예제 #1
0
파일: test_sources.py 프로젝트: Zyell/bokeh
    def test__stream_good_dict_of_index_and_series_data_transformed(self):
        df = pd.DataFrame(
            index=pd.date_range('now', periods=30, freq='T'),
            columns=['A'],
            data=np.cumsum(np.random.standard_normal(30), axis=0)
        )
        ds = ColumnDataSource(data={'index': convert_datetime_array(df.index.values),
                                    'A': df.A})
        ds._document = "doc"
        stuff = {}
        mock_setter = object()

        def mock(*args, **kw):
            stuff['args'] = args
            stuff['kw'] = kw
        ds.data._stream = mock
        new_df = pd.DataFrame(
            index=df.index + pd.to_timedelta('30m'),
            columns=df.columns,
            data=np.random.standard_normal(30)
        )
        ds._stream({'index': new_df.index, 'A': new_df.A}, "foo", mock_setter)
        self.assertTrue(np.array_equal(stuff['args'][2]['index'],
                                       convert_datetime_array(new_df.index.values)))
        self.assertTrue(np.array_equal(stuff['args'][2]['A'], new_df.A.values))
예제 #2
0
    def test__stream_good_dict_of_index_and_series_data_transformed(
            self, pd) -> None:
        df = pd.DataFrame(index=pd.date_range('now', periods=30, freq='T'),
                          columns=['A'],
                          data=np.cumsum(np.random.standard_normal(30),
                                         axis=0))
        ds = bms.ColumnDataSource(
            data={
                'index': convert_datetime_array(df.index.values),
                'A': df.A
            })
        ds._document = "doc"
        stuff = {}
        mock_setter = object()

        def mock(*args, **kw):
            stuff['args'] = args
            stuff['kw'] = kw

        ds.data._stream = mock
        new_df = pd.DataFrame(index=df.index + pd.to_timedelta('30m'),
                              columns=df.columns,
                              data=np.random.standard_normal(30))
        ds._stream({'index': new_df.index, 'A': new_df.A}, "foo", mock_setter)
        assert np.array_equal(stuff['args'][2]['index'],
                              convert_datetime_array(new_df.index.values))
        assert np.array_equal(stuff['args'][2]['A'], new_df.A.values)
예제 #3
0
    def _update_datasource(self, source, data):
        """
        Update datasource with data for a new frame.
        """
        data = {k: decode_bytes(vs) for k, vs in data.items()}
        empty = all(len(v) == 0 for v in data.values())
        if (self.streaming
                and self.streaming[0].data is self.current_frame.data
                and self._stream_data and not empty):
            stream = self.streaming[0]
            if stream._triggering:
                data = {k: v[-stream._chunk_length:] for k, v in data.items()}

                # NOTE: Workaround for bug in bokeh 0.12.14, data conversion
                # should be removed once fixed in bokeh (https://github.com/bokeh/bokeh/issues/7587)
                converted_data = {}
                for k, vals in data.items():
                    cdata = source.data[k]
                    odata = data[k]
                    if (bokeh_version in ['0.12.14', '0.12.15dev1']
                            and isinstance(cdata, np.ndarray)
                            and cdata.dtype.kind == 'M'
                            and isinstance(vals, np.ndarray)
                            and vals.dtype.kind == 'M'):
                        cdata = convert_datetime_array(cdata)
                        odata = convert_datetime_array(odata)
                        if len(odata):
                            cdata = np.concatenate([odata, cdata])
                        converted_data[k] = cdata
                if converted_data:
                    for k, vals in data.items():
                        cdata = source.data[k]
                        odata = data[k]
                        if k not in converted_data:
                            if len(odata):
                                cdata = np.concatenate([odata, cdata])
                            converted_data[k] = cdata
                    source.data.update(converted_data)
                else:
                    source.stream(data, stream.length)
            return

        # Determine if the CDS.data requires a full replacement or simply needs
        # to be updated. A replacement is required if untouched columns
        # are not the same length as the columns being updated.
        current_length = [
            len(v) for v in source.data.values()
            if isinstance(v, (list, np.ndarray))
        ]
        new_length = [
            len(v) for v in data.values() if isinstance(v, (list, np.ndarray))
        ]
        untouched = [k for k in source.data if k not in data]
        if (untouched and current_length and new_length
                and current_length[0] != new_length[0]):
            source.data = data
        else:
            source.data.update(data)
예제 #4
0
def test_convert_datetime_type_array() -> None:
    a = np.array(['2018-01-03T15:37:59', '2018-01-03T15:37:59.922452', '2016-05-11'], dtype='datetime64')
    r = bus.convert_datetime_array(a)
    assert r[0] == 1514993879000.0
    assert r[1] == 1514993879922.452
    assert r[2] == 1462924800000.0
    assert r.dtype == 'float64'
예제 #5
0
def test_convert_datetime_type_array():
    a = np.array(['2018-01-03T15:37:59', '2018-01-03T15:37:59.922452', '2016-05-11'], dtype='datetime64')
    r = bus.convert_datetime_array(a)
    assert r[0] == 1514993879000.0
    assert r[1] == 1514993879922.452
    assert r[2] == 1462924800000.0
    assert r.dtype == 'float64'
예제 #6
0
    def test__stream_good_datetime64_data_transformed(self):
        now = dt.datetime.now()
        dates = np.array([now+dt.timedelta(i) for i in range(1, 10)], dtype='datetime64')
        dates = convert_datetime_array(dates)
        ds = ColumnDataSource(data=dict(index=dates, b=list(range(1, 10))))
        ds._document = "doc"
        stuff = {}
        mock_setter = object()

        def mock(*args, **kw):
            stuff['args'] = args
            stuff['kw'] = kw
        ds.data._stream = mock
        # internal implementation of stream
        new_date = np.array([now+dt.timedelta(10)], dtype='datetime64')
        ds._stream(dict(index=new_date, b=[10]), "foo", mock_setter)
        transformed_date = convert_datetime_array(new_date)
        self.assertTrue(np.array_equal(stuff['args'][2]['index'], transformed_date))
예제 #7
0
파일: plot.py 프로젝트: anirband/holoviews
    def _update_datasource(self, source, data):
        """
        Update datasource with data for a new frame.
        """
        data = {k: decode_bytes(vs) for k, vs in data.items()}
        if (self.streaming
                and self.streaming[0].data is self.current_frame.data
                and self._stream_data):
            stream = self.streaming[0]
            if stream._triggering:
                data = {k: v[-stream._chunk_length:] for k, v in data.items()}

                # NOTE: Workaround for bug in bokeh 0.12.14, data conversion
                # should be removed once fixed in bokeh (https://github.com/bokeh/bokeh/issues/7587)
                converted_data = {}
                for k, vals in data.items():
                    cdata = source.data[k]
                    odata = data[k]
                    if (bokeh_version in ['0.12.14', '0.12.15dev1']
                            and isinstance(cdata, np.ndarray)
                            and cdata.dtype.kind == 'M'
                            and isinstance(vals, np.ndarray)
                            and vals.dtype.kind == 'M'):
                        cdata = convert_datetime_array(cdata)
                        odata = convert_datetime_array(odata)
                        if len(odata):
                            cdata = np.concatenate([odata, cdata])
                        converted_data[k] = cdata
                if converted_data:
                    for k, vals in data.items():
                        cdata = source.data[k]
                        odata = data[k]
                        if k not in converted_data:
                            if len(odata):
                                cdata = np.concatenate([odata, cdata])
                            converted_data[k] = cdata
                    source.data.update(converted_data)
                else:
                    source.stream(data, stream.length)
        else:
            source.data.update(data)
예제 #8
0
def test_transform_series_force_list_default_with_buffers(pd) -> None:
    # default int seems to be int64, can't be converted to buffer!
    df = pd.Series([1, 3, 5, 6, 8])
    out = bus.transform_series(df)
    assert isinstance(out, list)
    assert out == [1, 3, 5, 6, 8]

    df = pd.Series([1, 3, 5, 6, 8], dtype=np.int32)
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    df = pd.Series([1.0, 3, 5, 6, 8])
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    df = pd.Series(np.array([np.nan, np.inf, -np.inf, 0]))
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    # PeriodIndex
    df = pd.period_range('1900-01-01','2000-01-01', freq='A')
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.to_timestamp().values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out

    # DatetimeIndex
    df = pd.period_range('1900-01-01','2000-01-01', freq='A').to_timestamp()
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out

    # TimeDeltaIndex
    df = pd.to_timedelta(np.arange(5), unit='s')
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out
예제 #9
0
def test_convert_datetime_type_array_ignores_non_datetime_array() -> None:
    a = np.arange(0,10,100)
    assert bus.convert_datetime_array(a) is a
예제 #10
0
def test_convert_datetime_type_array_ignores_non_array(obj) -> None:
    assert bus.convert_datetime_array(obj) is obj
예제 #11
0
def test_transform_series_force_list_default_with_buffers(pd):
    # default int seems to be int64, can't be converted to buffer!
    df = pd.Series([1, 3, 5, 6, 8])
    out = bus.transform_series(df)
    assert isinstance(out, list)
    assert out == [1, 3, 5, 6, 8]

    df = pd.Series([1, 3, 5, 6, 8], dtype=np.int32)
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    df = pd.Series([1.0, 3, 5, 6, 8])
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    df = pd.Series(np.array([np.nan, np.inf, -np.inf, 0]))
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == np.array(df).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == df.dtype.name
    assert '__buffer__' in out

    # PeriodIndex
    df = pd.period_range('1900-01-01','2000-01-01', freq='A')
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.to_timestamp().values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out

    # DatetimeIndex
    df = pd.period_range('1900-01-01','2000-01-01', freq='A').to_timestamp()
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out

    # TimeDeltaIndex
    df = pd.to_timedelta(np.arange(5), unit='s')
    bufs = []
    out = bus.transform_series(df, buffers=bufs)
    assert isinstance(out, dict)
    assert len(bufs) == 1
    assert len(bufs[0]) == 2
    assert isinstance(bufs[0][0], dict)
    assert list(bufs[0][0]) == ["id"]
    assert bufs[0][1] == bus.convert_datetime_array(df.values).tobytes()
    assert 'shape' in out
    assert out['shape'] == df.shape
    assert 'dtype' in out
    assert out['dtype'] == 'float64'
    assert '__buffer__' in out
예제 #12
0
def test_convert_datetime_type_array_ignores_non_datetime_array():
    a = np.arange(0,10,100)
    assert bus.convert_datetime_array(a) is a
예제 #13
0
def test_convert_datetime_type_array_ignores_non_array(obj):
    assert bus.convert_datetime_array(obj) is obj