예제 #1
0
def create_default_experiment(final_layer,
                              dataset,
                              n_epochs=100,
                              **overwrite_args):
    # make special case for this, since we access dataset.X here,
    # which might not exist
    if 'splitter' not in overwrite_args:
        n_trials = len(dataset.X)
        splitter = FixedTrialSplitter(n_train_trials=n_trials // 2,
                                      valid_set_fraction=0.2)
    else:
        splitter = overwrite_args['splitter']
    monitors = [MisclassMonitor(), LossMonitor(), RuntimeMonitor()]
    stop_criterion = MaxEpochs(n_epochs)

    exp_args = dict(
        splitter=splitter,
        preprocessor=None,
        iterator=BalancedBatchIterator(batch_size=45),
        loss_expression=lasagne.objectives.categorical_crossentropy,
        updates_expression=lasagne.updates.adam,
        updates_modifier=None,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_chan='valid_misclass',
        run_after_early_stop=True,
        batch_modifier=None)
    exp_args.update(**overwrite_args)

    exp = Experiment(final_layer, dataset, **exp_args)
    return exp
예제 #2
0
 def setup_after_stop_training(self):
     # also remember old monitor chans, will be put back into
     # monitor chans after experiment finished
     self.old_monitor_chans = deepcopy(self.monitor_chans)
     self.remember_extension.reset_to_best_model(self.monitor_chans,
                                                 self.all_params)
     loss_to_reach = self.monitor_chans['train_loss'][-1]
     self.stop_criterion = Or(stop_criteria=[
         MaxEpochs(num_epochs=self.remember_extension.best_epoch * 2),
         ChanBelow(chan_name='valid_loss', target_value=loss_to_reach)
     ])
     log.info("Train loss to reach {:.5f}".format(loss_to_reach))
예제 #3
0
def run(
    ex,
    data_folder,
    subject_id,
    n_chans,
    only_return_exp,
):
    start_time = time.time()
    assert (only_return_exp is False) or (n_chans is not None)
    ex.info['finished'] = False
    load_sensor_names = None
    train_filename = 'A{:02d}T.mat'.format(subject_id)
    test_filename = 'A{:02d}E.mat'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)

    # trial ivan in milliseconds
    # these are the samples that will be predicted, so for a
    # network with 2000ms receptive field
    # 1500 means the first receptive field goes from -500 to 1500
    segment_ival = [1500, 4000]

    train_loader = BCICompetition4Set2A(train_filepath,
                                        load_sensor_names=load_sensor_names)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       load_sensor_names=load_sensor_names)

    # Preprocessing pipeline in [(function, {args:values)] logic
    cnt_preprocessors = [(resample_cnt, {
        'newfs': 250.0
    }), (bandpass_cnt, {
        'low_cut_hz': 0,
        'high_cut_hz': 38,
    }), (exponential_standardize_cnt, {})]

    marker_def = {
        '1- Right Hand': [1],
        '2 - Left Hand': [2],
        '3 - Rest': [3],
        '4 - Feet': [4]
    }

    train_signal_proc = SignalProcessor(set_loader=train_loader,
                                        segment_ival=segment_ival,
                                        cnt_preprocessors=cnt_preprocessors,
                                        marker_def=marker_def)
    train_set = CntSignalMatrix(signal_processor=train_signal_proc,
                                sensor_names='all')

    test_signal_proc = SignalProcessor(set_loader=test_loader,
                                       segment_ival=segment_ival,
                                       cnt_preprocessors=cnt_preprocessors,
                                       marker_def=marker_def)
    test_set = CntSignalMatrix(signal_processor=test_signal_proc,
                               sensor_names='all')

    from braindecode.mywyrm.clean import MaxAbsCleaner
    train_cleaner = MaxAbsCleaner(segment_ival=[0, 4000],
                                  threshold=800,
                                  marker_def=marker_def)
    test_cleaner = MaxAbsCleaner(segment_ival=[0, 4000],
                                 threshold=800,
                                 marker_def=marker_def)
    combined_set = CombinedCleanedSet(train_set, test_set, train_cleaner,
                                      test_cleaner)
    if not only_return_exp:
        combined_set.load()

    in_chans = train_set.get_topological_view().shape[1]
    input_time_length = 1000  # implies how many crops are processed in parallel, does _not_ determine receptive field size
    # receptive field size is determined by model architecture
    num_filters_time = 25
    filter_time_length = 10
    num_filters_spat = 25
    pool_time_length = 3
    pool_time_stride = 3
    num_filters_2 = 50
    filter_length_2 = 10
    num_filters_3 = 100
    filter_length_3 = 10
    num_filters_4 = 200
    filter_length_4 = 10
    final_dense_length = 2
    n_classes = 4
    final_nonlin = softmax
    first_nonlin = elu
    first_pool_mode = 'max'
    first_pool_nonlin = identity
    later_nonlin = elu
    later_pool_mode = 'max'
    later_pool_nonlin = identity
    drop_in_prob = 0.0
    drop_prob = 0.5
    batch_norm_alpha = 0.1
    double_time_convs = False
    split_first_layer = True
    batch_norm = True
    # ensure reproducibility by resetting lasagne/theano random generator
    lasagne.random.set_rng(RandomState(34734))

    d5net = Deep5Net(in_chans=in_chans,
                     input_time_length=input_time_length,
                     num_filters_time=num_filters_time,
                     filter_time_length=filter_time_length,
                     num_filters_spat=num_filters_spat,
                     pool_time_length=pool_time_length,
                     pool_time_stride=pool_time_stride,
                     num_filters_2=num_filters_2,
                     filter_length_2=filter_length_2,
                     num_filters_3=num_filters_3,
                     filter_length_3=filter_length_3,
                     num_filters_4=num_filters_4,
                     filter_length_4=filter_length_4,
                     final_dense_length=final_dense_length,
                     n_classes=n_classes,
                     final_nonlin=final_nonlin,
                     first_nonlin=first_nonlin,
                     first_pool_mode=first_pool_mode,
                     first_pool_nonlin=first_pool_nonlin,
                     later_nonlin=later_nonlin,
                     later_pool_mode=later_pool_mode,
                     later_pool_nonlin=later_pool_nonlin,
                     drop_in_prob=drop_in_prob,
                     drop_prob=drop_prob,
                     batch_norm_alpha=batch_norm_alpha,
                     double_time_convs=double_time_convs,
                     split_first_layer=split_first_layer,
                     batch_norm=batch_norm)
    final_layer = d5net.get_layers()[-1]
    print_layers(final_layer)

    dataset_splitter = SeveralSetsSplitter(valid_set_fraction=0.2,
                                           use_test_as_valid=False)
    iterator = CntWindowTrialIterator(
        batch_size=45,
        input_time_length=input_time_length,
        n_sample_preds=get_n_sample_preds(final_layer))

    monitors = [
        LossMonitor(),
        CntTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    #debug: n_no_decrease_max_epochs = 2
    #debug: n_max_epochs = 4
    n_no_decrease_max_epochs = 80
    n_max_epochs = 800  #100
    # real values for paper were 80 and 800
    stop_criterion = Or([
        NoDecrease('valid_misclass', num_epochs=n_no_decrease_max_epochs),
        MaxEpochs(num_epochs=n_max_epochs)
    ])

    dataset = combined_set
    splitter = dataset_splitter
    loss_expression = categorical_crossentropy
    updates_expression = adam
    updates_modifier = MaxNormConstraintWithDefaults({})
    remember_best_chan = 'valid_misclass'
    run_after_early_stop = True
    exp = Experiment(final_layer,
                     dataset,
                     splitter,
                     None,
                     iterator,
                     loss_expression,
                     updates_expression,
                     updates_modifier,
                     monitors,
                     stop_criterion,
                     remember_best_chan,
                     run_after_early_stop,
                     batch_modifier=None)

    if only_return_exp:
        return exp

    exp.setup()
    exp.run()
    end_time = time.time()
    run_time = end_time - start_time

    ex.info['finished'] = True
    ex.info['runtime'] = run_time
    for key in exp.monitor_chans:
        ex.info[key] = exp.monitor_chans[key][-1]
    save_pkl_artifact(ex, exp.monitor_chans, 'monitor_chans.pkl')
예제 #4
0
def run(ex, data_folder, subject_id, n_chans, train_inds, test_inds,
        sets_like_fbcsp_paper, clean_train, stop_chan, filt_order, low_cut_hz,
        loss_expression, network, only_return_exp, run_after_early_stop):
    start_time = time.time()
    assert (only_return_exp is False) or (n_chans is not None)
    ex.info['finished'] = False

    # trial ival in milliseconds
    # these are the samples that will be predicted, so for a
    # network with 2000ms receptive field
    # 1500 means the first receptive field goes from -500 to 1500
    train_segment_ival = [1500, 4000]
    test_segment_ival = [0, 4000]

    if sets_like_fbcsp_paper:
        if subject_id in [4, 5, 6, 7, 8, 9]:
            train_inds = [3]
        elif subject_id == 1:
            train_inds = [1, 3]
        else:
            assert subject_id in [2, 3]
            train_inds = [1, 2, 3]

    train_loader = MultipleBCICompetition4Set2B(subject_id,
                                                session_ids=train_inds,
                                                data_folder=data_folder)

    test_loader = MultipleBCICompetition4Set2B(subject_id,
                                               session_ids=test_inds,
                                               data_folder=data_folder)

    # Preprocessing pipeline in [(function, {args:values)] logic
    cnt_preprocessors = [(resample_cnt, {
        'newfs': 250.0
    }),
                         (bandpass_cnt, {
                             'low_cut_hz': low_cut_hz,
                             'high_cut_hz': 38,
                             'filt_order': filt_order,
                         }), (exponential_standardize_cnt, {})]

    marker_def = {'1- Left Hand': [1], '2 - Right Hand': [2]}

    train_signal_proc = SignalProcessor(set_loader=train_loader,
                                        segment_ival=train_segment_ival,
                                        cnt_preprocessors=cnt_preprocessors,
                                        marker_def=marker_def)
    train_set = CntSignalMatrix(signal_processor=train_signal_proc,
                                sensor_names='all')

    test_signal_proc = SignalProcessor(set_loader=test_loader,
                                       segment_ival=test_segment_ival,
                                       cnt_preprocessors=cnt_preprocessors,
                                       marker_def=marker_def)
    test_set = CntSignalMatrix(signal_processor=test_signal_proc,
                               sensor_names='all')

    if clean_train:
        train_cleaner = BCICompetitionIV2ABArtefactMaskCleaner(
            marker_def=marker_def)
    else:
        train_cleaner = NoCleaner()
    test_cleaner = BCICompetitionIV2ABArtefactMaskCleaner(
        marker_def=marker_def)
    combined_set = CombinedCleanedSet(train_set, test_set, train_cleaner,
                                      test_cleaner)
    if not only_return_exp:
        combined_set.load()

    lasagne.random.set_rng(RandomState(34734))
    in_chans = train_set.get_topological_view().shape[1]
    input_time_length = 1000  # implies how many crops are processed in parallel, does _not_ determine receptive field size
    # receptive field size is determined by model architecture

    if network == 'deep':
        final_layer = create_deep_net(in_chans, input_time_length)
    else:
        assert network == 'shallow'
        final_layer = create_shallow_net(in_chans, input_time_length)

    dataset_splitter = SeveralSetsSplitter(valid_set_fraction=0.2,
                                           use_test_as_valid=False)
    iterator = CntWindowTrialIterator(
        batch_size=45,
        input_time_length=input_time_length,
        n_sample_preds=get_n_sample_preds(final_layer))

    monitors = [
        LossMonitor(),
        CntTrialMisclassMonitor(input_time_length=input_time_length),
        KappaMonitor(input_time_length=iterator.input_time_length, mode='max'),
        RuntimeMonitor()
    ]

    #debug: n_no_decrease_max_epochs = 2
    #debug: n_max_epochs = 4
    n_no_decrease_max_epochs = 80
    n_max_epochs = 800  #100
    # real values for paper were 80 and 800
    remember_best_chan = 'valid_' + stop_chan
    stop_criterion = Or([
        NoDecrease(remember_best_chan, num_epochs=n_no_decrease_max_epochs),
        MaxEpochs(num_epochs=n_max_epochs)
    ])

    dataset = combined_set
    splitter = dataset_splitter
    updates_expression = adam
    updates_modifier = MaxNormConstraintWithDefaults({})
    exp = Experiment(final_layer,
                     dataset,
                     splitter,
                     None,
                     iterator,
                     loss_expression,
                     updates_expression,
                     updates_modifier,
                     monitors,
                     stop_criterion,
                     remember_best_chan,
                     run_after_early_stop,
                     batch_modifier=None)

    if only_return_exp:
        return exp

    exp.setup()
    exp.run()
    end_time = time.time()
    run_time = end_time - start_time

    ex.info['finished'] = True
    for key in exp.monitor_chans:
        ex.info[key] = exp.monitor_chans[key][-1]
    ex.info['runtime'] = run_time
    save_pkl_artifact(ex, exp.monitor_chans, 'monitor_chans.pkl')
예제 #5
0
    def _run_experiments_with_string(self, experiment_index, train_str):
        assert experiment_index >= self._get_start_id()
        assert experiment_index < self._get_stop_id()
        lasagne.random.set_rng(RandomState(9859295))
        # Save train string now, will be overwritten later after
        # input dimensions determined, save now for debug in
        # case of crash
        if not self._dry_run:
            self._save_train_string(train_str, experiment_index)
        starttime = time.time()

        train_dict = self._load_without_layers(train_str)
        log.info("With params...")
        if not self._quiet:
            pprint(train_dict['original_params'])
        if self._dry_run:
            # Do not do the loading or training...
            # Only go until here to show the train params
            return

        if self._batch_test:
            # TODO: put into function
            # load layers, load data with dimensions of the layer
            # create experiment with max epochs 2, run
            from braindecode.datasets.random import RandomSet
            train_str = train_str.replace('in_cols', '1')
            train_str = train_str.replace('in_sensors', '32')
            train_dict = yaml_parse.load(train_str)
            layers = load_layers_from_dict(train_dict)
            final_layer = layers[-1]
            n_chans = layers[0].shape[1]
            n_classes = final_layer.output_shape[1]
            n_samples = 500000
            # set n sample perds in case of cnt model
            if (np.any([hasattr(l, 'n_stride') for l in layers])):
                n_sample_preds = get_n_sample_preds(final_layer)
                log.info("Setting n_sample preds automatically to {:d}".format(
                    n_sample_preds))
                for monitor in train_dict['exp_args']['monitors']:
                    if hasattr(monitor, 'n_sample_preds'):
                        monitor.n_sample_preds = n_sample_preds
                train_dict['exp_args'][
                    'iterator'].n_sample_preds = n_sample_preds
                log.info("Input window length is {:d}".format(
                    get_model_input_window(final_layer)))
                # make at least batches
                n_samples = int(n_sample_preds * 1.5 * 200)
            dataset = RandomSet(topo_shape=[n_samples, n_chans, 1, 1],
                                y_shape=[n_samples, n_classes])
            dataset.load()
            splitter = FixedTrialSplitter(n_train_trials=int(n_samples * 0.8),
                                          valid_set_fraction=0.1)
            train_dict['exp_args']['preprocessor'] = None
            train_dict['exp_args']['stop_criterion'] = MaxEpochs(1)
            train_dict['exp_args']['iterator'].batch_size = 1
            # TODO: set stop criterion to max epochs =1
            #  change batch_size in iterator
            exp = Experiment(final_layer, dataset, splitter,
                             **train_dict['exp_args'])
            exp.setup()
            exp.run_until_early_stop()
            datasets = exp.dataset_provider.get_train_valid_test(exp.dataset)
            for batch_size in range(32, 200, 5):
                train_dict['exp_args']['stop_criterion'].num_epochs += 2
                log.info("Running with batch size {:d}".format(batch_size))
                train_dict['exp_args']['iterator'].batch_size = batch_size
                exp.run_until_stop(datasets, remember_best=False)
            return

        dataset = train_dict['dataset']
        dataset.load()
        iterator = train_dict['exp_args']['iterator']
        splitter = train_dict['dataset_splitter']
        if dataset.__class__.__name__ == 'EpilepsySet':
            log.info("Reducing to float16 for epilepsy set...")
            dataset.seizure_topo = np.float16(dataset.seizure_topo)
            dataset.non_seizure_topo = np.float16(dataset.non_seizure_topo)
        else:
            # todo: remove this?
            log.info(
                "Determining dataset dimensions to set possible model params..."
            )
            train_set = splitter.split_into_train_valid_test(dataset)['train']
            batch_gen = iterator.get_batches(train_set, shuffle=True)
            dummy_batch_topo = batch_gen.next()[0]
            del train_set
            # not for ultrasound: assert 'in_sensors' in train_str
            # not for cnt net assert 'in_rows' in train_str
            # not for resnet: assert 'in_cols' in train_str
            train_str = train_str.replace('in_sensors',
                                          str(dummy_batch_topo.shape[1]))
            train_str = train_str.replace('in_rows',
                                          str(dummy_batch_topo.shape[2]))
            train_str = train_str.replace('in_cols',
                                          str(dummy_batch_topo.shape[3]))

        self._save_train_string(train_str, experiment_index)

        # reset rng for actual loading of layers, so you can reproduce it
        # when you load the file later
        lasagne.random.set_rng(RandomState(9859295))
        train_dict = yaml_parse.load(train_str)

        layers = load_layers_from_dict(train_dict)
        final_layer = layers[-1]
        assert len(
            np.setdiff1d(
                layers, lasagne.layers.get_all_layers(final_layer))) == 0, (
                    "All layers "
                    "should be used, unused {:s}".format(
                        str(
                            np.setdiff1d(
                                layers,
                                lasagne.layers.get_all_layers(final_layer)))))
        # Set n sample preds in case of cnt model
        if (np.any([hasattr(l, 'n_stride') for l in layers])):
            # Can this be moved up and duplication in if clause( batch test,
            # more above) be removed?
            n_sample_preds = get_n_sample_preds(final_layer)
            log.info("Setting n_sample preds automatically to {:d}".format(
                n_sample_preds))
            for monitor in train_dict['exp_args']['monitors']:
                if hasattr(monitor, 'n_sample_preds'):
                    monitor.n_sample_preds = n_sample_preds
            train_dict['exp_args']['iterator'].n_sample_preds = n_sample_preds
            log.info("Input window length is {:d}".format(
                get_model_input_window(final_layer)))

        if not self._cross_validation:
            # for now lets not do that, current models seem fine again.
            #             if (dataset.__class__.__name__ == 'EpilepsySet') and self._pred_loss_hack:
            #                 from braindecode.epilepsy.experiment import EpilepsyExperiment
            #                 log.info("Creating epilepsy experiment with the pred loss hack")
            #                 exp = EpilepsyExperiment(final_layer, dataset, splitter,
            #                     **train_dict['exp_args'])
            #             else:
            exp = Experiment(final_layer, dataset, splitter,
                             **train_dict['exp_args'])
            exp.setup()
            exp.run()
            endtime = time.time()

            model = exp.final_layer

            # dummy predictions targets
            predictions = [0, 3, 1, 2, 3, 4]
            targets = [3, 4, 1, 2, 3, 4]

            result_or_results = Result(
                parameters=train_dict['original_params'],
                templates={},
                training_time=endtime - starttime,
                monitor_channels=exp.monitor_chans,
                predictions=predictions,
                targets=targets)

        else:  # cross validation
            assert False, (
                "cross validation not used in long time, not up to date"
                " for example targets predictions not added")
            # default 5 folds for now
            n_folds = train_dict['num_cv_folds']
            exp_cv = ExperimentCrossValidation(final_layer,
                                               dataset,
                                               exp_args=train_dict['exp_args'],
                                               n_folds=n_folds,
                                               shuffle=self._shuffle)
            exp_cv.run()
            endtime = time.time()
            result_or_results = []
            for i_fold in xrange(n_folds):
                res = Result(parameters=train_dict['original_params'],
                             templates={},
                             training_time=endtime - starttime,
                             monitor_channels=exp_cv.all_monitor_chans[i_fold],
                             predictions=[0, 3, 1, 2, 3, 4],
                             targets=[3, 4, 1, 2, 3, 4])
                result_or_results.append(res)
            model = exp_cv.all_layers

        if not os.path.exists(self._folder_paths[experiment_index]):
            os.makedirs(self._folder_paths[experiment_index])

        result_file_name = self._get_result_save_path(experiment_index)

        log.info("Saving result to {:s}...".format(result_file_name))
        with open(result_file_name, 'w') as resultfile:
            pickle.dump(result_or_results, resultfile)

        model_file_name = self._get_model_save_path(experiment_index)
        param_file_name = model_file_name.replace('.pkl', '.npy')
        np.save(param_file_name, lasagne.layers.get_all_param_values(model))

        # Possibly make kaggle submission file
        if isinstance(dataset,
                      KaggleGraspLiftSet) and splitter.use_test_as_valid:
            experiment_save_id = int(
                self._base_save_paths[experiment_index].split("/")[-1])
            create_submission_csv_for_one_subject(
                self._folder_paths[experiment_index], exp.dataset, iterator,
                train_dict['exp_args']['preprocessor'], final_layer,
                experiment_save_id)
        elif isinstance(
                dataset,
                AllSubjectsKaggleGraspLiftSet) and splitter.use_test_as_valid:
            experiment_save_id = int(
                self._base_save_paths[experiment_index].split("/")[-1])
            create_submission_csv_for_all_subject_model(
                self._folder_paths[experiment_index], exp.dataset,
                exp.dataset_provider, iterator, final_layer,
                experiment_save_id)
        elif isinstance(splitter, SeveralSetsSplitter):
            pass  # nothing to do in this case

        # very hacky create predictions targets :)
        # Not done earlier as there were weird theano crashes
        if exp.monitors[2].__class__.__name__ == 'CntTrialMisclassMonitor':
            del dataset
            del exp
            add_labels_to_cnt_exp_result(
                self._base_save_paths[experiment_index])
def run(ex, data_folder, subject_id, n_chans, clean_train,
        low_cut_hz, train_start_ms,kappa_mode, loss_expression,
        network,
        filt_order,
        only_return_exp,):
    start_time = time.time()
    assert (only_return_exp is False) or (n_chans is not None) 
    ex.info['finished'] = False

    valid_subject_id = subject_
    other_subject_ids = range(1,subject_id) + range(subject_id+1, 10)


    other_sets = [create_dataset(
        data_folder, other_sid, train_start_ms, low_cut_hz,
        filt_order, clean_train) for other_sid in other_subject_ids]
    test_set = create_dataset(
        data_folder, subject_id, train_start_ms, low_cut_hz,
        filt_order, clean_train)

    combined_set = other_sets + [test_set]

    def merge_train_test(single_combined_set):
        return concatenate_sets(single_combined_set.train_set,
                                    single_combined_set.test_set)

    if not only_return_exp:
        for i_set, this_set in enumerate(combined_set):
            log.info("Loading {:d} of {:d}".format(i_set + 1,
                                                   len(combined_set)))
            this_set.load()

        merged_sets = [merge_train_test(s) for s in combined_set]

        combined_set = CombinedSet(merged_sets)
        in_chans = merged_sets[0].get_topological_view().shape[1]
    else:
        in_chans = n_chans
    input_time_length = 1000 # implies how many crops are processed in parallel, does _not_ determine receptive field size
    # receptive field size is determined by model architecture

    # ensure reproducibility by resetting lasagne/theano random generator
    lasagne.random.set_rng(RandomState(34734))
    if network == 'deep':
        final_layer = create_deep_net(in_chans, input_time_length)
    else:
        assert network == 'shallow'
        final_layer = create_shallow_net(in_chans, input_time_length)

    print_layers(final_layer)
    
    dataset_splitter = SeveralSetsSplitter(valid_set_fraction=0.1, use_test_as_valid=False)
    iterator = CntWindowTrialIterator(batch_size=45,input_time_length=input_time_length,
                                     n_sample_preds=get_n_sample_preds(final_layer))
        
    monitors = [LossMonitor(),
        CntTrialMisclassMonitor(input_time_length=input_time_length),
        KappaMonitor(input_time_length=iterator.input_time_length, mode=kappa_mode),
        RuntimeMonitor(),]
    
    
    
    
    #debug: n_no_decrease_max_epochs = 2
    #debug: n_max_epochs = 4
    n_no_decrease_max_epochs = 80
    n_max_epochs = 800#100
    # real values for paper were 80 and 800
    stop_criterion = Or([NoDecrease('valid_misclass', num_epochs=n_no_decrease_max_epochs),
                         MaxEpochs(num_epochs=n_max_epochs)])
    
    dataset = combined_set
    splitter = dataset_splitter
    updates_expression = adam
    updates_modifier = MaxNormConstraintWithDefaults({})
    remember_best_chan = 'valid_misclass'
    run_after_early_stop=True
    exp = Experiment(final_layer, dataset,splitter,None,iterator, loss_expression,updates_expression, updates_modifier, monitors, 
               stop_criterion, remember_best_chan, run_after_early_stop, batch_modifier=None)

    if only_return_exp:
        return exp
    
    exp.setup()
    exp.run()
    end_time = time.time()
    run_time = end_time - start_time
    
    ex.info['finished'] = True
    for key in exp.monitor_chans:
        ex.info[key] = exp.monitor_chans[key][-1]
    ex.info['runtime'] = run_time
    save_pkl_artifact(ex, exp.monitor_chans, 'monitor_chans.pkl')
    save_npy_artifact(ex, lasagne.layers.get_all_param_values(exp.final_layer),
        'model_params.npy')
예제 #7
0
def run(
    ex,
    data_folder,
    subject_id,
    n_chans,
    clean_train,
    low_cut_hz,
    train_start_ms,
    kappa_mode,
    loss_expression,
    filt_order,
    only_return_exp,
):
    start_time = time.time()
    assert (only_return_exp is False) or (n_chans is not None)
    ex.info['finished'] = False
    load_sensor_names = None
    train_filename = 'A{:02d}T.mat'.format(subject_id)
    test_filename = 'A{:02d}E.mat'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)

    # trial ivan in milliseconds
    # these are the samples that will be predicted, so for a
    # network with 2000ms receptive field
    # 1500 means the first receptive field goes from -500 to 1500
    train_segment_ival = [train_start_ms, 4000]
    test_segment_ival = [0, 4000]

    train_loader = BCICompetition4Set2A(train_filepath,
                                        load_sensor_names=load_sensor_names)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       load_sensor_names=load_sensor_names)

    # Preprocessing pipeline in [(function, {args:values)] logic
    cnt_preprocessors = [(resample_cnt, {
        'newfs': 250.0
    }),
                         (bandpass_cnt, {
                             'low_cut_hz': low_cut_hz,
                             'high_cut_hz': 38,
                             'filt_order': filt_order,
                         }), (exponential_standardize_cnt, {})]

    marker_def = {
        '1- Right Hand': [1],
        '2 - Left Hand': [2],
        '3 - Rest': [3],
        '4 - Feet': [4]
    }

    train_signal_proc = SignalProcessor(set_loader=train_loader,
                                        segment_ival=train_segment_ival,
                                        cnt_preprocessors=cnt_preprocessors,
                                        marker_def=marker_def)
    train_set = CntSignalMatrix(signal_processor=train_signal_proc,
                                sensor_names='all')

    test_signal_proc = SignalProcessor(set_loader=test_loader,
                                       segment_ival=test_segment_ival,
                                       cnt_preprocessors=cnt_preprocessors,
                                       marker_def=marker_def)
    test_set = CntSignalMatrix(signal_processor=test_signal_proc,
                               sensor_names='all')

    if clean_train:
        train_cleaner = BCICompetitionIV2ABArtefactMaskCleaner(
            marker_def=marker_def)
    else:
        train_cleaner = NoCleaner()
    test_cleaner = BCICompetitionIV2ABArtefactMaskCleaner(
        marker_def=marker_def)
    combined_set = CombinedCleanedSet(train_set, test_set, train_cleaner,
                                      test_cleaner)
    if not only_return_exp:
        combined_set.load()
        in_chans = train_set.get_topological_view().shape[1]
    else:
        in_chans = n_chans
    input_time_length = 1000  # implies how many crops are processed in parallel, does _not_ determine receptive field size
    # receptive field size is determined by model architecture

    # ensure reproducibility by resetting lasagne/theano random generator
    lasagne.random.set_rng(RandomState(34734))
    final_layer = create_deep_net(in_chans, input_time_length)
    print_layers(final_layer)

    dataset_splitter = SeveralSetsSplitter(valid_set_fraction=0.2,
                                           use_test_as_valid=False)
    iterator = CntWindowTrialIterator(
        batch_size=45,
        input_time_length=input_time_length,
        n_sample_preds=get_n_sample_preds(final_layer))

    monitors = [
        LossMonitor(),
        CntTrialMisclassMonitor(input_time_length=input_time_length),
        KappaMonitor(input_time_length=iterator.input_time_length,
                     mode=kappa_mode),
        RuntimeMonitor(),
    ]

    #debug: n_no_decrease_max_epochs = 2
    #debug: n_max_epochs = 4
    n_no_decrease_max_epochs = 80
    n_max_epochs = 800  #100
    # real values for paper were 80 and 800
    stop_criterion = Or([
        NoDecrease('valid_misclass', num_epochs=n_no_decrease_max_epochs),
        MaxEpochs(num_epochs=n_max_epochs)
    ])

    dataset = combined_set
    splitter = dataset_splitter
    updates_expression = adam
    updates_modifier = MaxNormConstraintWithDefaults({})
    remember_best_chan = 'valid_misclass'
    run_after_early_stop = True
    exp = Experiment(final_layer,
                     dataset,
                     splitter,
                     None,
                     iterator,
                     loss_expression,
                     updates_expression,
                     updates_modifier,
                     monitors,
                     stop_criterion,
                     remember_best_chan,
                     run_after_early_stop,
                     batch_modifier=None)

    if only_return_exp:
        return exp

    exp.setup()
    exp.run()
    end_time = time.time()
    run_time = end_time - start_time

    ex.info['finished'] = True
    for key in exp.monitor_chans:
        ex.info[key] = exp.monitor_chans[key][-1]
    ex.info['runtime'] = run_time
    save_pkl_artifact(ex, exp.monitor_chans, 'monitor_chans.pkl')
    save_npy_artifact(ex, lasagne.layers.get_all_param_values(exp.final_layer),
                      'model_params.npy')
예제 #8
0
    def run_exp(i_fold):
        # ensure reproducibility by resetting lasagne/theano random generator
        lasagne.random.set_rng(RandomState(34734))

        d5net = Deep5Net(in_chans=in_chans,
                         input_time_length=input_time_length,
                         num_filters_time=num_filters_time,
                         filter_time_length=filter_time_length,
                         num_filters_spat=num_filters_spat,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         num_filters_2=num_filters_2,
                         filter_length_2=filter_length_2,
                         num_filters_3=num_filters_3,
                         filter_length_3=filter_length_3,
                         num_filters_4=num_filters_4,
                         filter_length_4=filter_length_4,
                         final_dense_length=final_dense_length,
                         n_classes=n_classes,
                         final_nonlin=final_nonlin,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         drop_in_prob=drop_in_prob,
                         drop_prob=drop_prob,
                         batch_norm_alpha=batch_norm_alpha,
                         double_time_convs=double_time_convs,
                         split_first_layer=split_first_layer,
                         batch_norm=batch_norm)
        final_layer = d5net.get_layers()[-1]
        final_layer = ClipLayer(final_layer, 1e-4, 1 - 1e-4)
        dataset_splitter = CntTrialSingleFoldSplitter(n_folds=10,
                                                      i_test_fold=i_fold,
                                                      shuffle=True)
        iterator = CntWindowTrialIterator(
            batch_size=45,
            input_time_length=input_time_length,
            n_sample_preds=get_n_sample_preds(final_layer))

        monitors = [
            LossMonitor(),
            CntTrialMisclassMonitor(input_time_length=input_time_length),
            KappaMonitor(input_time_length=iterator.input_time_length,
                         mode='max'),
            RuntimeMonitor()
        ]

        #n_no_decrease_max_epochs = 2
        #n_max_epochs = 4
        n_no_decrease_max_epochs = 80
        n_max_epochs = 800
        # real values for paper were 80 and 800
        remember_best_chan = 'valid_' + stop_chan
        stop_criterion = Or([
            NoDecrease(remember_best_chan,
                       num_epochs=n_no_decrease_max_epochs),
            MaxEpochs(num_epochs=n_max_epochs)
        ])

        dataset = combined_set
        splitter = dataset_splitter
        updates_expression = adam
        updates_modifier = MaxNormConstraintWithDefaults({})
        preproc = None
        exp = Experiment(final_layer,
                         dataset,
                         splitter,
                         preproc,
                         iterator,
                         loss_expression,
                         updates_expression,
                         updates_modifier,
                         monitors,
                         stop_criterion,
                         remember_best_chan,
                         run_after_early_stop,
                         batch_modifier=None)

        if only_return_exp:
            return exp

        exp.setup()
        exp.run()
        return exp