);
                                    arrows[i].data.y[1] = Math.sin(omega*dephasingTimes[pfIdx][fIdx][window.taIdx][i]);
                                    arrows[i].change.emit();
                                }
                                
                                window.fIdx = fIdx;
                                window.pfIdx = pfIdx;
                            }
                            """)
    pWeighted.add_tools(
        HoverTool(tooltips=None, callback=hoverCallback, mode='mouse'))
    pUnWeighted.add_tools(
        HoverTool(tooltips=None, callback=hoverCallback, mode='mouse'))
    sliderCallback = CustomJS(args={
        'acquistionTimes': acquistionTimes,
        'images': CDSimages,
        'NSA': NSA
    },
                              code="""
        window.taIdx = Math.floor((cb_obj.value - cb_obj.start ) / cb_obj.step)
        console.log(window.taIdx)
        images[0].data.imageData = [NSA.map(PF => PF.map(f => f[window.taIdx][0])).flat()]
        images[1].data.imageData = [NSA.map(PF => PF.map(f => f[window.taIdx][1])).flat()]
        images[0].change.emit();
        images[1].change.emit();
        """)
    slider.js_on_change('value', sliderCallback)
    output_file(args.filename)
    combinedPlot = column(row(pWeighted, pUnWeighted), row(pGrad, pCompass),
                          slider)
    save(combinedPlot, filename=args.filename, title=args.title)