def __init__(self): super().__init__() self.act = QuantIdentity(bit_width=7, act_quant=ShiftedUint8ActPerTensorFloat, return_quant_tensor=True) self.pool = QuantMaxPool2d(kernel_size=KERNEL_SIZE, stride=KERNEL_SIZE, return_quant_tensor=False)
def __init__(self): super().__init__() self.conv1 = QuantConv2d( out_channels=OUT_CH, in_channels=IN_CH, kernel_size=KERNEL_SIZE, bias=False, weight_quant=Int8WeightPerTensorFixedPoint, input_quant=Int8ActPerTensorFixedPoint, output_quant=Int8ActPerTensorFixedPoint, return_quant_tensor=True) self.max_pool = QuantMaxPool2d(kernel_size=2, stride=2, return_quant_tensor=False) self.conv1.weight.data.uniform_(-0.01, 0.01)
def __init__(self): super().__init__() self.conv1 = QuantConv2d(kernel_size=KERNEL_SIZE, in_channels=CHANNELS, out_channels=CHANNELS, weight_quant=DPUv1WeightQuantInjector, bias_quant=None, output_quant=DPUv1OutputQuantInjector, bias=False, return_quant_tensor=True) self.act1 = QuantReLU(act_quant=DPUv1ActQuantInjector, return_quant_tensor=True) self.conv2 = QuantConv2d(kernel_size=KERNEL_SIZE, in_channels=CHANNELS, out_channels=CHANNELS, weight_quant=DPUv1WeightQuantInjector, bias_quant=None, output_quant=DPUv1OutputQuantInjector, bias=False, return_quant_tensor=True) self.act2 = QuantReLU(act_quant=DPUv1ActQuantInjector, return_quant_tensor=True) self.conv3 = QuantConv2d(kernel_size=KERNEL_SIZE, in_channels=CHANNELS, out_channels=CHANNELS, weight_quant=DPUv1WeightQuantInjector, bias_quant=None, output_quant=DPUv1OutputQuantInjector, bias=False, return_quant_tensor=True) self.act3 = QuantReLU(act_quant=DPUv1ActQuantInjector, return_quant_tensor=False) self.max_pool = QuantMaxPool2d(kernel_size=KERNEL_SIZE, stride=1, return_quant_tensor=True) self.eltwise_add = QuantEltwiseAdd( input_quant=DPUv1OutputQuantInjector, output_quant=DPUv1ActQuantInjector, return_quant_tensor=True) self.linear = nn.Linear(FC_IN_SIZE, CHANNELS)
def __init__(self): super().__init__() self.act = QuantIdentity(return_quant_tensor=True) self.pool = QuantMaxPool2d(kernel_size=2, return_quant_tensor=False)