def main (): BoardShim.enable_board_logger () DataFilter.enable_data_logger () MLModel.enable_ml_logger () parser = argparse.ArgumentParser () # use docs to check which parameters are required for specific board, e.g. for Cyton - set serial port parser.add_argument ('--timeout', type = int, help = 'timeout for device discovery or connection', required = False, default = 0) parser.add_argument ('--ip-port', type = int, help = 'ip port', required = False, default = 0) parser.add_argument ('--ip-protocol', type = int, help = 'ip protocol, check IpProtocolType enum', required = False, default = 0) parser.add_argument ('--ip-address', type = str, help = 'ip address', required = False, default = '') parser.add_argument ('--serial-port', type = str, help = 'serial port', required = False, default = '') parser.add_argument ('--mac-address', type = str, help = 'mac address', required = False, default = '') parser.add_argument ('--other-info', type = str, help = 'other info', required = False, default = '') parser.add_argument ('--streamer-params', type = str, help = 'streamer params', required = False, default = '') parser.add_argument ('--serial-number', type = str, help = 'serial number', required = False, default = '') parser.add_argument ('--board-id', type = int, help = 'board id, check docs to get a list of supported boards', required = True) parser.add_argument ('--file', type = str, help = 'file', required = False, default = '') args = parser.parse_args () params = BrainFlowInputParams () params.ip_port = args.ip_port params.serial_port = args.serial_port params.mac_address = args.mac_address params.other_info = args.other_info params.serial_number = args.serial_number params.ip_address = args.ip_address params.ip_protocol = args.ip_protocol params.timeout = args.timeout params.file = args.file board = BoardShim (args.board_id, params) master_board_id = board.get_board_id () sampling_rate = BoardShim.get_sampling_rate (master_board_id) board.prepare_session () board.start_stream (45000, args.streamer_params) BoardShim.log_message (LogLevels.LEVEL_INFO.value, 'start sleeping in the main thread') time.sleep (5) # recommended window size for eeg metric calculation is at least 4 seconds, bigger is better data = board.get_board_data () board.stop_stream () board.release_session () eeg_channels = BoardShim.get_eeg_channels (int (master_board_id)) bands = DataFilter.get_avg_band_powers (data, eeg_channels, sampling_rate, True) feature_vector = np.concatenate ((bands[0], bands[1])) print(feature_vector) # calc concentration concentration_params = BrainFlowModelParams (BrainFlowMetrics.CONCENTRATION.value, BrainFlowClassifiers.KNN.value) concentration = MLModel (concentration_params) concentration.prepare () print ('Concentration: %f' % concentration.predict (feature_vector)) concentration.release () # calc relaxation relaxation_params = BrainFlowModelParams (BrainFlowMetrics.RELAXATION.value, BrainFlowClassifiers.REGRESSION.value) relaxation = MLModel (relaxation_params) relaxation.prepare () print ('Relaxation: %f' % relaxation.predict (feature_vector)) relaxation.release ()
def main(): BoardShim.enable_board_logger() DataFilter.enable_data_logger() MLModel.enable_ml_logger() params = BrainFlowInputParams() board = BoardShim(BoardIds.BRAINBIT_BOARD.value, params) master_board_id = board.get_board_id() sampling_rate = BoardShim.get_sampling_rate(master_board_id) board.prepare_session() board.start_stream(45000, '') eeg_channels = BoardShim.get_eeg_channels(int(master_board_id)) while True: BoardShim.log_message(LogLevels.LEVEL_INFO.value, 'start sleeping in the main thread') time.sleep( 5 ) # recommended window size for eeg metric calculation is at least 4 seconds, bigger is better data = board.get_board_data() bands = DataFilter.get_avg_band_powers(data, eeg_channels, sampling_rate, True) feature_vector = np.concatenate((bands[0], bands[1])) print(feature_vector) # calc concentration concentration_params = BrainFlowModelParams( BrainFlowMetrics.CONCENTRATION.value, BrainFlowClassifiers.KNN.value) concentration = MLModel(concentration_params) concentration.prepare() print('Concentration: %f' % concentration.predict(feature_vector)) concentration.release() # calc relaxation relaxation_params = BrainFlowModelParams( BrainFlowMetrics.RELAXATION.value, BrainFlowClassifiers.REGRESSION.value) relaxation = MLModel(relaxation_params) relaxation.prepare() print('Relaxation: %f' % relaxation.predict(feature_vector)) relaxation.release() board.stop_stream() board.release_session()