def _loadFromFile(self, filename):

        # TODO: integrate this in saved file parameters somehow
        #n_filters_time=10
        #filter_time_length=75
        #n_filters_spat=5
        #pool_time_length=60
        #pool_time_stride=30
        #in_chans = 15
        #input_time_length = 3584

        # final_conv_length = auto ensures we only get a single output in the time dimension
        self.model = ShallowFBCSPNet(
            in_chans=15,
            n_classes=2,
            input_time_length=3584,
            n_filters_time=10,
            filter_time_length=75,
            n_filters_spat=5,
            pool_time_length=60,
            pool_time_stride=30,
            final_conv_length='auto').create_network()

        # setup model for cuda
        if self.cuda:
            print("That's the new one")
            self.model.cuda()

        # load the saved network (makes it possible to run bottom form same starting point
        self.model.load_state_dict(torch.load("myModel.pth"))
        return
예제 #2
0
def create_shallow_net(in_chans, input_time_length):
    # receptive field size is determined by model architecture
    n_classes = 2
    # ensure reproducibility by resetting lasagne/theano random generator
    lasagne.random.set_rng(RandomState(34734))

    shallow_net = ShallowFBCSPNet(in_chans,
                                  input_time_length,
                                  n_classes,
                                  n_filters_time=40,
                                  filter_time_length=25,
                                  n_filters_spat=40,
                                  pool_time_length=75,
                                  pool_time_stride=15,
                                  final_dense_length=30,
                                  conv_nonlin=square,
                                  pool_mode='average_exc_pad',
                                  pool_nonlin=safe_log,
                                  split_first_layer=True,
                                  batch_norm=True,
                                  batch_norm_alpha=0.1,
                                  drop_prob=0.5)
    final_layer = shallow_net.get_layers()[-1]
    final_layer = ClipLayer(final_layer, 1e-4, 1 - 1e-4)
    return final_layer
예제 #3
0
    def __init__(self, in_chans, n_classes, input_time_length):
        super(HybridNetModule, self).__init__()
        deep_model = Deep4Net(
            in_chans,
            n_classes,
            n_filters_time=20,
            n_filters_spat=30,
            n_filters_2=40,
            n_filters_3=50,
            n_filters_4=60,
            input_time_length=input_time_length,
            final_conv_length=2,
        ).create_network()
        shallow_model = ShallowFBCSPNet(
            in_chans,
            n_classes,
            input_time_length=input_time_length,
            n_filters_time=30,
            n_filters_spat=40,
            filter_time_length=28,
            final_conv_length=29,
        ).create_network()

        reduced_deep_model = nn.Sequential()
        for name, module in deep_model.named_children():
            if name == "conv_classifier":
                new_conv_layer = nn.Conv2d(
                    module.in_channels,
                    60,
                    kernel_size=module.kernel_size,
                    stride=module.stride,
                )
                reduced_deep_model.add_module("deep_final_conv",
                                              new_conv_layer)
                break
            reduced_deep_model.add_module(name, module)

        reduced_shallow_model = nn.Sequential()
        for name, module in shallow_model.named_children():
            if name == "conv_classifier":
                new_conv_layer = nn.Conv2d(
                    module.in_channels,
                    40,
                    kernel_size=module.kernel_size,
                    stride=module.stride,
                )
                reduced_shallow_model.add_module("shallow_final_conv",
                                                 new_conv_layer)
                break
            reduced_shallow_model.add_module(name, module)

        to_dense_prediction_model(reduced_deep_model)
        to_dense_prediction_model(reduced_shallow_model)
        self.reduced_deep_model = reduced_deep_model
        self.reduced_shallow_model = reduced_shallow_model
        self.final_conv = nn.Conv2d(100,
                                    n_classes,
                                    kernel_size=(1, 1),
                                    stride=1)
    def fit(self, X, y):
        
        # define a number of train/test trials
        nb_train_trials = int(np.floor(7/8*X.shape[0]))
        
        # split the dataset
        self.train_set = SignalAndTarget(X[:nb_train_trials], y=y[:nb_train_trials])
        self.test_set = SignalAndTarget(X[nb_train_trials:], y=y[nb_train_trials:])
        
        # number of classes and input channels
        n_classes = np.unique(y).size
        in_chans = self.train_set.X.shape[1]
        
        # final_conv_length = auto ensures we only get a single output in the time dimension
        self.model = ShallowFBCSPNet(
                                in_chans=in_chans, 
                                n_classes=n_classes,
                                input_time_length=self.train_set.X.shape[2],
                        
                                n_filters_time=self.n_filters_time,
                                filter_time_length=self.filter_time_length,
                                n_filters_spat=self.n_filters_spat,
                                pool_time_length=self.pool_time_length,
                                pool_time_stride=self.pool_time_stride,
                                
                                final_conv_length='auto'
                                
                                ).create_network()
        
        # setup model for cuda
        if self.cuda:
            self.model.cuda()
        
        # setup optimizer
        self.optimizer = optim.Adam(self.model.parameters())
        
        
        # array that tracks results
        self.loss_rec = np.zeros((self.nb_epoch,2))
        self.accuracy_rec = np.zeros((self.nb_epoch,2))
                
        # run all epoch
        for i_epoch in range(self.nb_epoch):
            
            self._batchTrain(i_epoch, self.train_set)
            self._evalTraining(i_epoch, self.train_set, self.test_set)

        return self
예제 #5
0
def network_model(model, train_set, test_set, valid_set, n_chans, input_time_length, cuda):
	
	max_epochs = 30 
	max_increase_epochs = 10 
	batch_size = 64 
	init_block_size = 1000

	set_random_seeds(seed=20190629, cuda=cuda)

	n_classes = 2 
	n_chans = n_chans
	input_time_length = input_time_length

	if model == 'deep':
		model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
						 final_conv_length='auto').create_network()

	elif model == 'shallow':
		model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
								final_conv_length='auto').create_network()

	if cuda:
		model.cuda()

	log.info("%s model: ".format(str(model))) 

	optimizer = AdamW(model.parameters(), lr=0.00625, weight_decay=0)

	iterator = BalancedBatchSizeIterator(batch_size=batch_size) 

	stop_criterion = Or([MaxEpochs(max_epochs),
						 NoDecrease('valid_misclass', max_increase_epochs)])

	monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

	model_constraint = None
	print(train_set.X.shape[0]) 

	model_test = Experiment(model, train_set, valid_set, test_set, iterator=iterator,
							loss_function=F.nll_loss, optimizer=optimizer,
							model_constraint=model_constraint, monitors=monitors,
							stop_criterion=stop_criterion, remember_best_column='valid_misclass',
							run_after_early_stop=True, cuda=cuda)

	model_test.run()
	return model_test 
예제 #6
0
def create_model(n_classes, input_time_length, in_chans=22):

    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=4,
                            pool_time_length=20,
                            pool_time_stride=5).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    return model
예제 #7
0
 def __init__(self,
              targets=4,
              filters=40,
              channels=22,
              samples=1500,
              subjects=1,
              runs=None,
              **kwargs):
     super().__init__()
     self.base_model = ShallowFBCSPNet(
         channels, targets, samples,
         final_conv_length='auto').create_network()
    def _loadFromFile(self, filename):

        # TODO: integrate this in saved file parameters somehow
        n_filters_time = 10
        filter_time_length = 75
        n_filters_spat = 5
        pool_time_length = 60
        pool_time_stride = 30

        # final_conv_length = auto ensures we only get a single output in the time dimension
        self.model = ShallowFBCSPNet(
            in_chans=in_chans,
            n_classes=n_classes,
            input_time_length=train_set.X.shape[2],
            n_filters_time=n_filters_time,
            filter_time_length=filter_time_length,
            n_filters_spat=n_filters_spat,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            final_conv_length='auto').create_network()

        # load the saved network (makes it possible to run bottom form same starting point
        self.model.load_state_dict(torch.load("myModel.pth"))
        return
예제 #9
0
def create_shallow_model(in_chans, input_time_length, final_dense_length,
                         n_classes):
    shallow_net = ShallowFBCSPNet(in_chans,
                                  input_time_length,
                                  n_classes,
                                  n_filters_time=40,
                                  filter_time_length=25,
                                  n_filters_spat=40,
                                  pool_time_length=75,
                                  pool_time_stride=15,
                                  final_dense_length=final_dense_length,
                                  conv_nonlin=square,
                                  pool_mode='average_exc_pad',
                                  pool_nonlin=safe_log,
                                  split_first_layer=True,
                                  batch_norm=True,
                                  batch_norm_alpha=0.1,
                                  drop_prob=0.5)
    return shallow_net
예제 #10
0
def build_cropped_model(model_name, n_chans, n_classes, config):
    # input_time_length:
    #   will determine how many crops are processed in parallel
    #   supercrop, number of crops taken through network together
    # final_conv_length:
    #   will determine how many crops are processed in parallel
    #   we manually set the length of the final convolution layer
    #   to some length that makes the receptive field of the
    #   ConvNet smaller than the number of samples in a trial
    cropped_input_time_length = config['cropped']['input_time_length']
    final_conv_length_shallow = config['cropped']['final_conv_length_shallow']
    final_conv_length_deep = config['cropped']['final_conv_length_deep']
    if model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans, n_classes,
                                input_time_length=cropped_input_time_length,
                                final_conv_length=final_conv_length_shallow) \
            .create_network()
    elif model_name == 'deep':
        model = Deep4Net(n_chans, n_classes,
                         input_time_length=cropped_input_time_length,
                         final_conv_length=final_conv_length_deep) \
            .create_network()
    to_dense_prediction_model(model)
    return model
def test_cropped_decoding():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [mne.io.read_raw_edf(path, preload=True, stim_channel='auto',
                                 verbose='WARNING')
             for path in physionet_paths]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1,
                         proj=False, picks=eeg_channel_inds,
                         baseline=None, preload=True)
    import numpy as np
    from braindecode.datautil.signal_target import SignalAndTarget
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])
    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds
    from braindecode.models.util import to_dense_prediction_model

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=12).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())
    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))
    from braindecode.datautil.iterators import CropsFromTrialsIterator
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    from braindecode.torch_ext.util import np_to_var, var_to_np
    import torch.nn.functional as F
    from numpy.random import RandomState
    import torch as th
    from braindecode.experiments.monitors import compute_preds_per_trial_from_crops
    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(4):
        # Set model to training mode
        model.train()
        for batch_X, batch_y in iterator.get_batches(train_set, shuffle=False):
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            outputs = model(net_in)
            # Mean predictions across trial
            # Note that this will give identical gradients to computing
            # a per-prediction loss (at least for the combination of log softmax activation
            # and negative log likelihood loss which we are using here)
            outputs = th.mean(outputs, dim=2, keepdim=False)
            loss = F.nll_loss(outputs, net_target)
            loss.backward()
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Collect all predictions and losses
            all_preds = []
            all_losses = []
            batch_sizes = []
            for batch_X, batch_y in iterator.get_batches(dataset,
                                                         shuffle=False):
                net_in = np_to_var(batch_X)
                if cuda:
                    net_in = net_in.cuda()
                net_target = np_to_var(batch_y)
                if cuda:
                    net_target = net_target.cuda()
                outputs = model(net_in)
                all_preds.append(var_to_np(outputs))
                outputs = th.mean(outputs, dim=2, keepdim=False)
                loss = F.nll_loss(outputs, net_target)
                loss = float(var_to_np(loss))
                all_losses.append(loss)
                batch_sizes.append(len(batch_X))
            # Compute mean per-input loss
            loss = np.mean(np.array(all_losses) * np.array(batch_sizes) /
                           np.mean(batch_sizes))
            print("{:6s} Loss: {:.5f}".format(setname, loss))
            losses.append(loss)
            # Assign the predictions to the trials
            preds_per_trial = compute_preds_per_trial_from_crops(all_preds,
                                                              input_time_length,
                                                              dataset.X)
            # preds per trial are now trials x classes x timesteps/predictions
            # Now mean across timesteps for each trial to get per-trial predictions
            meaned_preds_per_trial = np.array(
                [np.mean(p, axis=1) for p in preds_per_trial])
            predicted_labels = np.argmax(meaned_preds_per_trial, axis=1)
            accuracy = np.mean(predicted_labels == dataset.y)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(
                setname, accuracy * 100))
    np.testing.assert_allclose(
        np.array(losses),
        np.array([1.703004002571106,
                  1.6295261979103088,
                  0.71168938279151917,
                  0.70825588703155518,
                  0.58231228590011597,
                  0.60176041722297668,
                  0.46629951894283295,
                  0.51184913516044617]),
        rtol=1e-4, atol=1e-5)
    np.testing.assert_allclose(
        np.array(accuracies),
        np.array(
            [50.0,
             46.666666666666664,
             60.0,
             53.333333333333336,
             68.333333333333329,
             66.666666666666657,
             88.333333333333329,
             83.333333333333343]),
        rtol=1e-4, atol=1e-5)
예제 #12
0
test_X = test_X.astype(np.float32)

in_chan = db.signal_shape()[0]
time_steps = db.signal_shape()[1]
from braindecode.datautil.signal_target import SignalAndTarget
train_set = SignalAndTarget(train_X, y=train_y)
valid_set = SignalAndTarget(valid_X, y=valid_y)
test_set = SignalAndTarget(test_X, y=valid_y)

cuda = True
batch_size = 60
max_epochs = 20000
max_increase_epochs = 360

model = ShallowFBCSPNet(in_chan,
                        db.n_classes,
                        input_time_length=time_steps,
                        final_conv_length="auto").create_network()
log.info("Model: \n{:s}".format(str(model)))

optimizer = optim.Adam(model.parameters())

iterator = BalancedBatchSizeIterator(batch_size=batch_size)

stop_criterion = Or([
    MaxEpochs(max_epochs),
    NoDecrease("valid_misclass", max_increase_epochs),
])

monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

model_constraint = MaxNormDefaultConstraint()
예제 #13
0
def run_exp(epoches, batch_size, subject_num, model_type, cuda, single_subject,
            single_subject_num):
    # ival = [-500, 4000]
    max_increase_epochs = 160

    # Preprocessing
    X, y = loadSubjects(subject_num, single_subject, single_subject_num)
    X = X.astype(np.float32)
    y = y.astype(np.int64)
    X, y = shuffle(X, y)

    trial_length = X.shape[2]
    print("trial_length " + str(trial_length))
    print("trying to run with {} sec trials ".format((trial_length - 1) / 256))
    print("y")
    print(y)
    trainingSampleSize = int(len(X) * 0.6)
    valudationSampleSize = int(len(X) * 0.2)
    testSampleSize = int(len(X) * 0.2)
    print("INFO : Training sample size: {}".format(trainingSampleSize))
    print("INFO : Validation sample size: {}".format(valudationSampleSize))
    print("INFO : Test sample size: {}".format(testSampleSize))

    train_set = SignalAndTarget(X[:trainingSampleSize],
                                y=y[:trainingSampleSize])
    valid_set = SignalAndTarget(
        X[trainingSampleSize:(trainingSampleSize + valudationSampleSize)],
        y=y[trainingSampleSize:(trainingSampleSize + valudationSampleSize)])
    test_set = SignalAndTarget(X[(trainingSampleSize + valudationSampleSize):],
                               y=y[(trainingSampleSize +
                                    valudationSampleSize):])

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 3
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model_type == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model_type == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    elif model_type == 'eegnet':
        model = EEGNetv4(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    # th.save(model, "models\{}-cropped-singleSubjectNum{}-{}sec-{}epoches-torch_model".format(model_type, single_subject_num, ((trial_length - 1) / 256), epoches))
    return exp
예제 #14
0
def runModel(mode):
    cudnn.benchmark = True

    start = time.time()

    #mode = str(sys.argv[1])
    #X,y,test_X,test_y = loadSubNormData(mode='all')
    #X,y,test_X,test_y = loadNEDCdata(mode=mode)

    #data = np.load('sessionsData/data%s-sessions.npy'%mode[:3])
    #labels = np.load('sessionsData/labels%s-sessions.npy'%mode[:3])

    data = np.load('data%s.npy' % mode[:3])
    labels = np.load('labels%s.npy' % mode[:3])

    X, y, test_X, test_y = splitDataRandom_Loaded(data, labels, mode)

    print('Mode - %s Total n: %d, Test n: %d' %
          (mode, len(y) + len(test_y), len(test_y)))
    #return 0

    #X = addDataNoise(X,band=[1,4])
    #test_X = addDataNoise(test_X,band=[1,4])

    max_shape = np.max([list(x.shape) for x in X], axis=0)

    assert max_shape[1] == int(config.duration_recording_mins *
                               config.sampling_freq * 60)

    n_classes = 2
    n_recordings = None  # set to an integer, if you want to restrict the set size
    sensor_types = ["EEG"]
    n_chans = 19  #21
    max_recording_mins = 35  # exclude larger recordings from training set
    sec_to_cut = 60  # cut away at start of each recording
    duration_recording_mins = 5  #20  # how many minutes to use per recording
    test_recording_mins = 5  #20
    max_abs_val = 800  # for clipping
    sampling_freq = 100
    divisor = 10  # divide signal by this
    test_on_eval = True  # teston evaluation set or on training set
    # in case of test on eval, n_folds and i_testfold determine
    # validation fold in training set for training until first stop
    n_folds = 10
    i_test_fold = 9
    shuffle = True
    model_name = 'linear'  #'deep'#'shallow' 'linear'
    n_start_chans = 25
    n_chan_factor = 2  # relevant for deep model only
    input_time_length = 6000
    final_conv_length = 1
    model_constraint = 'defaultnorm'
    init_lr = 1e-3
    batch_size = 64
    max_epochs = 35  # until first stop, the continue train on train+valid
    cuda = True  # False

    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         stride_before_pool=True).create_network()
    elif (model_name == 'deep_smac'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax(dim=1))
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    else:
        assert False, "unknown model name {:s}".format(model_name)

    to_dense_prediction_model(model)

    if config.cuda:
        model.cuda()
    test_input = np_to_var(
        np.ones((2, config.n_chans, config.input_time_length, 1),
                dtype=np.float32))
    if config.cuda:
        test_input = test_input.cuda()

    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    iterator = CropsFromTrialsIterator(
        batch_size=config.batch_size,
        input_time_length=config.input_time_length,
        n_preds_per_input=n_preds_per_input)

    #model.add_module('softmax', nn.LogSoftmax(dim=1))

    model.eval()

    mode[2] = str(mode[2])
    mode[3] = str(mode[3])
    modelName = '-'.join(mode[:4])

    #params = th.load('sessionsData/%sModel%s-sessions.pt'%(modelName,mode[4]))
    #params = th.load('%sModel%s.pt'%(modelName,mode[4]))
    params = th.load('linear/%sModel%s.pt' % (modelName, mode[4]))

    model.load_state_dict(params)

    if config.test_on_eval:
        #test_X, test_y = test_dataset.load()
        #test_X, test_y = loadNEDCdata(mode='eval')
        max_shape = np.max([list(x.shape) for x in test_X], axis=0)
        assert max_shape[1] == int(config.test_recording_mins *
                                   config.sampling_freq * 60)
    if not config.test_on_eval:
        splitter = TrainValidTestSplitter(config.n_folds,
                                          config.i_test_fold,
                                          shuffle=config.shuffle)
        train_set, valid_set, test_set = splitter.split(X, y)
    else:
        splitter = TrainValidSplitter(config.n_folds,
                                      i_valid_fold=config.i_test_fold,
                                      shuffle=config.shuffle)
        train_set, valid_set = splitter.split(X, y)
        test_set = SignalAndTarget(test_X, test_y)
        del test_X, test_y
    del X, y  # shouldn't be necessary, but just to make sure

    datasets = OrderedDict(
        (('train', train_set), ('valid', valid_set), ('test', test_set)))

    for setname in ('train', 'valid', 'test'):
        #setname = 'test'
        #print("Compute predictions for {:s}...".format(setname))
        dataset = datasets[setname]
        if config.cuda:
            preds_per_batch = [
                var_to_np(model(np_to_var(b[0]).cuda()))
                for b in iterator.get_batches(dataset, shuffle=False)
            ]
        else:
            preds_per_batch = [
                var_to_np(model(np_to_var(b[0])))
                for b in iterator.get_batches(dataset, shuffle=False)
            ]
        preds_per_trial = compute_preds_per_trial(
            preds_per_batch,
            dataset,
            input_time_length=iterator.input_time_length,
            n_stride=iterator.n_preds_per_input)
        mean_preds_per_trial = [
            np.mean(preds, axis=(0, 2)) for preds in preds_per_trial
        ]
        mean_preds_per_trial = np.array(mean_preds_per_trial)

        all_pred_labels = np.argmax(mean_preds_per_trial, axis=1).squeeze()
        all_target_labels = dataset.y
        acc_per_class = []
        for i_class in range(n_classes):
            mask = all_target_labels == i_class
            acc = np.mean(all_pred_labels[mask] == all_target_labels[mask])
            acc_per_class.append(acc)
        misclass = 1 - np.mean(acc_per_class)
        #print('Acc:{}, Class 0:{}, Class 1:{}'.format(np.mean(acc_per_class),acc_per_class[0],acc_per_class[1]))

        if setname == 'test':
            testResult = np.mean(acc_per_class)

    return testResult
class ShallowFBCSPNet_GeneralTrainer(BaseEstimator, ClassifierMixin):
    """
        Initialize the parameters of the network
        Full list of parameters described in 
        ref: https://robintibor.github.io/braindecode/source/braindecode.models.html
    """
    def __init__(self,
                 n_filters_time=10,
                 filter_time_length=75,
                 n_filters_spat=5,
                 pool_time_length=60,
                 pool_time_stride=30,
                 nb_epoch=160):

        # init meta info
        self.cuda = torch.cuda.is_available()
        #set_random_seeds(seed=20180505, cuda=self.cuda)  # TODO: Fix random seed
        set_random_seeds(seed=randint(1, 20180505),
                         cuda=self.cuda)  # TODO: Fix random seed

        # copy all network parameters
        self.n_filters_time = n_filters_time
        self.filter_time_length = filter_time_length
        self.n_filters_spat = n_filters_spat
        self.pool_time_length = pool_time_length
        self.pool_time_stride = pool_time_stride
        self.nb_epoch = nb_epoch

        return

    """
        Fit the network
        Params:
            X, data array in the format (...)
            y, labels
        ref: http://danielhnyk.cz/creating-your-own-estimator-scikit-learn/
    """

    def fit(self, X, y):

        # define a number of train/test trials
        nb_train_trials = int(np.floor(7 / 8 * X.shape[0]))

        # split the dataset
        train_set = SignalAndTarget(X[:nb_train_trials], y=y[:nb_train_trials])
        test_set = SignalAndTarget(X[nb_train_trials:], y=y[nb_train_trials:])

        # number of classes and input channels
        n_classes = np.unique(y).size
        in_chans = train_set.X.shape[1]

        # final_conv_length = auto ensures we only get a single output in the time dimension
        self.model = ShallowFBCSPNet(
            in_chans=in_chans,
            n_classes=n_classes,
            input_time_length=train_set.X.shape[2],
            n_filters_time=self.n_filters_time,
            filter_time_length=self.filter_time_length,
            n_filters_spat=self.n_filters_spat,
            pool_time_length=self.pool_time_length,
            pool_time_stride=self.pool_time_stride,
            final_conv_length='auto').create_network()

        # setup model for cuda
        if self.cuda:
            self.model.cuda()

        # setup optimizer
        self.optimizer = optim.Adam(self.model.parameters())

        # random generator
        self.rng = RandomState(None)

        # array that tracks results
        self.loss_rec = np.zeros((self.nb_epoch, 2))
        self.accuracy_rec = np.zeros((self.nb_epoch, 2))

        # run all epoch
        for i_epoch in range(self.nb_epoch):

            self._batchTrain(i_epoch, train_set)
            self._evalTraining(i_epoch, train_set, test_set)

        return self

    """
        Training iteration, train the network on the train_set
        Params:
            i_epoch, current epoch iteration
            train_set, training set
    """

    def _batchTrain(self, i_epoch, train_set):

        # get a set of balanced batches
        i_trials_in_batch = get_balanced_batches(len(train_set.X),
                                                 self.rng,
                                                 shuffle=True,
                                                 batch_size=32)

        # Set model to training mode
        self.model.train()

        # go through all batches
        for i_trials in i_trials_in_batch:

            # Have to add empty fourth dimension to X
            batch_X = train_set.X[i_trials][:, :, :, None]
            batch_y = train_set.y[i_trials]

            net_in = np_to_var(batch_X)
            net_target = np_to_var(batch_y)

            # if cuda, copy to cuda memory
            if self.cuda:
                net_in = net_in.cuda()
                net_target = net_target.cuda()

            # Remove gradients of last backward pass from all parameters
            self.optimizer.zero_grad()
            # Compute outputs of the network
            outputs = self.model(net_in)
            # Compute the loss
            loss = F.nll_loss(outputs, net_target)
            # Do the backpropagation
            loss.backward()
            # Update parameters with the optimizer
            self.optimizer.step()

        return

    """
        Evaluation iteration, computes the performance the network
        Params:
            i_epoch, current epoch iteration
            train_set, training set
    """

    def _evalTraining(self, i_epoch, train_set, test_set):

        # Print some statistics each epoch
        self.model.eval()
        print("Epoch {:d}".format(i_epoch))

        sets = {'Train': 0, 'Test': 1}

        # run evaluation on both train and test sets
        for setname, dataset in (('Train', train_set), ('Test', test_set)):

            # get balanced sets
            i_trials_in_batch = get_balanced_batches(len(dataset.X),
                                                     self.rng,
                                                     batch_size=32,
                                                     shuffle=False)

            outputs = []
            net_targets = []

            # for all trials in set
            for i_trials in i_trials_in_batch:

                # adapt datasets
                batch_X = dataset.X[i_trials][:, :, :, None]
                batch_y = dataset.y[i_trials]

                # apply some conversion
                net_in = np_to_var(batch_X)
                net_target = np_to_var(batch_y)

                # convert
                if self.cuda:
                    net_in = net_in.cuda()
                    net_target = net_target.cuda()

                net_target = var_to_np(net_target)
                output = var_to_np(self.model(net_in))
                outputs.append(output)
                net_targets.append(net_target)

            net_targets = np_to_var(np.concatenate(net_targets))
            outputs = np_to_var(np.concatenate(outputs))
            loss = F.nll_loss(outputs, net_targets)

            print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss))))

            self.loss_rec[i_epoch, sets[setname]] = var_to_np(loss)
            predicted_labels = np.argmax(var_to_np(outputs), axis=1)
            accuracy = np.mean(dataset.y == predicted_labels)

            print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100))
            self.accuracy_rec[i_epoch, sets[setname]] = accuracy

        return

    def predict(self, X):
        self.model.eval()

        #i_trials_in_batch = get_balanced_batches(len(X), self.rng, batch_size=32, shuffle=False)

        outputs = []

        for i_trials in i_trials_in_batch:
            batch_X = dataset.X[i_trials][:, :, :, None]

            net_in = np_to_var(batch_X)

            if self.cuda:
                net_in = net_in.cuda()

            output = var_to_np(self.model(net_in))
            outputs.append(output)

        return outputs
예제 #16
0
def test_trialwise_decoding():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(path,
                            preload=True,
                            stim_channel='auto',
                            verbose='WARNING') for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info,
                                      meg=False,
                                      eeg=True,
                                      stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw,
                         events,
                         dict(hands=2, feet=3),
                         tmin=1,
                         tmax=4.1,
                         proj=False,
                         picks=eeg_channel_inds,
                         baseline=None,
                         preload=True)

    import numpy as np

    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    from braindecode.datautil.signal_target import SignalAndTarget

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])

    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length = auto ensures we only get a single output in the time dimension
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=train_set.X.shape[2],
                            final_conv_length='auto').create_network()
    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var, var_to_np
    from braindecode.datautil.iterators import get_balanced_batches
    import torch.nn.functional as F
    from numpy.random import RandomState

    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(6):
        i_trials_in_batch = get_balanced_batches(len(train_set.X),
                                                 rng,
                                                 shuffle=True,
                                                 batch_size=30)
        # Set model to training mode
        model.train()
        for i_trials in i_trials_in_batch:
            # Have to add empty fourth dimension to X
            batch_X = train_set.X[i_trials][:, :, :, None]
            batch_y = train_set.y[i_trials]
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            # Compute outputs of the network
            outputs = model(net_in)
            # Compute the loss
            loss = F.nll_loss(outputs, net_target)
            # Do the backpropagation
            loss.backward()
            # Update parameters with the optimizer
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Here, we will use the entire dataset at once, which is still possible
            # for such smaller datasets. Otherwise we would have to use batches.
            net_in = np_to_var(dataset.X[:, :, :, None])
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(dataset.y)
            if cuda:
                net_target = net_target.cuda()
            outputs = model(net_in)
            loss = F.nll_loss(outputs, net_target)
            losses.append(float(var_to_np(loss)))
            print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss))))
            predicted_labels = np.argmax(var_to_np(outputs), axis=1)
            accuracy = np.mean(dataset.y == predicted_labels)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100))

    np.testing.assert_allclose(np.array(losses),
                               np.array([
                                   1.1775966882705688, 1.2602351903915405,
                                   0.7068756818771362, 0.9367912411689758,
                                   0.394258975982666, 0.6598362326622009,
                                   0.3359280526638031, 0.656258761882782,
                                   0.2790488004684448, 0.6104397177696228,
                                   0.27319177985191345, 0.5949864983558655
                               ]),
                               rtol=1e-4,
                               atol=1e-5)

    np.testing.assert_allclose(np.array(accuracies),
                               np.array([
                                   51.666666666666671, 53.333333333333336,
                                   63.333333333333329, 56.666666666666664,
                                   86.666666666666671, 66.666666666666657,
                                   90.0, 63.333333333333329,
                                   96.666666666666671, 56.666666666666664,
                                   96.666666666666671, 66.666666666666657
                               ]),
                               rtol=1e-4,
                               atol=1e-5)
def run_exp(
    data_folders,
    n_recordings,
    sensor_types,
    n_chans,
    max_recording_mins,
    sec_to_cut,
    duration_recording_mins,
    test_recording_mins,
    max_abs_val,
    sampling_freq,
    divisor,
    test_on_eval,
    n_folds,
    i_test_fold,
    shuffle,
    model_name,
    n_start_chans,
    n_chan_factor,
    input_time_length,
    final_conv_length,
    model_constraint,
    init_lr,
    batch_size,
    max_epochs,
    cuda,
):

    import torch.backends.cudnn as cudnn
    cudnn.benchmark = True
    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))

    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions,
                           data_folders=data_folders,
                           train_or_eval='train',
                           sensor_types=sensor_types)
    if test_on_eval:
        if test_recording_mins is None:
            test_recording_mins = duration_recording_mins
        test_preproc_functions = copy(preproc_functions)
        test_preproc_functions[1] = lambda data, fs: (data[:, :int(
            test_recording_mins * 60 * fs)], fs)
        test_dataset = DiagnosisSet(n_recordings=n_recordings,
                                    max_recording_mins=None,
                                    preproc_functions=test_preproc_functions,
                                    data_folders=data_folders,
                                    train_or_eval='eval',
                                    sensor_types=sensor_types)
    X, y = dataset.load()
    max_shape = np.max([list(x.shape) for x in X], axis=0)
    assert max_shape[1] == int(duration_recording_mins * sampling_freq * 60)
    if test_on_eval:
        test_X, test_y = test_dataset.load()
        max_shape = np.max([list(x.shape) for x in test_X], axis=0)
        assert max_shape[1] == int(test_recording_mins * sampling_freq * 60)
    if not test_on_eval:
        splitter = TrainValidTestSplitter(n_folds,
                                          i_test_fold,
                                          shuffle=shuffle)
        train_set, valid_set, test_set = splitter.split(X, y)
    else:
        splitter = TrainValidSplitter(n_folds,
                                      i_valid_fold=i_test_fold,
                                      shuffle=shuffle)
        train_set, valid_set = splitter.split(X, y)
        test_set = SignalAndTarget(test_X, test_y)
        del test_X, test_y
    del X, y  # shouldn't be necessary, but just to make sure

    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         stride_before_pool=True).create_network()
    elif (model_name == 'deep_smac'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax())
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    else:
        assert False, "unknown model name {:s}".format(model_name)
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    log.info("In shape: {:s}".format(str(test_input.cpu().data.numpy().shape)))

    out = model(test_input)
    log.info("Out shape: {:s}".format(str(out.cpu().data.numpy().shape)))
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    optimizer = optim.Adam(model.parameters(), lr=init_lr)

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    if model_constraint is not None:
        assert model_constraint == 'defaultnorm'
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedDiagnosisMonitor(input_time_length, n_preds_per_input),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    run_after_early_stop = True
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=run_after_early_stop,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    exp.run()
    return exp
예제 #18
0
# Create the model
from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
from braindecode.models.deep4 import Deep4Net
from braindecode.torch_ext.util import set_random_seeds

set_random_seeds(seed=20170629, cuda=cuda)
in_chans = train_set.X.shape[1]
print("INFO : in_chans: {}".format(in_chans))
np.set_printoptions(suppress=True, threshold=np.inf)

# final_conv_length = auto ensures we only get a single output in the time dimension
if train_type == 'trialwise':
    input_time_length = train_set.X.shape[2]
    if model_type == 'shallow':
        model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length='auto')
    else:
        model = Deep4Net(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length='auto')
else: # cropped
    if model_type == 'shallow':
        model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=None,
                            final_conv_length=1)
    else:
        model = Deep4Net(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=None,
                            final_conv_length=1)
if cuda:
def run_exp(test_on_eval, sensor_types, n_chans, max_recording_mins,
            test_recording_mins, n_recordings, sec_to_cut_at_start,
            sec_to_cut_at_end, duration_recording_mins, max_abs_val,
            clip_before_resample, sampling_freq, divisor, n_folds, i_test_fold,
            shuffle, merge_train_valid, model_name, n_start_chans,
            n_chan_factor, input_time_length, final_conv_length,
            stride_before_pool, optimizer, learning_rate, weight_decay,
            scheduler, model_constraint, batch_size, max_epochs, log_dir,
            only_return_exp, np_th_seed):

    cuda = True
    if ('smac' in model_name) and (input_time_length is None):
        input_time_length = 12000
        fix_input_length_for_smac = True
    else:
        fix_input_length_for_smac = False
    set_random_seeds(seed=np_th_seed, cuda=cuda)
    n_classes = 2
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(
            n_chans,
            n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            n_filters_2=int(n_start_chans * n_chan_factor),
            n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
            n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
            final_conv_length=final_conv_length,
            stride_before_pool=stride_before_pool).create_network()
    elif (model_name == 'deep_smac') or (model_name == 'deep_smac_bnorm'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'deep_smac_new':
        from torch.nn.functional import elu, relu, relu6, tanh
        from braindecode.torch_ext.functions import identity, square, safe_log
        n_filters_factor = 1.9532637176784269
        n_filters_start = 61

        deep_kwargs = {
            "batch_norm": False,
            "double_time_convs": False,
            "drop_prob": 0.3622676569047184,
            "filter_length_2": 9,
            "filter_length_3": 6,
            "filter_length_4": 10,
            "filter_time_length": 17,
            "final_conv_length": 5,
            "first_nonlin": elu,
            "first_pool_mode": "max",
            "first_pool_nonlin": identity,
            "later_nonlin": relu6,
            "later_pool_mode": "max",
            "later_pool_nonlin": identity,
            "n_filters_time": n_filters_start,
            "n_filters_spat": n_filters_start,
            "n_filters_2": int(n_filters_start * n_filters_factor),
            "n_filters_3": int(n_filters_start * (n_filters_factor**2.0)),
            "n_filters_4": int(n_filters_start * (n_filters_factor**3.0)),
            "pool_time_length": 1,
            "pool_time_stride": 4,
            "split_first_layer": True,
            "stride_before_pool": True,
        }

        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         **deep_kwargs).create_network()
    elif model_name == 'shallow_smac_new':
        from torch.nn.functional import elu, relu, relu6, tanh
        from braindecode.torch_ext.functions import identity, square, safe_log
        shallow_kwargs = {
            "conv_nonlin": square,
            "batch_norm": True,
            "drop_prob": 0.10198630723385381,
            "filter_time_length": 51,
            "final_conv_length": 1,
            "n_filters_spat": 200,
            "n_filters_time": 76,
            "pool_mode": "max",
            "pool_nonlin": safe_log,
            "pool_time_length": 139,
            "pool_time_stride": 49,
            "split_first_layer": True,
        }

        model = ShallowFBCSPNet(in_chans=n_chans,
                                n_classes=n_classes,
                                input_time_length=input_time_length,
                                **shallow_kwargs).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax())
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    elif model_name == '3path':
        virtual_chan_1x1_conv = True
        mean_across_features = False
        drop_prob = 0.5
        n_start_filters = 10
        early_bnorm = False
        n_classifier_filters = 100
        later_kernel_len = 5
        extra_conv_stride = 4
        # dont forget to reset n_preds_per_blabla
        model = create_multi_start_path_net(
            in_chans=n_chans,
            virtual_chan_1x1_conv=virtual_chan_1x1_conv,
            n_start_filters=n_start_filters,
            early_bnorm=early_bnorm,
            later_kernel_len=later_kernel_len,
            extra_conv_stride=extra_conv_stride,
            mean_across_features=mean_across_features,
            n_classifier_filters=n_classifier_filters,
            drop_prob=drop_prob)
    else:
        assert False, "unknown model name {:s}".format(model_name)
    if not model_name == '3path':
        to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    time_cut_off_sec = np.inf
    start_time = time.time()

    # fix input time length in case of smac models
    if fix_input_length_for_smac:
        assert ('smac' in model_name) and (input_time_length == 12000)
        if cuda:
            model.cuda()
        test_input = np_to_var(
            np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
        if cuda:
            test_input = test_input.cuda()
        try:
            out = model(test_input)
        except:
            raise ValueError("Model receptive field too large...")
        n_preds_per_input = out.cpu().data.numpy().shape[2]
        n_receptive_field = input_time_length - n_preds_per_input
        input_time_length = 2 * n_receptive_field

    exp = common.run_exp(
        max_recording_mins,
        n_recordings,
        sec_to_cut_at_start,
        sec_to_cut_at_end,
        duration_recording_mins,
        max_abs_val,
        clip_before_resample,
        sampling_freq,
        divisor,
        n_folds,
        i_test_fold,
        shuffle,
        merge_train_valid,
        model,
        input_time_length,
        optimizer,
        learning_rate,
        weight_decay,
        scheduler,
        model_constraint,
        batch_size,
        max_epochs,
        only_return_exp,
        time_cut_off_sec,
        start_time,
        test_on_eval,
        test_recording_mins,
        sensor_types,
        log_dir,
        np_th_seed,
    )

    return exp
예제 #20
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    input_time_length = 1000
    max_epochs = 800
    max_increase_epochs = 80
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()

    log.info("Model: \n{:s}".format(str(model)))
    dummy_input = np_to_var(train_set.X[:1, :, :, None])
    if cuda:
        dummy_input = dummy_input.cuda()
    out = model(dummy_input)

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    optimizer = optim.Adam(model.parameters())

    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
예제 #21
0
from braindecode.models.deep4 import Deep4Net
from braindecode.torch_ext.util import set_random_seeds

# Set if you want to use GPU
# You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
cuda = False
set_random_seeds(seed=20170629, cuda=cuda)
n_classes = 3
in_chans = train_set.X.shape[1]
print("INFO : in_chans: {}".format(in_chans))
print("INFO : input_time_length: {}".format(train_set.X.shape[2]))

# final_conv_length = auto ensures we only get a single output in the time dimension
if model_type == 'shallow':
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=train_set.X.shape[2],
                            final_conv_length='auto')
else:
    model = Deep4Net(in_chans=in_chans,
                     n_classes=n_classes,
                     input_time_length=train_set.X.shape[2],
                     final_conv_length='auto')
path_to_classifier = "torchModelsCrossSubjects\{}-{}-52subjects-2.5sec-800epoches-torch_model".format(
    model_type, train_type)

if cuda:
    model.cuda()

from braindecode.torch_ext.optimizers import AdamW
import torch.nn.functional as F
if model_type == 'shallow':
예제 #22
0
def run_exp_on_high_gamma_dataset(train_filename, test_filename, low_cut_hz,
                                  model_name, max_epochs, max_increase_epochs,
                                  np_th_seed, debug):
    train_set, valid_set, test_set = load_train_valid_test(
        train_filename=train_filename,
        test_filename=test_filename,
        low_cut_hz=low_cut_hz,
        debug=debug)
    if debug:
        max_epochs = 4

    set_random_seeds(np_th_seed, cuda=True)
    #torch.backends.cudnn.benchmark = True# sometimes crashes?
    n_classes = int(np.max(train_set.y) + 1)
    n_chans = int(train_set.X.shape[1])
    input_time_length = 1000
    if model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()
    elif model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()

    to_dense_prediction_model(model)
    model.cuda()
    model.eval()

    out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda())

    n_preds_per_input = out.cpu().data.numpy().shape[2]
    optimizer = optim.Adam(model.parameters(), weight_decay=0, lr=1e-3)

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2),
                                                      targets)

    run_after_early_stop = True
    do_early_stop = True
    remember_best_column = 'valid_misclass'
    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column=remember_best_column,
                     run_after_early_stop=run_after_early_stop,
                     cuda=True,
                     do_early_stop=do_early_stop)
    exp.run()
    return exp
def test_trialwise_decoding():
    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]
    # event_codes = [6]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(path,
                            preload=True,
                            stim_channel='auto',
                            verbose='WARNING') for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    # events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')
    events, _ = mne.events_from_annotations(raw)

    # Extract trials, only using EEG channels
    eeg_channel_inds = mne.pick_types(raw.info,
                                      meg=False,
                                      eeg=True,
                                      stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw,
                         events,
                         dict(hands=2, feet=3),
                         tmin=1,
                         tmax=4.1,
                         proj=False,
                         picks=eeg_channel_inds,
                         baseline=None,
                         preload=True)

    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    # X:[90,64,497]
    X = (epoched.get_data() * 1e6).astype(np.float32)
    # y:[90]
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    # X_train:[60,64,497], y_train:[60]
    train_set = SignalAndTarget(X[:60], y=y[:60])
    # X_test:[30,64,497], y_test:[30]
    test_set = SignalAndTarget(X[60:], y=y[60:])

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length = auto ensures we only get a single output in the time dimension
    # def __init__(self, in_chans=64, n_classes=2, input_time_length=497, n_filters_time=40, filter_time_length=25, n_filters_spat=40, pool_time_length=75, pool_time_stride=15, final_conv_length='auto, conv_nonlin=square, pool_mode="mean", pool_nonlin=safe_log, split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1, drop_prob=0.5, ):
    # 感觉create_network()就是__init__的一部分, 现在改成用self.model调用了, 还是感觉不优雅, 主要是forward集成在nn.Sequential里面了
    # 然后这个model的实际__init__不是ShallowFBCSPNet, 而是nn.Sequential, 感觉我更喜欢原来的定义方式, 这种方式看不到中间输出
    # model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=train_set.X.shape[2], final_conv_length='auto').create_network() #原来的
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=train_set.X.shape[2],
                            final_conv_length='auto').model
    if cuda:
        model.cuda()

    optimizer = optim.Adam(model.parameters())

    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(6):
        i_trials_in_batch = get_balanced_batches(len(train_set.X),
                                                 rng,
                                                 shuffle=True,
                                                 batch_size=10)
        # Set model to training mode
        model.train()
        for i_trials in i_trials_in_batch:
            # Have to add empty fourth dimension to X
            batch_X = train_set.X[i_trials][:, :, :, None]
            batch_y = train_set.y[i_trials]
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            # Compute outputs of the network
            #net_in: [10, 64, 497, 1]=[bsz, H_im, W_im, C_im]
            #
            outputs = model.forward(net_in)
            # model=Sequential(
            #                   (dimshuffle): Expression(expression=_transpose_time_to_spat)
            #                   (conv_time): Conv2d(1, 40, kernel_size=(25, 1), stride=(1, 1))
            #                   (conv_spat): Conv2d(40, 40, kernel_size=(1, 64), stride=(1, 1), bias=False)
            #                   (bnorm): BatchNorm2d(40, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            #                   (conv_nonlin): Expression(expression=square)
            #                   (pool): AvgPool2d(kernel_size=(75, 1), stride=(15, 1), padding=0)
            #                   (pool_nonlin): Expression(expression=safe_log)
            #                   (drop): Dropout(p=0.5)
            #                   (conv_classifier): Conv2d(40, 2, kernel_size=(27, 1), stride=(1, 1))
            #                   (softmax): LogSoftmax()
            #                   (squeeze): Expression(expression=_squeeze_final_output)
            #                 )
            # Compute the loss
            loss = F.nll_loss(outputs, net_target)
            # Do the backpropagation
            loss.backward()
            # Update parameters with the optimizer
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Here, we will use the entire dataset at once, which is still possible
            # for such smaller datasets. Otherwise we would have to use batches.
            net_in = np_to_var(dataset.X[:, :, :, None])
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(dataset.y)
            if cuda:
                net_target = net_target.cuda()
            outputs = model(net_in)
            loss = F.nll_loss(outputs, net_target)
            losses.append(float(var_to_np(loss)))
            print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss))))
            predicted_labels = np.argmax(var_to_np(outputs), axis=1)
            accuracy = np.mean(dataset.y == predicted_labels)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100))

    np.testing.assert_allclose(np.array(losses),
                               np.array([
                                   1.1775966882705688, 1.2602351903915405,
                                   0.7068756818771362, 0.9367912411689758,
                                   0.394258975982666, 0.6598362326622009,
                                   0.3359280526638031, 0.656258761882782,
                                   0.2790488004684448, 0.6104397177696228,
                                   0.27319177985191345, 0.5949864983558655
                               ]),
                               rtol=1e-4,
                               atol=1e-5)

    np.testing.assert_allclose(np.array(accuracies),
                               np.array([
                                   51.666666666666671, 53.333333333333336,
                                   63.333333333333329, 56.666666666666664,
                                   86.666666666666671, 66.666666666666657,
                                   90.0, 63.333333333333329,
                                   96.666666666666671, 56.666666666666664,
                                   96.666666666666671, 66.666666666666657
                               ]),
                               rtol=1e-4,
                               atol=1e-5)
예제 #24
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = "A{:02d}T.gdf".format(subject_id)
    test_filename = "A{:02d}E.gdf".format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace(".gdf", ".mat")
    test_label_filepath = test_filepath.replace(".gdf", ".mat")

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath
    )
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath
    )
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ["EOG-left", "EOG-central", "EOG-right"]
    )
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            train_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        train_cnt,
    )
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        train_cnt,
    )

    test_cnt = test_cnt.drop_channels(["EOG-left", "EOG-central", "EOG-right"])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            test_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        test_cnt,
    )
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        test_cnt,
    )

    marker_def = OrderedDict(
        [
            ("Left Hand", [1]),
            ("Right Hand", [2]),
            ("Foot", [3]),
            ("Tongue", [4]),
        ]
    )

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(
        train_set, first_set_fraction=1 - valid_set_fraction
    )

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == "shallow":
        model = ShallowFBCSPNet(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    elif model == "deep":
        model = Deep4Net(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [
            MaxEpochs(max_epochs),
            NoDecrease("valid_misclass", max_increase_epochs),
        ]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    exp.run()
    return exp
예제 #25
0
    def call_model(self):
        if self.model_type == 'shallow':
            model = ShallowFBCSPNet(in_chans=self.n_chans,
                                    n_classes=self.n_classes,
                                    input_time_length=self.input_time_length,
                                    n_filters_time=40,
                                    filter_time_length=25,
                                    n_filters_spat=40,
                                    pool_time_length=75,
                                    pool_time_stride=15,
                                    final_conv_length='auto',
                                    conv_nonlin=getattr(
                                        torch.nn.functional, self.activation),
                                    pool_mode='mean',
                                    pool_nonlin=safe_log,
                                    split_first_layer=True,
                                    batch_norm=True,
                                    batch_norm_alpha=0.1,
                                    drop_prob=0.1).create_network()

        elif self.model_type == 'deep':
            model = Deep4Net(in_chans=self.n_chans,
                             n_classes=self.n_classes,
                             input_time_length=self.input_time_length,
                             final_conv_length='auto',
                             n_filters_time=25,
                             n_filters_spat=25,
                             filter_time_length=10,
                             pool_time_length=3,
                             pool_time_stride=3,
                             n_filters_2=50,
                             filter_length_2=10,
                             n_filters_3=100,
                             filter_length_3=10,
                             n_filters_4=200,
                             filter_length_4=10,
                             first_nonlin=getattr(torch.nn.functional,
                                                  self.activation),
                             first_pool_mode='max',
                             first_pool_nonlin=safe_log,
                             later_nonlin=self.getattr(torch.nn.functional,
                                                       self.activation),
                             later_pool_mode='max',
                             later_pool_nonlin=safe_log,
                             drop_prob=0.1,
                             double_time_convs=False,
                             split_first_layer=False,
                             batch_norm=True,
                             batch_norm_alpha=0.1,
                             stride_before_pool=False).create_network()

        elif self.model_type == 'eegnet':
            model = EEGNetv4(in_chans=self.n_chans,
                             n_classes=self.n_classes,
                             final_conv_length='auto',
                             input_time_length=self.input_time_length,
                             pool_mode='mean',
                             F1=16,
                             D=2,
                             F2=32,
                             kernel_length=64,
                             third_kernel_size=(8, 4),
                             conv_nonlin=getattr(torch.nn.functional,
                                                 self.activation),
                             drop_prob=0.1).create_network()
        return model
예제 #26
0
def run_exp(max_recording_mins, n_recordings, sec_to_cut,
            duration_recording_mins, max_abs_val, shrink_val, sampling_freq,
            divisor, n_folds, i_test_fold, final_conv_length, model_constraint,
            batch_size, max_epochs, n_filters_time, n_filters_spat,
            filter_time_length, conv_nonlin, pool_time_length,
            pool_time_stride, pool_mode, pool_nonlin, split_first_layer,
            do_batch_norm, drop_prob, time_cut_off_sec, start_time,
            input_time_length, only_return_exp):
    kwargs = locals()
    for model_param in [
            'final_conv_length',
            'n_filters_time',
            'n_filters_spat',
            'filter_time_length',
            'conv_nonlin',
            'pool_time_length',
            'pool_time_stride',
            'pool_mode',
            'pool_nonlin',
            'split_first_layer',
            'do_batch_norm',
            'drop_prob',
    ]:
        kwargs.pop(model_param)
    nonlin_dict = {
        'elu': elu,
        'relu': relu,
        'relu6': relu6,
        'tanh': tanh,
        'square': square,
        'identity': identity,
        'log': safe_log,
    }
    assert input_time_length == 6000
    # copy over from early seizure
    # make proper
    n_classes = 2
    in_chans = 21
    cuda = True
    set_random_seeds(seed=20170629, cuda=cuda)
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=final_conv_length,
                            n_filters_time=n_filters_time,
                            filter_time_length=filter_time_length,
                            n_filters_spat=n_filters_spat,
                            pool_time_length=pool_time_length,
                            pool_time_stride=pool_time_stride,
                            conv_nonlin=nonlin_dict[conv_nonlin],
                            pool_mode=pool_mode,
                            pool_nonlin=nonlin_dict[pool_nonlin],
                            split_first_layer=split_first_layer,
                            batch_norm=do_batch_norm,
                            batch_norm_alpha=0.1,
                            drop_prob=drop_prob).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()
    model.eval()
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()

    try:
        out = model(test_input)
    except RuntimeError:
        raise ValueError("Model receptive field too large...")
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    n_receptive_field = input_time_length - n_preds_per_input

    if n_receptive_field > 6000:
        raise ValueError("Model receptive field ({:d}) too large...".format(
            n_receptive_field))
        # For future, here optionally add input time length instead

    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=final_conv_length,
                            n_filters_time=n_filters_time,
                            filter_time_length=filter_time_length,
                            n_filters_spat=n_filters_spat,
                            pool_time_length=pool_time_length,
                            pool_time_stride=pool_time_stride,
                            conv_nonlin=nonlin_dict[conv_nonlin],
                            pool_mode=pool_mode,
                            pool_nonlin=nonlin_dict[pool_nonlin],
                            split_first_layer=split_first_layer,
                            batch_norm=do_batch_norm,
                            batch_norm_alpha=0.1,
                            drop_prob=drop_prob).create_network()
    return common.run_exp(model=model, **kwargs)
예제 #27
0
def run_exp(data_folder, session_id, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 10
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = .2
    ''' # BCIcompetition
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()
    '''

    # GIGAscience
    filename = 'sess{:02d}_subj{:02d}_EEG_MI.mat'.format(
        session_id, subject_id)
    filepath = os.path.join(data_folder, filename)
    train_variable = 'EEG_MI_train'
    test_variable = 'EEG_MI_test'

    train_loader = GIGAscience(filepath, train_variable)
    test_loader = GIGAscience(filepath, test_variable)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing
    ''' channel
    ['Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 'FC1', 'FC2', 'FC6', 'T7', 'C3', 'Cz', 'C4', 'T8', 'TP9', 'CP5',
     'CP1', 'CP2', 'CP6', 'TP10', 'P7', 'P3', 'Pz', 'P4', 'P8', 'PO9', 'O1', 'Oz', 'O2', 'PO10', 'FC3', 'FC4', 'C5',
     'C1', 'C2', 'C6', 'CP3', 'CPz', 'CP4', 'P1', 'P2', 'POz', 'FT9', 'FTT9h', 'TTP7h', 'TP7', 'TPP9h', 'FT10',
     'FTT10h', 'TPP8h', 'TP8', 'TPP10h', 'F9', 'F10', 'AF7', 'AF3', 'AF4', 'AF8', 'PO3', 'PO4']
    '''

    train_cnt = train_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    train_cnt, train_cnt.info['events'] = train_cnt.copy().resample(
        250, npad='auto', events=train_cnt.info['events'])

    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    test_cnt, test_cnt.info['events'] = test_cnt.copy().resample(
        250, npad='auto', events=test_cnt.info['events'])

    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Right Hand', [1]), ('Left Hand', [2])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 2
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
예제 #28
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, train_cnt.info['sfreq'], filt_order=3, axis=1),
        train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, test_cnt.info['sfreq'], filt_order=3, axis=1),
        test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])
    ival = [-500, 4000]

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=60)

    stop_criterion = Or([MaxEpochs(1600), NoDecrease('valid_misclass', 160)])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
예제 #29
0
파일: croped.py 프로젝트: sd12037/pytorch
train_set = SignalAndTarget(train_X, y=train_y)
test_set = SignalAndTarget(test_X, y=test_y)

# Set if you want to use GPU
# You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
cuda = True
set_random_seeds(seed=20170629, cuda=cuda)

# This will determine how many crops are processed in parallel
input_time_length = train_set.X.shape[2]
n_classes = 2
in_chans = train_set.X.shape[1]

# final_conv_length determines the size of the receptive field of the ConvNet
model = ShallowFBCSPNet(in_chans=in_chans,
                        n_classes=n_classes,
                        input_time_length=input_time_length,
                        final_conv_length=12).create_network()
model

# model = Deep4Net(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length,
#                  final_conv_length=12).create_network()

to_dense_prediction_model(model)

if cuda:
    model.cuda()

optimizer = optim.Adam(model.parameters())

# determine output size
test_input = np_to_var(
예제 #30
0
cuda = torch.cuda.is_available()
# cuda = False
if cuda:
    device = "cuda"
else:
    device = "cpu"

set_random_seeds(seed=20190706, cuda=cuda)

input_time_length = 1000
n_classes = 4
n_chans = 26  # TODO: should be 22 of course
if model_name == "shallow":
    model = ShallowFBCSPNet(
        n_chans,
        n_classes,
        input_time_length=input_time_length,
        final_conv_length=30,
    )
elif model_name == "deep":
    model = Deep4Net(
        n_chans,
        n_classes,
        input_time_length=input_time_length,
        final_conv_length=2,
    )

to_dense_prediction_model(model)

if cuda:
    model.cuda()