def test_subset_computes_active_downsampling_function_batch(self): a = torch.tensor([[0.1, 0.2, 0.2], [0.3, 0.4, 0.2], [0.5, 0.5, 0.5]]).view( 3, 3, 1 ) a_p = torch.tensor([[0.1, 0.2, 0.2], [0.3, 0.4, 0.2], [0.5, 0.5, 0.5]]).view( 3, 3, 1 ) a = torch.cat((a, a_p), 2) b = torch.tensor([[0.5, 0.6, 0.1], [0.7, 0.8, 0.2], [0.6, 0.6, 0.5]]).view( 3, 3, 1 ) power = 1 offset = 1 kernel = DownsamplingKernel(batch_shape=torch.Size([3]), active_dims=[0]) kernel.initialize(power=power, offset=offset) kernel.eval() res = kernel(a, b).evaluate() actual = torch.zeros(3, 3, 3) diff = torch.tensor([[0.45, 0.36, 0.81], [0.4, 0.32, 0.72], [0.4, 0.32, 0.72]]) actual[0, :, :] = offset + diff.pow(1 + power) diff = torch.tensor( [[0.21, 0.14, 0.56], [0.18, 0.12, 0.48], [0.24, 0.16, 0.64]] ) actual[1, :, :] = offset + diff.pow(1 + power) diff = torch.tensor([[0.2, 0.2, 0.25], [0.2, 0.2, 0.25], [0.2, 0.2, 0.25]]) actual[2, :, :] = offset + diff.pow(1 + power) self.assertLess(torch.norm(res - actual), 1e-5)
def test_last_dim_is_batch(self): a = ( torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.5]]) .view(3, 2) .transpose(-1, -2) ) b = ( torch.tensor([[0.5, 0.6], [0.7, 0.8], [0.6, 0.6]]) .view(3, 2) .transpose(-1, -2) ) power = 1 offset = 1 kernel = DownsamplingKernel() kernel.initialize(power=power, offset=offset) kernel.eval() res = kernel(a, b, last_dim_is_batch=True).evaluate() actual = torch.zeros(3, 2, 2) diff = torch.tensor([[0.45, 0.36], [0.4, 0.32]]) actual[0, :, :] = offset + diff.pow(1 + power) diff = torch.tensor([[0.21, 0.14], [0.18, 0.12]]) actual[1, :, :] = offset + diff.pow(1 + power) diff = torch.tensor([[0.2, 0.2], [0.2, 0.2]]) actual[2, :, :] = offset + diff.pow(1 + power) self.assertLess(torch.norm(res - actual), 1e-5)
def test_computes_downsampling_function(self): a = torch.tensor([0.1, 0.2]).view(2, 1) b = torch.tensor([0.2, 0.4]).view(2, 1) power = 1 offset = 1 kernel = DownsamplingKernel() kernel.initialize(power=power, offset=offset) kernel.eval() diff = torch.tensor([[0.72, 0.54], [0.64, 0.48]]) actual = offset + diff.pow(1 + power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5)
def test_diag_calculation(self): a = torch.tensor([0.1, 0.2]).view(2, 1) b = torch.tensor([0.2, 0.4]).view(2, 1) power = 1 offset = 1 kernel = DownsamplingKernel() kernel.initialize(power=power, offset=offset) kernel.eval() diff = torch.tensor([[0.72, 0.54], [0.64, 0.48]]) actual = offset + diff.pow(1 + power) res = kernel(a, b, diag=True) self.assertLess(torch.norm(res - torch.diag(actual)), 1e-5)
def test_computes_downsampling_function_batch(self): a = torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.5]]).view(3, 2, 1) b = torch.tensor([[0.5, 0.6], [0.7, 0.8], [0.6, 0.6]]).view(3, 2, 1) power = 1 offset = 1 kernel = DownsamplingKernel(batch_shape=torch.Size([3])) kernel.initialize(power=power, offset=offset) kernel.eval() res = kernel(a, b).evaluate() actual = torch.zeros(3, 2, 2) diff = torch.tensor([[0.45, 0.36], [0.4, 0.32]]) actual[0, :, :] = offset + diff.pow(1 + power) diff = torch.tensor([[0.21, 0.14], [0.18, 0.12]]) actual[1, :, :] = offset + diff.pow(1 + power) diff = torch.tensor([[0.2, 0.2], [0.2, 0.2]]) actual[2, :, :] = offset + diff.pow(1 + power) self.assertLess(torch.norm(res - actual), 1e-5)