import boundary import losses X_train = data.X_train X_test = data.X_test # CHANGED Y_train = to_categorical(data.Y_train) Y_test = to_categorical(data.Y_test) # CHANGED model = Sequential() model.add(Dense(100, activation='sigmoid', activity_regularizer=l1(0.0004))) model.add(Dense(30, activation='sigmoid', activity_regularizer=l1(0.0004))) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy']) history = model.fit( X_train, Y_train, validation_data=(X_test, Y_test), # CHANGED epochs=30000, batch_size=25) boundary.show( model, data.X_test, data.Y_test, # CHANGED title="Test set") losses.plot(history)
import echidna as data import boundary import losses X_train = data.X_train X_validation = data.X_validation Y_train = to_categorical(data.Y_train) Y_validation = to_categorical(data.Y_validation) model = Sequential() model.add(Dense(100, activation='sigmoid')) model.add(Dense(30, activation='sigmoid')) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy']) history = model.fit(X_train, Y_train, validation_data=(X_validation, Y_validation), epochs=30000, batch_size=25) boundary.show(model, data.X_train, data.Y_train, title="Training set") boundary.show(model, data.X_validation, data.Y_validation, title="Validation set") losses.plot(history)
# A three-layered neural network. from keras.models import Sequential from keras.layers import Dense from keras.optimizers import RMSprop from keras.utils import to_categorical import echidna as data import boundary X_train = data.X_train X_validation = data.X_validation Y_train = to_categorical(data.Y_train) Y_validation = to_categorical(data.Y_validation) model = Sequential() model.add(Dense(100, activation='sigmoid')) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy']) model.fit(X_train, Y_train, validation_data=(X_validation, Y_validation), epochs=30000, batch_size=25) boundary.show(model, data.X_train, data.Y_train)