def test_trialwise_decoding(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data( subject_id, event_codes, update_path=False ) # Load each of the files parts = [ mne.io.read_raw_edf( path, preload=True, stim_channel="auto", verbose="WARNING" ) for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types( raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads" ) # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 SignalAndTarget = namedtuple("SignalAndTarget", "X y") train_set = SignalAndTarget(X[:60], y=y[:60]) test_set = SignalAndTarget(X[60:], y=y[60:]) # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) n_classes = 2 in_chans = train_set.X.shape[1] # final_conv_length = auto ensures we only get a single output in the time dimension model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_time_length=train_set.X.shape[2], final_conv_length="auto", ) if cuda: model.cuda() optimizer = optim.Adam(model.parameters()) rng = RandomState((2017, 6, 30)) losses = [] accuracies = [] for i_epoch in range(6): i_trials_in_batch = get_balanced_batches( len(train_set.X), rng, shuffle=True, batch_size=30 ) # Set model to training mode model.train() for i_trials in i_trials_in_batch: # Have to add empty fourth dimension to X batch_X = train_set.X[i_trials][:, :, :, None] batch_y = train_set.y[i_trials] net_in = np_to_var(batch_X) if cuda: net_in = net_in.cuda() net_target = np_to_var(batch_y) if cuda: net_target = net_target.cuda() # Remove gradients of last backward pass from all parameters optimizer.zero_grad() # Compute outputs of the network outputs = model(net_in) # Compute the loss loss = F.nll_loss(outputs, net_target) # Do the backpropagation loss.backward() # Update parameters with the optimizer optimizer.step() # Print some statistics each epoch model.eval() print("Epoch {:d}".format(i_epoch)) for setname, dataset in (("Train", train_set), ("Test", test_set)): # Here, we will use the entire dataset at once, which is still possible # for such smaller datasets. Otherwise we would have to use batches. net_in = np_to_var(dataset.X[:, :, :, None]) if cuda: net_in = net_in.cuda() net_target = np_to_var(dataset.y) if cuda: net_target = net_target.cuda() outputs = model(net_in) loss = F.nll_loss(outputs, net_target) losses.append(float(var_to_np(loss))) print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss)))) predicted_labels = np.argmax(var_to_np(outputs), axis=1) accuracy = np.mean(dataset.y == predicted_labels) accuracies.append(accuracy * 100) print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100)) np.testing.assert_allclose( np.array(losses), np.array( [ 0.91796708, 1.2714895, 0.4999536, 0.94365239, 0.39268905, 0.89928466, 0.37648854, 0.8940345, 0.35774994, 0.86749417, 0.35080773, 0.80767328, ] ), rtol=1e-4, atol=1e-5, ) np.testing.assert_allclose( np.array(accuracies), np.array( [ 55.0, 63.33333333, 71.66666667, 63.33333333, 81.66666667, 60.0, 78.33333333, 63.33333333, 83.33333333, 66.66666667, 80.0, 66.66666667, ] ), rtol=1e-4, atol=1e-5, )
lr = 0.005 weight_decay = 1e-10 criterion = torch.nn.CrossEntropyLoss() #criterion = nn.NLLLoss() #optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) #optimizer = torch.optim.Adadelta(net.parameters(), lr=lr) optimizer = torch.optim.Adam(net.parameters(), lr=lr) # Decay LR by a factor of 0.1 every 7 epochs lr_schedulerr = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) epoch_num = 100 for epoch in range(epoch_num): print("------ epoch " + str(epoch) + " -----") net.train() loss_epoch = 0 running_loss = 0.0 running_corrects = 0 for batch, (trainx, trainy) in enumerate(train_loader): if isinstance(net, timm.models.visformer.Visformer): trainx = torch.unsqueeze(trainx, dim=1) optimizer.zero_grad() if (cuda): trainx = trainx.float().cuda() else: trainx = trainx.float() y_pred = net(trainx) #print("y_pred shape: " + str(y_pred.shape))
def test_cropped_decoding(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes, update_path=True) # Load each of the files parts = [ mne.io.read_raw_edf(path, preload=True, stim_channel='auto', verbose='WARNING') for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Extract trials, only using EEG channels epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 train_set = SignalAndTarget(X[:60], y=y[:60]) test_set = SignalAndTarget(X[60:], y=y[60:]) # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_time_length = 450 n_classes = 2 in_chans = train_set.X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=12).create_network() to_dense_prediction_model(model) if cuda: model.cuda() optimizer = optim.Adam(model.parameters()) # determine output size test_input = np_to_var( np.ones((2, in_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] print("{:d} predictions per input/trial".format(n_preds_per_input)) iterator = CropsFromTrialsIterator(batch_size=32, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) losses = [] accuracies = [] for i_epoch in range(4): # Set model to training mode model.train() for batch_X, batch_y in iterator.get_batches(train_set, shuffle=False): net_in = np_to_var(batch_X) if cuda: net_in = net_in.cuda() net_target = np_to_var(batch_y) if cuda: net_target = net_target.cuda() # Remove gradients of last backward pass from all parameters optimizer.zero_grad() outputs = model(net_in) # Mean predictions across trial # Note that this will give identical gradients to computing # a per-prediction loss (at least for the combination of log softmax activation # and negative log likelihood loss which we are using here) outputs = th.mean(outputs, dim=2, keepdim=False) loss = F.nll_loss(outputs, net_target) loss.backward() optimizer.step() # Print some statistics each epoch model.eval() print("Epoch {:d}".format(i_epoch)) for setname, dataset in (('Train', train_set), ('Test', test_set)): # Collect all predictions and losses all_preds = [] all_losses = [] batch_sizes = [] for batch_X, batch_y in iterator.get_batches(dataset, shuffle=False): net_in = np_to_var(batch_X) if cuda: net_in = net_in.cuda() net_target = np_to_var(batch_y) if cuda: net_target = net_target.cuda() outputs = model(net_in) all_preds.append(var_to_np(outputs)) outputs = th.mean(outputs, dim=2, keepdim=False) loss = F.nll_loss(outputs, net_target) loss = float(var_to_np(loss)) all_losses.append(loss) batch_sizes.append(len(batch_X)) # Compute mean per-input loss loss = np.mean( np.array(all_losses) * np.array(batch_sizes) / np.mean(batch_sizes)) print("{:6s} Loss: {:.5f}".format(setname, loss)) losses.append(loss) # Assign the predictions to the trials preds_per_trial = compute_preds_per_trial_from_crops( all_preds, input_time_length, dataset.X) # preds per trial are now trials x classes x timesteps/predictions # Now mean across timesteps for each trial to get per-trial predictions meaned_preds_per_trial = np.array( [np.mean(p, axis=1) for p in preds_per_trial]) predicted_labels = np.argmax(meaned_preds_per_trial, axis=1) accuracy = np.mean(predicted_labels == dataset.y) accuracies.append(accuracy * 100) print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100)) np.testing.assert_allclose(np.array(losses), np.array([ 1.31657708, 1.73548156, 1.02950428, 1.43932164, 0.78677772, 1.12382019, 0.55920881, 0.87277424 ]), rtol=1e-4, atol=1e-5) np.testing.assert_allclose(np.array(accuracies), np.array([ 50., 46.66666667, 50., 46.66666667, 50., 46.66666667, 66.66666667, 50. ]), rtol=1e-4, atol=1e-5)