def test2d(self): a = np.ones((4, 5)) for x, y in ((0, 0), (0, 1), (0, 2), (3, 1)): a[x, y] = float("nan") self.assertEqual(bn.countnans(a), 4) self.assertEqual(bn.slow.countnans(a), 4) np.testing.assert_array_equal(bn.countnans(a, axis=0), [1, 2, 1, 0, 0]) np.testing.assert_array_equal(bn.slow.countnans(a, axis=0), [1, 2, 1, 0, 0]) np.testing.assert_array_equal(bn.countnans(a, axis=1), [3, 0, 0, 1]) np.testing.assert_array_equal(bn.slow.countnans(a, axis=1), [3, 0, 0, 1])
def _compute_distributions(self, columns=None): def _get_matrix(M, cachedM, col): nonlocal single_column if not sp.issparse(M): return M[:, col], self.W if self.has_weights() else None, None if cachedM is None: if single_column: warn( ResourceWarning, "computing distributions on sparse data " "for a single column is inefficient") cachedM = sp.csc_matrix(self.X) data = cachedM.data[cachedM.indptr[col]:cachedM.indptr[col + 1]] if self.has_weights(): weights = self.W[ cachedM.indices[cachedM.indptr[col]:cachedM.indptr[col + 1]]] else: weights = None return data, weights, cachedM if columns is None: columns = range(len(self.domain.variables)) single_column = False else: columns = [self.domain.index(var) for var in columns] single_column = len(columns) == 1 and len(self.domain) > 1 distributions = [] Xcsc = Ycsc = None for col in columns: var = self.domain[col] if col < self.X.shape[1]: m, W, Xcsc = _get_matrix(self.X, Xcsc, col) else: m, W, Ycsc = _get_matrix(self.Y, Ycsc, col - self.X.shape[1]) if isinstance(var, DiscreteVariable): if W is not None: W = W.ravel() dist, unknowns = bn.bincount(m, len(var.values) - 1, W) elif not len(m): dist, unknowns = np.zeros((2, 0)), 0 else: if W is not None: ranks = np.argsort(m) vals = np.vstack((m[ranks], W[ranks].flatten())) unknowns = bn.countnans(m, W) else: vals = np.ones((2, m.shape[0])) vals[0, :] = m vals[0, :].sort() unknowns = bn.countnans(m) dist = np.array(_valuecount.valuecount(vals)) distributions.append((dist, unknowns)) return distributions
def _compute_distributions(self, columns=None): def _get_matrix(M, cachedM, col): nonlocal single_column if not sp.issparse(M): return M[:, col], self.W if self.has_weights() else None, None if cachedM is None: if single_column: warn(ResourceWarning, "computing distributions on sparse data " "for a single column is inefficient") cachedM = sp.csc_matrix(self.X) data = cachedM.data[cachedM.indptr[col]:cachedM.indptr[col+1]] if self.has_weights(): weights = self.W[ cachedM.indices[cachedM.indptr[col]:cachedM.indptr[col+1]]] else: weights = None return data, weights, cachedM if columns is None: columns = range(len(self.domain.variables)) single_column = False else: columns = [self.domain.index(var) for var in columns] single_column = len(columns) == 1 and len(self.domain) > 1 distributions = [] Xcsc = Ycsc = None for col in columns: var = self.domain[col] if col < self.X.shape[1]: m, W, Xcsc = _get_matrix(self.X, Xcsc, col) else: m, W, Ycsc = _get_matrix(self.Y, Ycsc, col - self.X.shape[1]) if isinstance(var, DiscreteVariable): if W is not None: W = W.ravel() dist, unknowns = bn.bincount(m, len(var.values)-1, W) elif not len(m): dist, unknowns = np.zeros((2, 0)), 0 else: if W is not None: ranks = np.argsort(m) vals = np.vstack((m[ranks], W[ranks].flatten())) unknowns = bn.countnans(m, W) else: vals = np.ones((2, m.shape[0])) vals[0, :] = m vals[0, :].sort() unknowns = bn.countnans(m) dist = np.array(_valuecount.valuecount(vals)) distributions.append((dist, unknowns)) return distributions
def test2d_w(self): a = np.ones((4, 5)) w = np.random.random((4, 5)) for x, y in ((0, 0), (0, 1), (0, 2), (3, 1)): a[x, y] = float("nan") self.assertAlmostEqual(bn.countnans(a, weights=w), bn.slow.countnans(a, weights=w)) np.testing.assert_almost_equal(bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4], axis=0), [0.1, 0.5, 0.1, 0, 0]) np.testing.assert_almost_equal(bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4], axis=0), [0.1, 0.5, 0.1, 0, 0]) np.testing.assert_almost_equal(bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5], axis=1), [0.6, 0, 0, 0.2]) np.testing.assert_almost_equal(bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5], axis=1), [0.6, 0, 0, 0.2])
def test1d_w(self): a = np.ones(5) a[2] = a[4] = float("nan") self.assertAlmostEqual( bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5]), 0.8) self.assertAlmostEqual( bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5]), 0.8)
def test2d_w(self): a = np.ones((4, 5)) w = np.random.random((4, 5)) for x, y in ((0, 0), (0, 1), (0, 2), (3, 1)): a[x, y] = float("nan") self.assertAlmostEqual(bn.countnans(a, weights=w), bn.slow.countnans(a, weights=w)) np.testing.assert_almost_equal( bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4], axis=0), [0.1, 0.5, 0.1, 0, 0]) np.testing.assert_almost_equal( bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4], axis=0), [0.1, 0.5, 0.1, 0, 0]) np.testing.assert_almost_equal( bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5], axis=1), [0.6, 0, 0, 0.2]) np.testing.assert_almost_equal( bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5], axis=1), [0.6, 0, 0, 0.2])
def _compute_contingency(self, col_vars=None, row_var=None): n_atts = self.X.shape[1] if col_vars is None: col_vars = range(len(self.domain.variables)) single_column = False else: col_vars = [self.domain.index(var) for var in col_vars] single_column = len(col_vars) == 1 and len(self.domain) > 1 if row_var is None: row_var = self.domain.class_var if row_var is None: raise ValueError("No row variable") row_desc = self.domain[row_var] if not isinstance(row_desc, DiscreteVariable): raise TypeError("Row variable must be discrete") row_indi = self.domain.index(row_var) n_rows = len(row_desc.values) if 0 <= row_indi < n_atts: row_data = self.X[:, row_indi] elif row_indi < 0: row_data = self.metas[:, -1 - row_indi] else: row_data = self.Y[:, row_indi - n_atts] W = self.W if self.has_weights() else None col_desc = [self.domain[var] for var in col_vars] col_indi = [self.domain.index(var) for var in col_vars] if any(not isinstance(var, (ContinuousVariable, DiscreteVariable)) for var in col_desc): raise ValueError("contingency can be computed only for discrete " "and continuous values") if any(isinstance(var, ContinuousVariable) for var in col_desc): if bn.countnans(row_data): raise ValueError("cannot compute contigencies with missing " "row data") contingencies = [None] * len(col_desc) for arr, f_cond, f_ind in ((self.X, lambda i: 0 <= i < n_atts, lambda i: i), (self.Y, lambda i: i >= n_atts, lambda i: i - n_atts), (self.metas, lambda i: i < 0, lambda i: -1 - i)): arr_indi = [e for e, ind in enumerate(col_indi) if f_cond(ind)] vars = [(e, f_ind(col_indi[e]), col_desc[e]) for e in arr_indi] disc_vars = [v for v in vars if isinstance(v[2], DiscreteVariable)] if disc_vars: if sp.issparse(arr): max_vals = max(len(v[2].values) for v in disc_vars) disc_indi = {i for _, i, _ in disc_vars} mask = [i in disc_indi for i in range(arr.shape[1])] conts, nans = bn.contingency(arr, row_data, max_vals - 1, n_rows - 1, W, mask) for col_i, arr_i, _ in disc_vars: contingencies[col_i] = (conts[arr_i], nans[arr_i]) else: for col_i, arr_i, var in disc_vars: contingencies[col_i] = bn.contingency( arr[:, arr_i], row_data, len(var.values) - 1, n_rows - 1, W) cont_vars = [ v for v in vars if isinstance(v[2], ContinuousVariable) ] if cont_vars: classes = row_data.astype(dtype=np.int8) if W is not None: W = W.astype(dtype=np.float64) if sp.issparse(arr): arr = sp.csc_matrix(arr) for col_i, arr_i, _ in cont_vars: if sp.issparse(arr): col_data = arr.data[arr.indptr[arr_i]:arr.indptr[arr_i + 1]] rows = arr.indices[arr.indptr[arr_i]:arr.indptr[arr_i + 1]] W_ = None if W is None else W[rows] classes_ = classes[rows] else: col_data, W_, classes_ = arr[:, arr_i], W, classes col_data = col_data.astype(dtype=np.float64) U, C, unknown = _contingency.contingency_floatarray( \ col_data, classes_, n_rows, W_) contingencies[col_i] = ([U, C], unknown) return contingencies
def _compute_contingency(self, col_vars=None, row_var=None): n_atts = self.X.shape[1] if col_vars is None: col_vars = range(len(self.domain.variables)) single_column = False else: col_vars = [self.domain.index(var) for var in col_vars] single_column = len(col_vars) == 1 and len(self.domain) > 1 if row_var is None: row_var = self.domain.class_var if row_var is None: raise ValueError("No row variable") row_desc = self.domain[row_var] if not isinstance(row_desc, DiscreteVariable): raise TypeError("Row variable must be discrete") row_indi = self.domain.index(row_var) n_rows = len(row_desc.values) if 0 <= row_indi < n_atts: row_data = self.X[:, row_indi] elif row_indi < 0: row_data = self.metas[:, -1 - row_indi] else: row_data = self.Y[:, row_indi - n_atts] W = self.W if self.has_weights() else None col_desc = [self.domain[var] for var in col_vars] col_indi = [self.domain.index(var) for var in col_vars] if any(not isinstance(var, (ContinuousVariable, DiscreteVariable)) for var in col_desc): raise ValueError("contingency can be computed only for discrete " "and continuous values") if any(isinstance(var, ContinuousVariable) for var in col_desc): if bn.countnans(row_data): raise ValueError("cannot compute contigencies with missing " "row data") contingencies = [None] * len(col_desc) for arr, f_cond, f_ind in ( (self.X, lambda i: 0 <= i < n_atts, lambda i: i), (self.Y, lambda i: i >= n_atts, lambda i: i - n_atts), (self.metas, lambda i: i < 0, lambda i: -1 - i)): arr_indi = [e for e, ind in enumerate(col_indi) if f_cond(ind)] vars = [(e, f_ind(col_indi[e]), col_desc[e]) for e in arr_indi] disc_vars = [v for v in vars if isinstance(v[2], DiscreteVariable)] if disc_vars: if sp.issparse(arr): max_vals = max(len(v[2].values) for v in disc_vars) disc_indi = {i for _, i, _ in disc_vars} mask = [i in disc_indi for i in range(arr.shape[1])] conts, nans = bn.contingency(arr, row_data, max_vals - 1, n_rows - 1, W, mask) for col_i, arr_i, _ in disc_vars: contingencies[col_i] = (conts[arr_i], nans[arr_i]) else: for col_i, arr_i, var in disc_vars: contingencies[col_i] = bn.contingency(arr[:, arr_i], row_data, len(var.values) - 1, n_rows - 1, W) cont_vars = [v for v in vars if isinstance(v[2], ContinuousVariable)] if cont_vars: classes = row_data.astype(dtype=np.int8) if W is not None: W = W.astype(dtype=np.float64) if sp.issparse(arr): arr = sp.csc_matrix(arr) for col_i, arr_i, _ in cont_vars: if sp.issparse(arr): col_data = arr.data[arr.indptr[arr_i]: arr.indptr[arr_i+1]] rows = arr.indices[arr.indptr[arr_i]: arr.indptr[arr_i+1]] W_ = None if W is None else W[rows] classes_ = classes[rows] else: col_data, W_, classes_ = arr[:, arr_i], W, classes col_data = col_data.astype(dtype=np.float64) U, C, unknown = _contingency.contingency_floatarray( \ col_data, classes_, n_rows, W_) contingencies[col_i] = ([U, C], unknown) return contingencies
def _compute_contingency(self, col_vars=None, row_var=None): n_atts = self.X.shape[1] if col_vars is None: col_vars = range(len(self.domain.variables)) single_column = False else: col_vars = [self.domain.index(var) for var in col_vars] single_column = len(col_vars) == 1 and len(self.domain) > 1 if row_var is None: row_var = self.domain.class_var if row_var is None: raise ValueError("No row variable") row_desc = self.domain[row_var] if not isinstance(row_desc, DiscreteVariable): raise TypeError("Row variable must be discrete") row_indi = self.domain.index(row_var) n_rows = len(row_desc.values) if 0 <= row_indi < n_atts: row_data = self.X[:, row_indi] elif row_indi < 0: row_data = self.metas[:, -1 - row_indi] else: row_data = self.Y[:, row_indi - n_atts] W = self.W if self.has_weights() else None col_desc = [self.domain[var] for var in col_vars] col_indi = [self.domain.index(var) for var in col_vars] if any(not isinstance(var, (ContinuousVariable, DiscreteVariable)) for var in col_desc): raise ValueError("contingency can be computed only for discrete " "and continuous values") if any(isinstance(var, ContinuousVariable) for var in col_desc): dep_indices = np.argsort(row_data) dep_sizes, nans = bn.bincount(row_data, n_rows - 1) dep_sizes = dep_sizes.astype(int, copy=False) if nans: raise ValueError("cannot compute contigencies with missing " "row data") else: dep_indices = dep_sizes = None contingencies = [None] * len(col_desc) for arr, f_cond, f_ind in ( (self.X, lambda i: 0 <= i < n_atts, lambda i: i), (self.Y, lambda i: i >= n_atts, lambda i: i - n_atts), (self.metas, lambda i: i < 0, lambda i: -1 - i), ): arr_indi = [e for e, ind in enumerate(col_indi) if f_cond(ind)] vars = [(e, f_ind(col_indi[e]), col_desc[e]) for e in arr_indi] disc_vars = [v for v in vars if isinstance(v[2], DiscreteVariable)] if disc_vars: if sp.issparse(arr): max_vals = max(len(v[2].values) for v in disc_vars) disc_indi = {i for _, i, _ in disc_vars} mask = [i in disc_indi for i in range(arr.shape[1])] conts, nans = bn.contingency(arr, row_data, max_vals - 1, n_rows - 1, W, mask) for col_i, arr_i, _ in disc_vars: contingencies[col_i] = (conts[arr_i], nans[arr_i]) else: for col_i, arr_i, var in disc_vars: contingencies[col_i] = bn.contingency( arr[:, arr_i], row_data, len(var.values) - 1, n_rows - 1, W ) cont_vars = [v for v in vars if isinstance(v[2], ContinuousVariable)] if cont_vars: for col_i, _, _ in cont_vars: contingencies[col_i] = ([], np.empty(n_rows)) fr = 0 for clsi, cs in enumerate(dep_sizes): to = fr + cs grp_rows = dep_indices[fr:to] grp_data = arr[grp_rows, :] grp_W = W and W[grp_rows] if sp.issparse(grp_data): grp_data = sp.csc_matrix(grp_data) for col_i, arr_i, _ in cont_vars: if sp.issparse(grp_data): col_data = grp_data.data[grp_data.indptr[arr_i] : grp_data.indptr[arr_i + 1]] else: col_data = grp_data[:, arr_i] if W is not None: ranks = np.argsort(col_data) vals = np.vstack((col_data[ranks], grp_W[ranks])) nans = bn.countnans(col_data, grp_W) else: col_data.sort() vals = np.ones((2, len(col_data))) vals[0, :] = col_data nans = bn.countnans(col_data) dist = np.array(_valuecount.valuecount(vals)) contingencies[col_i][0].append(dist) contingencies[col_i][1][clsi] = nans fr = to return contingencies
def test1d_w(self): a = np.ones(5) a[2] = a[4] = float("nan") self.assertAlmostEqual(bn.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5]), 0.8) self.assertAlmostEqual(bn.slow.countnans(a, weights=[0.1, 0.2, 0.3, 0.4, 0.5]), 0.8)
def test1d(self): a = np.ones(5) a[2] = a[4] = float("nan") self.assertEqual(bn.countnans(a), 2) self.assertEqual(bn.slow.countnans(a), 2)