def __init__(self, loc, scale, name, learnable=False, has_bias=False, is_observed=False, is_policy=False, is_reward=False): self._type = "Log Normal" ranges = {"loc": geometric_ranges.UnboundedRange(), "scale": geometric_ranges.RightHalfLine(0.)} super().__init__(name, loc=loc, scale=scale, learnable=learnable, has_bias=has_bias, ranges=ranges, is_observed=is_observed, is_policy=is_policy, is_reward=is_reward) self.distribution = distributions.LogNormalDistribution()
def __init__(self, loc, scale, name, learnable=False): self._type = "Log Normal" ranges = { "loc": geometric_ranges.UnboundedRange(), "scale": geometric_ranges.RightHalfLine(0.) } super().__init__(name, loc=loc, scale=scale, learnable=learnable, ranges=ranges) self.distribution = distributions.LogNormalDistribution()
def __init__(self, mu, sigma, name, learnable=False): self._type = "Log Normal" ranges = { "mu": geometric_ranges.UnboundedRange(), "sigma": geometric_ranges.RightHalfLine(0.) } super().__init__(name, mu=mu, sigma=sigma, learnable=learnable, ranges=ranges) self.distribution = distributions.LogNormalDistribution()