def get_mask(i_subject, i_seq, i_cam, i_frame): chroma_frame = improc.imread_jpeg( f'{paths.DATA_ROOT}/3dhp/S{i_subject}/Seq{i_seq}/FGmasks/img_{i_cam}_{i_frame:06d}.jpg' ) person_box = get_box(i_subject, i_seq, i_cam, i_frame) is_fg = chroma_frame[..., 0] > 100 n_labels, labels, stats, centroids = cv2.connectedComponentsWithStats( is_fg.astype(np.uint8), 4, cv2.CV_32S) component_boxes = stats[:, :4] ious = [ boxlib.iou(component_box, person_box) for component_box in component_boxes ] ious[0] = 0 person_label = np.argmax(ious) mask = (labels == person_label).astype(np.uint8) # Remove foreground pixels that are far from the person box intbox = boxlib.intersect(boxlib.full_box((2048, 2048)), boxlib.expand(person_box, 1.3)).astype(int) mask[:intbox[1]] = 0 mask[:, :intbox[0]] = 0 mask[:, intbox[0] + intbox[2]:] = 0 mask[intbox[1] + intbox[3]:] = 0 encoded_mask = improc.encode_mask(mask) return encoded_mask
def make_efficient_example(ex, further_expansion_factor=1, further_scale_up=1, dir_suffix=''): """Make example by storing the image in a cropped and resized version for efficient loading""" # Determine which area we will need from the image # This is a bit larger than the tight crop because of the geometric augmentations max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 * further_scale_up scale_down_factor = 1 / 0.85 shift_factor = 1.1 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s, c = np.sin(max_rotate), np.cos(max_rotate) w, h = ex.bbox[2:] rot_bbox_side = max(c * w + s * h, c * h + s * w) rot_bbox = boxlib.box_around(box_center, rot_bbox_side) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = (padding_factor * shift_factor * scale_down_factor * further_expansion_factor) expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, np.array([0, 0, 1000, 1000])) new_camera = copy.deepcopy(ex.camera) new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() new_im_relpath = ex.image_path.replace('h36m', f'h36m_downscaled{dir_suffix}') new_im_path = f'{paths.DATA_ROOT}/{new_im_relpath}' if not (util.is_file_newer(new_im_path, "2019-11-14T23:33:14") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(ex.image_path) dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points( ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) ex = ps3d.Pose3DExample(new_im_relpath, ex.world_coords, new_bbox, new_camera, activity_name=ex.activity_name) return ex
def make_efficient_example(ex, root_muco, i_person): image_relpath = ex.image_path max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.2 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s = np.sin(max_rotate) c = np.cos(max_rotate) rot_bbox_size = (np.array([[c, s], [s, c]]) @ ex.bbox[2:, np.newaxis])[:, 0] side = np.max(rot_bbox_size) rot_bbox_size = np.array([side, side]) rot_bbox = boxlib.box_around(box_center, rot_bbox_size) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = padding_factor * shift_factor * scale_down_factor expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, boxlib.full_box([2048, 2048])) new_camera = ex.camera.copy() new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_path = f'{root_muco}_downscaled/{image_relpath[:-4]}_{i_person:01d}.jpg' if not (util.is_file_newer(new_im_path, "2020-02-15T23:28:26")): im = improc.imread_jpeg(f'{root_muco}/{image_relpath}') new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape, antialias_factor=4) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im, quality=95) new_bbox_topleft = cameralib.reproject_image_points(ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) if ex.mask is None: noext, ext = os.path.splitext(image_relpath[:-4]) noext = noext.replace('unaugmented_set_001/', '') mask = improc.decode_mask(util.load_pickle(f'{root_muco}/masks/{noext}.pkl')) else: mask = ex.mask if mask is False: new_mask_encoded = None else: new_mask = cameralib.reproject_image(mask, ex.camera, new_camera, dst_shape) new_mask_encoded = improc.encode_mask(new_mask) return p3ds.Pose3DExample( os.path.relpath(new_im_path, paths.DATA_ROOT), ex.world_coords.astype(np.float32), new_bbox.astype(np.float32), new_camera, mask=new_mask_encoded, univ_coords=ex.univ_coords.astype(np.float32))
def get_expanded_crop_box(bbox, full_box, further_expansion_factor): max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.1 s, c = np.sin(max_rotate), np.cos(max_rotate) w, h = bbox[2:] box_center = boxlib.center(bbox) rot_bbox_side = max(c * w + s * h, c * h + s * w) rot_bbox = boxlib.box_around(box_center, rot_bbox_side) expansion_factor = (padding_factor * shift_factor * scale_down_factor * further_expansion_factor) expanded_bbox = boxlib.intersect(boxlib.expand(rot_bbox, expansion_factor), full_box) return expanded_bbox
def make_efficient_example(ex, rect_id): """Make example by storing the image in a cropped and resized version for efficient loading""" # Determine which area we will need # For rotation, usual padding around box, scale (shrink) augmentation and shifting padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.1 max_rotate = np.pi / 6 rot_factor = np.sin(max_rotate) + np.cos(max_rotate) base_dst_side = 256 scale_factor = min(base_dst_side / ex.bbox[3] * scale_up_factor, 1) hopeful_factor = 0.9 expansion_factor = ( rot_factor * padding_factor * shift_factor * scale_down_factor * hopeful_factor) expanded_bbox = boxlib.expand(boxlib.expand_to_square(ex.bbox), expansion_factor) imsize = improc.image_extents(ex.image_path) full_box = np.array([0, 0, imsize[0], imsize[1]]) expanded_bbox = boxlib.intersect(expanded_bbox, full_box) old_camera = cameralib.Camera.create2D() new_camera = old_camera.copy() new_camera.shift_image(-expanded_bbox[:2]) new_camera.scale_output(scale_factor) dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_path = ex.image_path.replace('mpii', f'mpii_downscaled') without_ext, ext = os.path.splitext(new_im_path) new_im_path = f'{without_ext}_{rect_id:02d}{ext}' if not (util.is_file_newer(new_im_path, "2019-11-12T17:54:06") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(ex.image_path) new_im = cameralib.reproject_image(im, old_camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points(ex.bbox[:2], old_camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) new_coords = cameralib.reproject_image_points(ex.coords, old_camera, new_camera) ex = Pose2DExample(os.path.relpath(new_im_path, paths.DATA_ROOT), new_coords, bbox=new_bbox) return ex
def make_muco(): joint_info, selected_joints = make_joint_info() root_3dhp = f'{paths.DATA_ROOT}/3dhp' root_muco = f'{paths.DATA_ROOT}/muco' sample_info = np.load(f'{root_muco}/composite_frame_origins.npy') n_all_joints = 28 valid_indices = list(np.load(f'{root_muco}/valid_composite_frame_indices.npy')) all_detections = util.load_pickle(f'{root_muco}/yolov3_detections.pkl') all_detections = np.array([all_detections[k] for k in sorted(all_detections.keys())]) all_visible_boxes = np.load(f'{root_muco}/visible_boxes.npy') matloader = functools.lru_cache(1024)(matlabfile.load) @functools.lru_cache(1024) def get_world_coords(i_subject, i_seq, i_cam, anno_name): seqpath = f'{root_3dhp}/S{i_subject}/Seq{i_seq}' anno_file = matloader(f'{seqpath}/annot.mat') camcoords = anno_file[anno_name][i_cam].reshape( [-1, n_all_joints, 3])[:, selected_joints] camera = load_cameras(f'{seqpath}/camera.calibration')[i_cam] world_coords = [camera.camera_to_world(c) for c in camcoords] return world_coords examples = [] with util.BoundedPool(None, 120) as pool: for i_sample, people, detections, visible_boxes in zip( util.progressbar(valid_indices), sample_info[valid_indices], all_detections[valid_indices], all_visible_boxes[valid_indices]): detections = [box for box in detections if box[-1] > 0.1] if not detections: continue filename = f'{i_sample + 1:06d}.jpg' image_relpath = f'unaugmented_set_001/{filename[:2]}/{filename[:4]}/{filename}' gt_people = [] for i_person, ((i_subject, i_seq, i_cam, i_frame), visible_box) in enumerate( zip(people, visible_boxes)): seqpath = f'{root_3dhp}/S{i_subject}/Seq{i_seq}' world_coords = get_world_coords(i_subject, i_seq, i_cam, 'annot3')[i_frame] univ_world_coords = get_world_coords( i_subject, i_seq, i_cam, 'univ_annot3')[i_frame] camera = load_cameras(f'{seqpath}/camera.calibration')[i_cam] im_coords = camera.world_to_image(world_coords) coord_bbox = boxlib.expand(boxlib.intersect( boxlib.bb_of_points(im_coords), boxlib.full_box([2048, 2048])), 1.05) bbox = boxlib.intersect_vertical(visible_box, coord_bbox) ex = p3ds.Pose3DExample( image_relpath, world_coords, bbox, camera, mask=None, univ_coords=univ_world_coords) gt_people.append(ex) if not gt_people: continue iou_matrix = np.array([[boxlib.iou(gt_person.bbox, box[:4]) for box in detections] for gt_person in gt_people]) gt_indices, det_indices = scipy.optimize.linear_sum_assignment(-iou_matrix) for i_gt, i_det in zip(gt_indices, det_indices): gt_box = gt_people[i_gt].bbox det_box = detections[i_det] if (iou_matrix[i_gt, i_det] > 0.1 and boxlib.area(det_box) < 2 * boxlib.area(gt_box)): ex = gt_people[i_gt] ex.bbox = np.array(detections[i_det][:4]) pool.apply_async(make_efficient_example, (ex, root_muco, i_gt), callback=examples.append) examples.sort(key=lambda ex: ex.image_path) return p3ds.Pose3DDataset(joint_info, examples)
def make_efficient_example(ex): image_relpath = ex.image_path max_rotate = np.pi / 6 padding_factor = 1 / 0.85 scale_up_factor = 1 / 0.85 scale_down_factor = 1 / 0.85 shift_factor = 1.2 base_dst_side = 256 box_center = boxlib.center(ex.bbox) s, c = np.sin(max_rotate), np.cos(max_rotate) w, h = ex.bbox[2:] rot_bbox_side = max(c * w + s * h, c * h + s * w) rot_bbox = boxlib.box_around(box_center, rot_bbox_side) scale_factor = min(base_dst_side / np.max(ex.bbox[2:]) * scale_up_factor, 1) expansion_factor = padding_factor * shift_factor * scale_down_factor expanded_bbox = boxlib.expand(rot_bbox, expansion_factor) expanded_bbox = boxlib.intersect(expanded_bbox, np.array([0, 0, 2048, 2048])) new_camera = ex.camera.copy() new_camera.intrinsic_matrix[:2, 2] -= expanded_bbox[:2] new_camera.scale_output(scale_factor) new_camera.undistort() dst_shape = improc.rounded_int_tuple(scale_factor * expanded_bbox[[3, 2]]) new_im_relpath = ex.image_path.replace('3dhp', f'3dhp_downscaled') new_im_path = os.path.join(paths.DATA_ROOT, new_im_relpath) if not (util.is_file_newer(new_im_path, "2019-11-14T23:32:07") and improc.is_image_readable(new_im_path)): im = improc.imread_jpeg(f'{paths.DATA_ROOT}/{image_relpath}') new_im = cameralib.reproject_image(im, ex.camera, new_camera, dst_shape) util.ensure_path_exists(new_im_path) imageio.imwrite(new_im_path, new_im) new_bbox_topleft = cameralib.reproject_image_points( ex.bbox[:2], ex.camera, new_camera) new_bbox = np.concatenate([new_bbox_topleft, ex.bbox[2:] * scale_factor]) mask_rle_relpath = new_im_path.replace('Images', 'FGmaskImages').replace( '.jpg', '.pkl') mask_rle_path = os.path.join(paths.DATA_ROOT, mask_rle_relpath) if util.is_file_newer(mask_rle_path, "2020-03-11T20:46:46"): mask_runlength = util.load_pickle(mask_rle_path) else: mask_relpath = ex.image_path.replace('Images', 'FGmaskImages').replace( '.jpg', '.png') mask = imageio.imread(os.path.join(paths.DATA_ROOT, mask_relpath)) mask_reproj = cameralib.reproject_image(mask, ex.camera, new_camera, dst_shape) mask_runlength = get_mask_with_highest_iou(mask_reproj, new_bbox) util.dump_pickle(mask_runlength, mask_rle_path) return p3ds.Pose3DExample(new_im_relpath, ex.world_coords, new_bbox, new_camera, mask=mask_runlength, univ_coords=ex.univ_coords)
def get_box(i_subject, i_seq, i_cam, i_frame): imcoords = get_coords(i_subject, i_seq, i_cam, 'annot3')[2][i_frame] box = boxlib.expand(boxlib.bb_of_points(imcoords), 1.05) return boxlib.intersect(boxlib.full_box((2048, 2048)), box).astype(np.float32)