def export_aggregated_events(pj: dict, parameters: dict, obsId: str): """ export aggregated events Args: pj (dict): BORIS project parameters (dict): subjects, behaviors obsId (str): observation id Returns: tablib.Dataset: """ logging.debug(f"function: export aggregated events {parameters} {obsId}") interval = parameters["time"] start_time = parameters[START_TIME] end_time = parameters[END_TIME] data = tablib.Dataset() observation = pj[OBSERVATIONS][obsId] # obs description obs_description = observation["description"] duration1 = [] # in seconds if observation[TYPE] in [MEDIA]: try: for mediaFile in observation[FILE][PLAYER1]: if MEDIA_INFO in observation: duration1.append(observation[MEDIA_INFO]["length"][mediaFile]) except Exception: duration1 = [] obs_length = project_functions.observation_total_length(pj[OBSERVATIONS][obsId]) if obs_length == Decimal("-1"): # media length not available interval = TIME_EVENTS logging.debug(f"obs_length: {obs_length}") ok, msg, connector = db_functions.load_aggregated_events_in_db(pj, parameters[SELECTED_SUBJECTS], [obsId], parameters[SELECTED_BEHAVIORS]) if connector is None: logging.critical(f"error when loading aggregated events in DB") return data # time cursor = connector.cursor() if interval == TIME_FULL_OBS: min_time = float(0) max_time = float(obs_length) if interval == TIME_EVENTS: try: min_time = float(pj[OBSERVATIONS][obsId][EVENTS][0][0]) except Exception: min_time = float(0) try: max_time = float(pj[OBSERVATIONS][obsId][EVENTS][-1][0]) except Exception: max_time = float(obs_length) if interval == TIME_ARBITRARY_INTERVAL: min_time = float(start_time) max_time = float(end_time) # adapt start and stop to the selected time interval cursor.execute("UPDATE aggregated_events SET start = ? WHERE observation = ? AND start < ? AND stop BETWEEN ? AND ?", (min_time, obsId, min_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET stop = ? WHERE observation = ? AND stop > ? AND start BETWEEN ? AND ?", (max_time, obsId, max_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET start = ?, stop = ? WHERE observation = ? AND start < ? AND stop > ?", (min_time, max_time, obsId, min_time, max_time, )) cursor.execute("DELETE FROM aggregated_events WHERE observation = ? AND (start < ? AND stop < ?) OR (start > ? AND stop > ?)", (obsId, min_time, min_time, max_time, max_time, )) behavioral_category = project_functions.behavior_category(pj[ETHOGRAM]) for subject in parameters[SELECTED_SUBJECTS]: for behavior in parameters[SELECTED_BEHAVIORS]: cursor.execute("SELECT distinct modifiers FROM aggregated_events where subject=? AND behavior=? order by modifiers", (subject, behavior,)) rows_distinct_modifiers = list(x[0] for x in cursor.fetchall()) for distinct_modifiers in rows_distinct_modifiers: cursor.execute(("SELECT start, stop, type, modifiers, comment, comment_stop FROM aggregated_events " "WHERE subject = ? AND behavior = ? AND modifiers = ? ORDER by start"), (subject, behavior, distinct_modifiers)) rows = list(cursor.fetchall()) for row in rows: if observation[TYPE] in [MEDIA]: if duration1: mediaFileIdx = [idx1 for idx1, x in enumerate(duration1) if row["start"] >= sum(duration1[0:idx1])][-1] mediaFileString = observation[FILE][PLAYER1][mediaFileIdx] try: fpsString = observation[MEDIA_INFO]["fps"][observation[FILE][PLAYER1][mediaFileIdx]] except Exception: fpsString = "NA" else: try: if len(observation[FILE][PLAYER1]) == 1: mediaFileString = observation[FILE][PLAYER1][0] else: mediaFileString = "NA" except Exception: mediaFileString = "NA" fpsString = "NA" if observation[TYPE] in [LIVE]: mediaFileString = "LIVE" fpsString = "NA" if row["type"] == POINT: row_data = [] row_data.extend([obsId, observation["date"].replace("T", " "), obs_description, mediaFileString, f"{obs_length:.3f}" if obs_length != Decimal("-1") else "NA", fpsString]) # independent variables if INDEPENDENT_VARIABLES in pj: for idx_var in utilities.sorted_keys(pj[INDEPENDENT_VARIABLES]): if pj[INDEPENDENT_VARIABLES][idx_var]["label"] in observation[INDEPENDENT_VARIABLES]: row_data.append(observation[INDEPENDENT_VARIABLES][pj[INDEPENDENT_VARIABLES][idx_var]["label"]]) else: row_data.append("") row_data.extend([subject, behavior, behavioral_category[behavior], row["modifiers"], POINT, f"{row['start']:.3f}", # start f"{row['stop']:.3f}", # stop "NA", # duration row["comment"], "" ]) data.append(row_data) if row["type"] == STATE: if idx % 2 == 0: row_data = [] row_data.extend([obsId, observation["date"].replace("T", " "), obs_description, mediaFileString, f"{obs_length:.3f}" if obs_length != Decimal("-1") else "NA", fpsString]) # independent variables if INDEPENDENT_VARIABLES in pj: for idx_var in utilities.sorted_keys(pj[INDEPENDENT_VARIABLES]): if pj[INDEPENDENT_VARIABLES][idx_var]["label"] in observation[INDEPENDENT_VARIABLES]: row_data.append(observation[INDEPENDENT_VARIABLES][pj[INDEPENDENT_VARIABLES][idx_var]["label"]]) else: row_data.append("") row_data.extend([subject, behavior, behavioral_category[behavior], row["modifiers"], STATE, f"{row['start']:.3f}", f"{row['stop']:.3f}", f"{row['stop'] - row['start']:.3f}", row["comment"], row["comment_stop"] ]) data.append(row_data) return data
def create_events_plot(pj, selected_observations, parameters, plot_colors=BEHAVIORS_PLOT_COLORS, plot_directory="", file_format="png"): """ create a time diagram plot (sort of gantt chart) with matplotlib barh function (https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.barh.html) """ selected_subjects = parameters[SELECTED_SUBJECTS] selected_behaviors = parameters[SELECTED_BEHAVIORS] include_modifiers = parameters[INCLUDE_MODIFIERS] interval = parameters[TIME_INTERVAL] start_time = parameters[START_TIME] end_time = parameters[END_TIME] ok, msg, db_connector = db_functions.load_aggregated_events_in_db(pj, selected_subjects, selected_observations, selected_behaviors) if not ok: return False, msg, None cursor = db_connector.cursor() # if modifiers not to be included set modifiers to "" if not include_modifiers: cursor.execute("UPDATE aggregated_events SET modifiers = ''") cursor.execute("SELECT distinct behavior, modifiers FROM aggregated_events") distinct_behav_modif = [[rows["behavior"], rows["modifiers"]] for rows in cursor.fetchall()] # add selected behaviors that are not observed for behav in selected_behaviors: if [x for x in distinct_behav_modif if x[0] == behav] == []: distinct_behav_modif.append([behav, "-"]) distinct_behav_modif = sorted(distinct_behav_modif) max_len = len(distinct_behav_modif) all_behaviors = [pj[ETHOGRAM][x][BEHAVIOR_CODE] for x in utilities.sorted_keys(pj[ETHOGRAM])] par1 = 1 bar_height = 0.5 init = dt.datetime(2017, 1, 1) for obs_id in selected_observations: if len(selected_subjects) > 1: fig, axs = plt.subplots(figsize=(20, 8), nrows=len(selected_subjects), ncols=1, sharex=True) else: fig, ax = plt.subplots(figsize=(20, 8), nrows=len(selected_subjects), ncols=1, sharex=True) axs = np.ndarray(shape=(1), dtype=type(ax)) axs[0] = ax ok, msg, db_connector = db_functions.load_aggregated_events_in_db( pj, selected_subjects, [obs_id], selected_behaviors) cursor = db_connector.cursor() # if modifiers not to be included set modifiers to "" if not include_modifiers: cursor.execute("UPDATE aggregated_events SET modifiers = ''") cursor = db_connector.cursor() cursor.execute("SELECT distinct behavior, modifiers FROM aggregated_events") distinct_behav_modif = [[rows["behavior"], rows["modifiers"]] for rows in cursor.fetchall()] # add selected behaviors that are not observed if not parameters["exclude behaviors"]: for behav in selected_behaviors: if [x for x in distinct_behav_modif if x[0] == behav] == []: distinct_behav_modif.append([behav, "-"]) distinct_behav_modif = sorted(distinct_behav_modif) max_len = len(distinct_behav_modif) # time obs_length = project_functions.observation_total_length(pj[OBSERVATIONS][obs_id]) if obs_length == -1: # media length not available interval = TIME_EVENTS if interval == TIME_FULL_OBS: min_time = float(0) max_time = float(obs_length) if interval == TIME_EVENTS: try: min_time = float(pj[OBSERVATIONS][obs_id][EVENTS][0][0]) except Exception: min_time = float(0) try: max_time = float(pj[OBSERVATIONS][obs_id][EVENTS][-1][0]) except Exception: max_time = float(obs_length) if interval == TIME_ARBITRARY_INTERVAL: min_time = float(start_time) max_time = float(end_time) cursor.execute("UPDATE aggregated_events SET start = ? WHERE observation = ? AND start < ? AND stop BETWEEN ? AND ?", (min_time, obs_id, min_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET stop = ? WHERE observation = ? AND stop > ? AND start BETWEEN ? AND ?", (max_time, obs_id, max_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET start = ?, stop = ? WHERE observation = ? AND start < ? AND stop > ?", (min_time, max_time, obs_id, min_time, max_time, )) ylabels = [" ".join(x) for x in distinct_behav_modif] for ax_idx, subject in enumerate(selected_subjects): if parameters["exclude behaviors"]: cursor.execute("SELECT distinct behavior, modifiers FROM aggregated_events WHERE subject = ?", (subject, )) distinct_behav_modif = [[rows["behavior"], rows["modifiers"]] for rows in cursor.fetchall()] # add selected behaviors that are not observed if not parameters["exclude behaviors"]: for behav in selected_behaviors: if [x for x in distinct_behav_modif if x[0] == behav] == []: distinct_behav_modif.append([behav, "-"]) distinct_behav_modif = sorted(distinct_behav_modif) max_len = len(distinct_behav_modif) ylabels = [" ".join(x) for x in distinct_behav_modif] if not ax_idx: axs[ax_idx].set_title(f"Observation {obs_id}\n{subject}", fontsize=14) else: axs[ax_idx].set_title(subject, fontsize=14) bars = {} i = 0 for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers behavior_modifiers_str = "|".join(behavior_modifiers) if modifiers else behavior bars[behavior_modifiers_str] = [] # total duration cursor.execute(("SELECT start, stop FROM aggregated_events " "WHERE observation = ? AND subject = ? AND behavior = ? AND modifiers = ?"), (obs_id, subject, behavior, modifiers,)) for row in cursor.fetchall(): bars[behavior_modifiers_str].append((row["start"], row["stop"])) start_date = matplotlib.dates.date2num(init + dt.timedelta(seconds=row["start"])) end_date = matplotlib.dates.date2num( init + dt.timedelta(seconds=row["stop"] + POINT_EVENT_PLOT_DURATION * (row["stop"] == row["start"]))) try: bar_color = utilities.behavior_color(plot_colors, all_behaviors.index(behavior)) except Exception: bar_color = "darkgray" bar_color = POINT_EVENT_PLOT_COLOR if row["stop"] == row["start"] else bar_color # sage colors removed from matplotlib colors list if bar_color in ["sage", "darksage", "lightsage"]: bar_color = {"darksage": "#598556", "lightsage": "#bcecac", "sage": "#87ae73"}[bar_color] try: axs[ax_idx].barh((i * par1) + par1, end_date - start_date, left=start_date, height=bar_height, align="center", edgecolor=bar_color, color=bar_color, alpha=1) except Exception: axs[ax_idx].barh((i * par1) + par1, end_date - start_date, left=start_date, height=bar_height, align="center", edgecolor="darkgray", color="darkgray", alpha=1) i += 1 axs[ax_idx].set_ylim(bottom=0, top=(max_len * par1) + par1) pos = np.arange(par1, max_len * par1 + par1 + 1, par1) axs[ax_idx].set_yticks(pos[:len(ylabels)]) axs[ax_idx].set_yticklabels(ylabels, fontdict={"fontsize": 10}) axs[ax_idx].set_ylabel("Behaviors" + " (modifiers)" * include_modifiers, fontdict={"fontsize": 10}) axs[ax_idx].set_xlim(left=matplotlib.dates.date2num(init + dt.timedelta(seconds=min_time)), right=matplotlib.dates.date2num(init + dt.timedelta(seconds=max_time + 1))) axs[ax_idx].grid(color="g", linestyle=":") axs[ax_idx].xaxis_date() axs[ax_idx].xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) axs[ax_idx].set_xlabel("Time (HH:MM:SS)", fontdict={"fontsize": 12}) axs[ax_idx].invert_yaxis() fig.autofmt_xdate() plt.tight_layout() if len(selected_observations) > 1: plt.savefig(f"{pathlib.Path(plot_directory) / utilities.safeFileName(obs_id)}.{file_format}") else: plt.show()
def synthetic_time_budget(pj: dict, selected_observations: list, parameters_obs: dict): """ create a synthetic time budget Args: pj (dict): project dictionary selected_observations (list): list of observations to include in time budget parameters_obs (dict): Returns: bool: True if everything OK str: message tablib.Dataset: dataset containing synthetic time budget data """ try: selected_subjects = parameters_obs[SELECTED_SUBJECTS] selected_behaviors = parameters_obs[SELECTED_BEHAVIORS] include_modifiers = parameters_obs[INCLUDE_MODIFIERS] interval = parameters_obs["time"] start_time = parameters_obs["start time"] end_time = parameters_obs["end time"] parameters = [ ["duration", "Total duration"], ["number", "Number of occurrences"], ["duration mean", "Duration mean"], ["duration stdev", "Duration std dev"], ["proportion of time", "Proportion of time"], ] data_report = tablib.Dataset() data_report.title = "Synthetic time budget" ok, msg, db_connector = db_functions.load_aggregated_events_in_db( pj, selected_subjects, selected_observations, selected_behaviors) if not ok: return False, msg, None db_connector.create_aggregate("stdev", 1, StdevFunc) cursor = db_connector.cursor() # modifiers if include_modifiers: cursor.execute( "SELECT distinct behavior, modifiers FROM aggregated_events") distinct_behav_modif = [[rows["behavior"], rows["modifiers"]] for rows in cursor.fetchall()] else: cursor.execute("SELECT distinct behavior FROM aggregated_events") distinct_behav_modif = [[rows["behavior"], ""] for rows in cursor.fetchall()] # add selected behaviors that are not observed for behav in selected_behaviors: if [x for x in distinct_behav_modif if x[0] == behav] == []: distinct_behav_modif.append([behav, ""]) behaviors = init_behav_modif(pj[ETHOGRAM], selected_subjects, distinct_behav_modif, include_modifiers, parameters) param_header = ["", "Total length (s)"] subj_header, behav_header, modif_header = [""] * len(param_header), [ "" ] * len(param_header), [""] * len(param_header) for subj in selected_subjects: for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers behavior_modifiers_str = "|".join( behavior_modifiers) if modifiers else behavior for param in parameters: subj_header.append(subj) behav_header.append(behavior) modif_header.append(modifiers) param_header.append(param[1]) ''' if parameters_obs["group observations"]: cursor.execute("UPDATE aggregated_events SET observation = 'all' " ) #selected_observations = ["all"] ''' data_report.append(subj_header) data_report.append(behav_header) if include_modifiers: data_report.append(modif_header) data_report.append(param_header) # select time interval for obs_id in selected_observations: ok, msg, db_connector = db_functions.load_aggregated_events_in_db( pj, selected_subjects, [obs_id], selected_behaviors) if not ok: return False, msg, None db_connector.create_aggregate("stdev", 1, StdevFunc) cursor = db_connector.cursor() # if modifiers not to be included set modifiers to "" if not include_modifiers: cursor.execute("UPDATE aggregated_events SET modifiers = ''") # time obs_length = project_functions.observation_total_length( pj[OBSERVATIONS][obs_id]) if obs_length == -1: obs_length = 0 if interval == TIME_FULL_OBS: min_time = float(0) max_time = float(obs_length) if interval == TIME_EVENTS: try: min_time = float(pj[OBSERVATIONS][obs_id][EVENTS][0][0]) except Exception: min_time = float(0) try: max_time = float(pj[OBSERVATIONS][obs_id][EVENTS][-1][0]) except Exception: max_time = float(obs_length) if interval == TIME_ARBITRARY_INTERVAL: min_time = float(start_time) max_time = float(end_time) # adapt start and stop to the selected time interval cursor.execute( "UPDATE aggregated_events SET start = ? WHERE observation = ? AND start < ? AND stop BETWEEN ? AND ?", ( min_time, obs_id, min_time, min_time, max_time, )) cursor.execute( "UPDATE aggregated_events SET stop = ? WHERE observation = ? AND stop > ? AND start BETWEEN ? AND ?", ( max_time, obs_id, max_time, min_time, max_time, )) cursor.execute( "UPDATE aggregated_events SET start = ?, stop = ? WHERE observation = ? AND start < ? AND stop > ?", ( min_time, max_time, obs_id, min_time, max_time, )) cursor.execute( "DELETE FROM aggregated_events WHERE observation = ? AND (start < ? AND stop < ?) OR (start > ? AND stop > ?)", ( obs_id, min_time, min_time, max_time, max_time, )) for subject in selected_subjects: # check if behaviors are to exclude from total time time_to_subtract = 0 if EXCLUDED_BEHAVIORS in parameters_obs: for excluded_behav in parameters_obs[EXCLUDED_BEHAVIORS]: cursor.execute(( "SELECT SUM(stop-start) " "FROM aggregated_events " "WHERE observation = ? AND subject = ? AND behavior = ? " ), ( obs_id, subject, excluded_behav, )) for row in cursor.fetchall(): if row[0] is not None: time_to_subtract += row[0] for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers behavior_modifiers_str = "|".join( behavior_modifiers) if modifiers else behavior cursor.execute(( "SELECT SUM(stop-start), COUNT(*), AVG(stop-start), stdev(stop-start) " "FROM aggregated_events " "WHERE observation = ? AND subject = ? AND behavior = ? AND modifiers = ? " ), ( obs_id, subject, behavior, modifiers, )) for row in cursor.fetchall(): behaviors[subject][behavior_modifiers_str][ "duration"] = (0 if row[0] is None else f"{row[0]:.3f}") behaviors[subject][behavior_modifiers_str][ "number"] = 0 if row[1] is None else row[1] behaviors[subject][behavior_modifiers_str][ "duration mean"] = (0 if row[2] is None else f"{row[2]:.3f}") behaviors[subject][behavior_modifiers_str][ "duration stdev"] = (0 if row[3] is None else f"{row[3]:.3f}") if behavior not in parameters_obs[EXCLUDED_BEHAVIORS]: try: behaviors[subject][behavior_modifiers_str][ "proportion of time"] = ( 0 if row[0] is None else f"{row[0] / ((max_time - min_time) - time_to_subtract):.3f}" ) except ZeroDivisionError: behaviors[subject][behavior_modifiers_str][ "proportion of time"] = "-" else: # behavior subtracted behaviors[subject][behavior_modifiers_str][ "proportion of time"] = ( 0 if row[0] is None else f"{row[0] / (max_time - min_time):.3f}") columns = [obs_id, f"{max_time - min_time:0.3f}"] for subj in selected_subjects: for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers behavior_modifiers_str = "|".join( behavior_modifiers) if modifiers else behavior for param in parameters: columns.append( behaviors[subj][behavior_modifiers_str][param[0]]) data_report.append(columns) except Exception: error_type, error_file_name, error_lineno = utilities.error_info( sys.exc_info()) logging.critical( f"Error in edit_event function: {error_type} {error_file_name} {error_lineno}" ) msg = f"Error type: {error_type}\nError file name: {error_file_name}\nError line number: {error_lineno}" logging.critical(msg) return (False, msg, tablib.Dataset()) return True, msg, data_report
def create_behaviors_bar_plot(pj: dict, selected_observations: list, param: dict, plot_directory: str, output_format: str, plot_colors:list=BEHAVIORS_PLOT_COLORS): """ time budget bar plot Args: pj (dict): project param (dict): parameters plot_directory (str): path of directory output_format (str): image format Returns: dict: """ selected_subjects = param[SELECTED_SUBJECTS] selected_behaviors = param[SELECTED_BEHAVIORS] time_interval = param["time"] start_time = param[START_TIME] end_time = param[END_TIME] parameters = ["duration", "number of occurences"] ok, msg, db_connector = db_functions.load_aggregated_events_in_db(pj, selected_subjects, selected_observations, selected_behaviors) if not ok: return {"error": True, "message": msg} try: # extract all behaviors from ethogram for colors in plot all_behaviors = [pj[ETHOGRAM][x][BEHAVIOR_CODE] for x in utilities.sorted_keys(pj[ETHOGRAM])] for obs_id in selected_observations: cursor = db_connector.cursor() # distinct behaviors cursor.execute("SELECT distinct behavior FROM aggregated_events WHERE observation = ?", (obs_id,)) distinct_behav = [rows["behavior"] for rows in cursor.fetchall()] # add selected behaviors that are not observed ''' if not param[EXCLUDE_BEHAVIORS]: for behavior in selected_behaviors: if [x for x in distinct_behav if x == behavior] == []: distinct_behav.append(behavior) ''' # distinct subjects cursor.execute("SELECT distinct subject FROM aggregated_events WHERE observation = ?", (obs_id,)) distinct_subjects = [rows["subject"] for rows in cursor.fetchall()] behaviors = init_behav(pj[ETHOGRAM], distinct_subjects, distinct_behav, parameters) # plot creation if len(distinct_subjects) > 1: fig, axs = plt.subplots(nrows=1, ncols=len(distinct_subjects), sharey=True) fig2, axs2 = plt.subplots(nrows=1, ncols=len(distinct_subjects), sharey=True) else: fig, ax = plt.subplots(nrows=1, ncols=len(distinct_subjects), sharey=True) axs = np.ndarray(shape=(1), dtype=type(ax)) axs[0] = ax fig2, ax2 = plt.subplots(nrows=1, ncols=len(distinct_subjects), sharey=True) axs2 = np.ndarray(shape=(1), dtype=type(ax2)) axs2[0] = ax2 fig.suptitle("Durations of behaviors") fig2.suptitle("Number of occurences of behaviors") # if modifiers not to be included set modifiers to "" cursor.execute("UPDATE aggregated_events SET modifiers = ''") # time obs_length = project_functions.observation_total_length(pj[OBSERVATIONS][obs_id]) if obs_length == -1: obs_length = 0 if param["time"] == TIME_FULL_OBS: min_time = float(0) max_time = float(obs_length) if param["time"] == TIME_EVENTS: try: min_time = float(pj[OBSERVATIONS][obs_id][EVENTS][0][0]) except Exception: min_time = float(0) try: max_time = float(pj[OBSERVATIONS][obs_id][EVENTS][-1][0]) except Exception: max_time = float(obs_length) if param["time"] == TIME_ARBITRARY_INTERVAL: min_time = float(start_time) max_time = float(end_time) cursor.execute("UPDATE aggregated_events SET start = ? WHERE observation = ? AND start < ? AND stop BETWEEN ? AND ?", (min_time, obs_id, min_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET stop = ? WHERE observation = ? AND stop > ? AND start BETWEEN ? AND ?", (max_time, obs_id, max_time, min_time, max_time, )) cursor.execute("UPDATE aggregated_events SET start = ?, stop = ? WHERE observation = ? AND start < ? AND stop > ?", (min_time, max_time, obs_id, min_time, max_time, )) for ax_idx, subject in enumerate(sorted(distinct_subjects)): for behavior in distinct_behav: # number of occurences cursor.execute(("SELECT COUNT(*) AS count FROM aggregated_events " "WHERE observation = ? AND subject = ? AND behavior = ?"), (obs_id, subject, behavior, )) for row in cursor.fetchall(): behaviors[subject][behavior]["number of occurences"] = 0 if row["count"] is None else row["count"] # total duration if STATE in project_functions.event_type(behavior, pj[ETHOGRAM]): cursor.execute(("SELECT SUM(stop - start) AS duration FROM aggregated_events " "WHERE observation = ? AND subject = ? AND behavior = ?"), (obs_id, subject, behavior, )) for row in cursor.fetchall(): behaviors[subject][behavior]["duration"] = 0 if row["duration"] is None else row["duration"] durations, n_occurences, colors, x_labels, colors_duration, x_labels_duration = [], [], [], [], [], [] for behavior in sorted(distinct_behav): if param[EXCLUDE_BEHAVIORS] and behaviors[subject][behavior]["number of occurences"] == 0: continue n_occurences.append(behaviors[subject][behavior]["number of occurences"]) x_labels.append(behavior) try: colors.append(utilities.behavior_color(plot_colors, all_behaviors.index(behavior))) except Exception: colors.append("darkgray") if STATE in project_functions.event_type(behavior, pj[ETHOGRAM]): durations.append(behaviors[subject][behavior]["duration"]) x_labels_duration.append(behavior) try: colors_duration.append(utilities.behavior_color(plot_colors, all_behaviors.index(behavior))) except Exception: colors_duration.append("darkgray") #width = 0.35 # the width of the bars: can also be len(x) sequence axs2[ax_idx].bar(np.arange(len(n_occurences)), n_occurences, #width, color=colors ) axs[ax_idx].bar(np.arange(len(durations)), durations, #width, color=colors_duration ) if ax_idx == 0: axs[ax_idx].set_ylabel("Duration (s)") axs[ax_idx].set_xlabel("Behaviors") axs[ax_idx].set_title(f"{subject}") axs[ax_idx].set_xticks(np.arange(len(durations))) axs[ax_idx].set_xticklabels(x_labels_duration, rotation='vertical', fontsize=8) if ax_idx == 0: axs2[ax_idx].set_ylabel("Number of occurences") axs2[ax_idx].set_xlabel("Behaviors") axs2[ax_idx].set_title(f"{subject}") axs2[ax_idx].set_xticks(np.arange(len(n_occurences))) axs2[ax_idx].set_xticklabels(x_labels, rotation='vertical', fontsize=8) fig.align_labels() fig.tight_layout(rect=[0, 0.03, 1, 0.95]) fig2.align_labels() fig2.tight_layout(rect=[0, 0.03, 1, 0.95]) if plot_directory: # output_file_name = f"{pathlib.Path(plot_directory) / utilities.safeFileName(obs_id)}.{output_format}" fig.savefig(f"{pathlib.Path(plot_directory) / utilities.safeFileName(obs_id)}.duration.{output_format}") fig2.savefig(f"{pathlib.Path(plot_directory) / utilities.safeFileName(obs_id)}.number_of_occurences.{output_format}") plt.close() else: fig.show() fig2.show() return {} except Exception: error_type, error_file_name, error_lineno = utilities.error_info(sys.exc_info()) logging.critical(f"Error in time budget bar plot: {error_type} {error_file_name} {error_lineno}") return {"error": True, "exception": sys.exc_info()}
def synthetic_time_budget_bin(pj: dict, selected_observations: list, parameters_obs: dict): """ create a synthetic time budget divised in time bin Args: pj (dict): project dictionary selected_observations (list): list of observations to include in time budget parameters_obs (dict): Returns: bool: True if everything OK str: message tablib.Dataset: dataset containing synthetic time budget data """ def interval_len(interval): if interval.empty: return dec(0) else: return sum([x.upper - x.lower for x in interval]) def interval_number(interval): if interval.empty: return dec(0) else: return len(interval) def interval_mean(interval): if interval.empty: return dec(0) else: return sum([x.upper - x.lower for x in interval]) / len(interval) def interval_std_dev(interval): if interval.empty: return "NA" else: try: return round( statistics.stdev([x.upper - x.lower for x in interval]), 3) except: return "NA" try: selected_subjects = parameters_obs[SELECTED_SUBJECTS] selected_behaviors = parameters_obs[SELECTED_BEHAVIORS] include_modifiers = parameters_obs[INCLUDE_MODIFIERS] time_interval = parameters_obs["time"] start_time = parameters_obs[START_TIME] end_time = parameters_obs[END_TIME] time_bin_size = dec(parameters_obs[TIME_BIN_SIZE]) parameters = [ ["duration", "Total duration"], ["number", "Number of occurrences"], ["duration mean", "Duration mean"], ["duration stdev", "Duration std dev"], ["proportion of time", "Proportion of time"], ] data_report = tablib.Dataset() data_report.title = "Synthetic time budget with time bin" distinct_behav_modif = [] for obs_id in selected_observations: for event in pj[OBSERVATIONS][obs_id][EVENTS]: if include_modifiers: if (event[EVENT_BEHAVIOR_FIELD_IDX], event[EVENT_MODIFIER_FIELD_IDX] ) not in distinct_behav_modif: distinct_behav_modif.append( (event[EVENT_BEHAVIOR_FIELD_IDX], event[EVENT_MODIFIER_FIELD_IDX])) else: if (event[EVENT_BEHAVIOR_FIELD_IDX], "") not in distinct_behav_modif: distinct_behav_modif.append( (event[EVENT_BEHAVIOR_FIELD_IDX], "")) distinct_behav_modif.sort() ''' print("distinct_behav_modif", distinct_behav_modif) ''' # add selected behaviors that are not observed for behav in selected_behaviors: if [x for x in distinct_behav_modif if x[0] == behav] == []: distinct_behav_modif.append([behav, ""]) ''' print("distinct_behav_modif with not observed behav", distinct_behav_modif) ''' behaviors = init_behav_modif_bin(pj[ETHOGRAM], selected_subjects, distinct_behav_modif, include_modifiers, parameters) ''' print("init behaviors", behaviors) print(f"selected subjects: {selected_subjects}") ''' param_header = [ "Observations id", "Total length (s)", "Time interval (s)" ] subj_header, behav_header, modif_header = [""] * len(param_header), [ "" ] * len(param_header), [""] * len(param_header) subj_header[1] = "Subjects:" behav_header[1] = "Behaviors:" modif_header[1] = "Modifiers:" for subj in selected_subjects: for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers behavior_modifiers_str = "|".join( behavior_modifiers) if modifiers else behavior for param in parameters: subj_header.append(subj) behav_header.append(behavior) modif_header.append(modifiers) param_header.append(param[1]) data_report.append(subj_header) data_report.append(behav_header) if include_modifiers: data_report.append(modif_header) data_report.append(param_header) state_events_list = [ pj[ETHOGRAM][x][BEHAVIOR_CODE] for x in pj[ETHOGRAM] if STATE in pj[ETHOGRAM][x][TYPE].upper() ] # select time interval for obs_id in selected_observations: obs_length = project_functions.observation_total_length( pj[OBSERVATIONS][obs_id]) if obs_length == -1: obs_length = 0 if time_interval == TIME_FULL_OBS: min_time = dec(0) max_time = dec(obs_length) if time_interval == TIME_EVENTS: try: min_time = dec(pj[OBSERVATIONS][obs_id][EVENTS][0][0]) except Exception: min_time = dec(0) try: max_time = dec(pj[OBSERVATIONS][obs_id][EVENTS][-1][0]) except Exception: max_time = dec(obs_length) if time_interval == TIME_ARBITRARY_INTERVAL: min_time = dec(start_time) max_time = dec(end_time) #print("observation:", obs_id) events_interval = {} mem_events_interval = {} for event in pj[OBSERVATIONS][obs_id][EVENTS]: if event[EVENT_SUBJECT_FIELD_IDX] == "": current_subject = NO_FOCAL_SUBJECT else: current_subject = event[EVENT_SUBJECT_FIELD_IDX] if current_subject not in selected_subjects: continue if current_subject not in events_interval: events_interval[current_subject] = {} mem_events_interval[current_subject] = {} if include_modifiers: modif = event[EVENT_MODIFIER_FIELD_IDX] else: modif = "" if (event[EVENT_BEHAVIOR_FIELD_IDX], modif) not in distinct_behav_modif: continue if (event[EVENT_BEHAVIOR_FIELD_IDX], modif) not in events_interval[current_subject]: events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)] = I.empty() mem_events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)] = [] if event[EVENT_BEHAVIOR_FIELD_IDX] in state_events_list: mem_events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)].append(event[EVENT_TIME_FIELD_IDX]) if len(mem_events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)]) == 2: events_interval[current_subject][(event[EVENT_BEHAVIOR_FIELD_IDX], modif)] |= \ I.closedopen(mem_events_interval[current_subject][(event[EVENT_BEHAVIOR_FIELD_IDX], modif)][0], mem_events_interval[current_subject][(event[EVENT_BEHAVIOR_FIELD_IDX], modif)][1]) mem_events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)] = [] else: events_interval[current_subject][( event[EVENT_BEHAVIOR_FIELD_IDX], modif)] |= I.singleton(event[EVENT_TIME_FIELD_IDX]) ''' print("\n\n events interval", events_interval) ''' time_bin_start = min_time if time_bin_size: time_bin_end = time_bin_start + time_bin_size if time_bin_end > max_time: time_bin_end = max_time else: time_bin_end = max_time ''' print("time_bin_start type", type(time_bin_start)) ''' while True: for subject in events_interval: # check behavior to exclude from total time time_to_subtract = 0 if EXCLUDED_BEHAVIORS in parameters_obs: for behav in events_interval[subject]: if behav[0] in parameters_obs.get( EXCLUDED_BEHAVIORS, []): interval_intersec = events_interval[ subject][behav] & I.closed( time_bin_start, time_bin_end) time_to_subtract += interval_len( interval_intersec) for behav in events_interval[subject]: interval_intersec = events_interval[subject][ behav] & I.closed(time_bin_start, time_bin_end) dur = interval_len(interval_intersec) nocc = interval_number(interval_intersec) mean = interval_mean(interval_intersec) ''' print(interval_intersec) print(subject, behav) print("duration", dur) print("n. occ", nocc) print("mean", mean) print("std dev", interval_std_dev(interval_intersec)) print(time_bin_start) print(time_bin_end) print(time_to_subtract) ''' if behav[0] in parameters_obs.get( EXCLUDED_BEHAVIORS, []): proportion = dur / ( (time_bin_end - time_bin_start)) else: proportion = dur / ( (time_bin_end - time_bin_start) - time_to_subtract) behaviors[subject][behav]["duration"] = dur behaviors[subject][behav]["number"] = nocc behaviors[subject][behav]["duration mean"] = mean behaviors[subject][behav][ "duration stdev"] = interval_std_dev( interval_intersec) behaviors[subject][behav][ "proportion of time"] = f"{proportion:.3f}" columns = [ obs_id, f"{max_time - min_time:0.3f}", f"{time_bin_start:.3f}-{time_bin_end:.3f}" ] for subject in selected_subjects: for behavior_modifiers in distinct_behav_modif: behavior, modifiers = behavior_modifiers #behavior_modifiers_str = "|".join(behavior_modifiers) if modifiers else behavior behavior_modifiers_str = behavior_modifiers for param in parameters: columns.append(behaviors[subject] [behavior_modifiers_str][param[0]]) #columns.append(behaviors[subject][behavior][param[0]]) data_report.append(columns) time_bin_start = time_bin_end time_bin_end = time_bin_start + time_bin_size if time_bin_end > max_time: time_bin_end = max_time #print(f"start: {time_bin_start} end: {time_bin_end} max time: {max_time}") if time_bin_start == time_bin_end: break except Exception: dialog.error_message("synthetic_time_budget_bin", sys.exc_info()) return (False, tablib.Dataset()) return True, data_report