def test_pyfmmlib_fmm(ctx_getter): logging.basicConfig(level=logging.INFO) from pytest import importorskip importorskip("pyfmmlib") ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 3000 ntargets = 1000 dims = 2 dtype = np.float64 helmholtz_k = 2 sources = p_normal(queue, nsources, dims, dtype, seed=15) targets = ( p_normal(queue, ntargets, dims, dtype, seed=18) + np.array([2, 0])) sources_host = particle_array_to_host(sources) targets_host = particle_array_to_host(targets) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) trav = trav.get(queue=queue) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(queue.context, seed=20) weights = rng.uniform(queue, nsources, dtype=np.float64).get() #weights = np.ones(nsources) logger.info("computing direct (reference) result") from pyfmmlib import hpotgrad2dall_vec ref_pot, _, _ = hpotgrad2dall_vec(ifgrad=False, ifhess=False, sources=sources_host.T, charge=weights, targets=targets_host.T, zk=helmholtz_k) from boxtree.pyfmmlib_integration import Helmholtz2DExpansionWrangler wrangler = Helmholtz2DExpansionWrangler(trav.tree, helmholtz_k, nterms=10) from boxtree.fmm import drive_fmm pot = drive_fmm(trav, wrangler, weights) rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot) logger.info("relative l2 error: %g" % rel_err) assert rel_err < 1e-5
def test_pyfmmlib_fmm(ctx_getter, dims, use_dipoles, helmholtz_k): logging.basicConfig(level=logging.INFO) from pytest import importorskip importorskip("pyfmmlib") ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 3000 ntargets = 1000 dtype = np.float64 sources = p_normal(queue, nsources, dims, dtype, seed=15) targets = (p_normal(queue, ntargets, dims, dtype, seed=18) + np.array([2, 0, 0])[:dims]) sources_host = particle_array_to_host(sources) targets_host = particle_array_to_host(targets) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) trav = trav.get(queue=queue) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(queue.context, seed=20) weights = rng.uniform(queue, nsources, dtype=np.float64).get() #weights = np.ones(nsources) if use_dipoles: np.random.seed(13) dipole_vec = np.random.randn(dims, nsources) else: dipole_vec = None if dims == 2 and helmholtz_k == 0: base_nterms = 20 else: base_nterms = 10 def fmm_level_to_nterms(tree, lev): result = base_nterms if lev < 3 and helmholtz_k: # exercise order-varies-by-level capability result += 5 if use_dipoles: result += 1 return result from boxtree.pyfmmlib_integration import FMMLibExpansionWrangler wrangler = FMMLibExpansionWrangler(trav.tree, helmholtz_k, fmm_level_to_nterms=fmm_level_to_nterms, dipole_vec=dipole_vec) from boxtree.fmm import drive_fmm timing_data = {} pot = drive_fmm(trav, wrangler, weights, timing_data=timing_data) print(timing_data) assert timing_data # {{{ ref fmmlib computation logger.info("computing direct (reference) result") import pyfmmlib fmmlib_routine = getattr( pyfmmlib, "%spot%s%ddall%s_vec" % (wrangler.eqn_letter, "fld" if dims == 3 else "grad", dims, "_dp" if use_dipoles else "")) kwargs = {} if dims == 3: kwargs["iffld"] = False else: kwargs["ifgrad"] = False kwargs["ifhess"] = False if use_dipoles: if helmholtz_k == 0 and dims == 2: kwargs["dipstr"] = -weights * (dipole_vec[0] + 1j * dipole_vec[1]) else: kwargs["dipstr"] = weights kwargs["dipvec"] = dipole_vec else: kwargs["charge"] = weights if helmholtz_k: kwargs["zk"] = helmholtz_k ref_pot = wrangler.finalize_potentials( fmmlib_routine(sources=sources_host.T, targets=targets_host.T, **kwargs)[0]) rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf) logger.info("relative l2 error vs fmmlib direct: %g" % rel_err) assert rel_err < 1e-5, rel_err # }}} # {{{ check against sumpy try: import sumpy # noqa except ImportError: have_sumpy = False from warnings import warn warn("sumpy unavailable: cannot compute independent reference " "values for pyfmmlib") else: have_sumpy = True if have_sumpy: from sumpy.kernel import (LaplaceKernel, HelmholtzKernel, DirectionalSourceDerivative) from sumpy.p2p import P2P sumpy_extra_kwargs = {} if helmholtz_k: knl = HelmholtzKernel(dims) sumpy_extra_kwargs["k"] = helmholtz_k else: knl = LaplaceKernel(dims) if use_dipoles: knl = DirectionalSourceDerivative(knl) sumpy_extra_kwargs["src_derivative_dir"] = dipole_vec p2p = P2P(ctx, [knl], exclude_self=False) evt, (sumpy_ref_pot, ) = p2p(queue, targets, sources, [weights], out_host=True, **sumpy_extra_kwargs) sumpy_rel_err = (la.norm(pot - sumpy_ref_pot, np.inf) / la.norm(sumpy_ref_pot, np.inf)) logger.info("relative l2 error vs sumpy direct: %g" % sumpy_rel_err) assert sumpy_rel_err < 1e-5, sumpy_rel_err
def test_pyfmmlib_fmm(ctx_getter): logging.basicConfig(level=logging.INFO) from pytest import importorskip importorskip("pyfmmlib") ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 3000 ntargets = 1000 dims = 2 dtype = np.float64 helmholtz_k = 2 sources = p_normal(queue, nsources, dims, dtype, seed=15) targets = (p_normal(queue, ntargets, dims, dtype, seed=18) + np.array([2, 0])) sources_host = particle_array_to_host(sources) targets_host = particle_array_to_host(targets) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) trav = trav.get(queue=queue) from pyopencl.clrandom import RanluxGenerator rng = RanluxGenerator(queue, seed=20) weights = rng.uniform(queue, nsources, dtype=np.float64).get() #weights = np.ones(nsources) logger.info("computing direct (reference) result") from pyfmmlib import hpotgrad2dall_vec ref_pot, _, _ = hpotgrad2dall_vec(ifgrad=False, ifhess=False, sources=sources_host.T, charge=weights, targets=targets_host.T, zk=helmholtz_k) from boxtree.pyfmmlib_integration import Helmholtz2DExpansionWrangler wrangler = Helmholtz2DExpansionWrangler(trav.tree, helmholtz_k, nterms=10) from boxtree.fmm import drive_fmm pot = drive_fmm(trav, wrangler, weights) rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot) logger.info("relative l2 error: %g" % rel_err) assert rel_err < 1e-5