예제 #1
0
파일: bagging.py 프로젝트: glemaitre/brew
class Bagging(PoolGenerator):
    def __init__(self,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote'):

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

    def fit(self, X, y):
        self.ensemble = Ensemble()

        for _ in range(self.n_classifiers):
            # bootstrap
            idx = np.random.choice(X.shape[0], X.shape[0], replace=True)
            data, target = X[idx, :], y[idx]

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)

            self.ensemble.add(classifier)

        return

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #2
0
class RandomSubspace(PoolGenerator):

    def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote', max_features=0.5):
        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.combiner = Combiner(rule=combination_rule)
        self.classifiers = None
        self.ensemble = None
        self.max_features = max_features
       
    def fit(self, X, y):
        self.ensemble = Ensemble()

        for i in range(self.n_classifiers):
            chosen_features = np.random.choice(X.shape[1], int(np.ceil(X.shape[1]*self.max_features)), replace=False)
            transformer = FeatureSubsamplingTransformer(features=chosen_features)

            classifier = BrewClassifier(classifier=sklearn.base.clone(self.base_classifier), transformer=transformer)
            classifier.fit(X, y)
            
            self.ensemble.add(classifier)

        return

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #3
0
파일: bagging.py 프로젝트: glemaitre/brew
class Bagging(PoolGenerator):

    def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote'):

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

    def fit(self, X, y):
        self.ensemble = Ensemble()

        for _ in range(self.n_classifiers):
            # bootstrap
            idx = np.random.choice(X.shape[0], X.shape[0], replace=True)
            data, target = X[idx, :], y[idx]

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)
            
            self.ensemble.add(classifier)

        return


    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #4
0
class RandomSubspace(PoolGenerator):

    def __init__(self,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote',
                 max_features=0.5):
        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.combiner = Combiner(rule=combination_rule)
        self.classifiers = None
        self.ensemble = None
        self.max_features = max_features

    def fit(self, X, y):
        self.ensemble = Ensemble()

        for i in range(self.n_classifiers):
            chosen_features = np.random.choice(X.shape[1], int(
                np.ceil(X.shape[1] * self.max_features)), replace=False)
            transformer = FeatureSubsamplingTransformer(
                features=chosen_features)

            classifier = BrewClassifier(classifier=sklearn.base.clone(
                self.base_classifier), transformer=transformer)
            classifier.fit(X, y)

            self.ensemble.add(classifier)

        return

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #5
0
 def test_len_with_one_added(self):
     ens = Ensemble()
     ens.add(MockClassifier())
     assert len(ens) == 1
예제 #6
0
 def test_add_empty_init(self):
     ens = Ensemble()
     c = MockClassifier()
     ens.add(c)
     assert ens.classifiers[0] is c
예제 #7
0
class ICSBagging(PoolGenerator):


    def __init__(self, K=10, alpha=0.75, base_classifier=None, n_classifiers=100,
            combination_rule='majority_vote', diversity_metric='e', max_samples=1.0,
            positive_label=1):

        self.K = K
        self.alpha = alpha

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.combination_rule = combination_rule
        self.positive_label = positive_label

        self.classifiers = None
        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

        self.diversity_metric = diversity_metric
        self.diversity = Diversity(metric=diversity_metric)

        self.validation_X = None
        self.validation_y = None


    def set_validation(self, X, y):
        self.validation_X = X
        self.validation_y = y


    def fitness(self, classifier):
        '''
        #TODO normalize diversity metric.
        '''
        self.ensemble.add(classifier)
        out = self.ensemble.output(self.validation_X)
        y_pred = self.combiner.combine(out)
        y_true = self.validation_y

        auc = evaluation.auc_score(y_true, y_pred)
        div = self.diversity.calculate(self.ensemble,
                self.validation_X, self.validation_y)

        #diversity = entropy_measure_e(self.ensemble,
        #        self.validation_X, self.validation_y)

        self.ensemble.classifiers.pop()
        return self.alpha * auc + (1.0 - self.alpha) * div


    def _calc_pos_prob(self):
        y_pred = self.combiner.combine(self.ensemble.output(self.validation_X))
        mask = self.positive_label == self.validation_y
        pos_acc = float(sum(y_pred[mask] == self.validation_y[mask]))/len(self.validation_y[mask])
        neg_acc = float(sum(y_pred[~mask] == self.validation_y[~mask]))/len(self.validation_y[~mask])
        return 1.0 - (pos_acc / (pos_acc + neg_acc))


    def bootstrap_classifiers(self, X, y, K, pos_prob):
        mask = self.positive_label == y
        negative_label = y[~mask][0]

        clfs = []
        sets_cX, sets_cy = [], []
        for i in range(K):
            cX, cy = [], []
            for j in range(X.shape[0]):
                if np.random.random() < pos_prob:
                    idx = np.random.random_integers(0, len(X[mask]) - 1)
                    cX = cX + [X[mask][idx]]
                    cy = cy + [self.positive_label]
                else:
                    idx = np.random.random_integers(0, len(X[~mask]) - 1)
                    cX = cX + [X[~mask][idx]]
                    cy = cy + [negative_label]
            if not self.positive_label in cy:
                idx_1 = np.random.random_integers(0, len(cX) - 1)
                idx_2 = np.random.random_integers(0, len(X[mask])- 1)
                cX[idx_1] = X[mask][idx_2]
                cy[idx_1] = self.positive_label
            elif not negative_label in cy:
                idx_1 = np.random.random_integers(0, len(cX) - 1)
                idx_2 = np.random.random_integers(0, len(X[~mask])- 1)
                cX[idx_1] = X[~mask][idx_2]
                cy[idx_1] = negative_label
            #print len(cX), len(cy), X.shape[0], len(X), np.bincount(cy)

            sets_cX, sets_cy = sets_cX + [cX], sets_cy + [cy]
            clf = sklearn.base.clone(self.base_classifier)
            clfs = clfs + [clf.fit(cX, cy)]

        return clfs


    def fit(self, X, y):
        #if self.validation_X == None and self.validation_y == None:
        self.validation_X = X
        self.validation_y = y

        self.classes_ = set(y)
        self.ensemble = Ensemble()

        clfs = self.bootstrap_classifiers(X, y, self.K, 0.5)
        self.ensemble.add(np.random.choice(clfs))

        for i in range(1, self.n_classifiers):
            clfs = self.bootstrap_classifiers(X, y, self.K, self._calc_pos_prob())
            self.ensemble.add(max(clfs, key=lambda clf: self.fitness(clf)))

        self.validation_X = None
        self.validation_y = None
        
        return self


    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #8
0
class ICSBaggingNew(PoolGenerator):


    def __init__(self, K=10, alpha=0.75, base_classifier=None, n_classifiers=100,
            combination_rule='majority_vote', diversity_metric='e', max_samples=1.0,
            positive_label=1):

        self.K = K
        self.alpha = alpha

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.positive_label = positive_label

        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

        self.diversity = Diversity(metric=diversity_metric)

        self.validation_X = None
        self.validation_y = None


    def set_validation(self, X, y):
        self.validation_X = X
        self.validation_y = y


    def fitness(self, classifier):
        '''
        #TODO normalize diversity metric.
        '''
        self.ensemble.add(classifier)

        y_pred = self.predict(self.validation_X)
        y_true = self.validation_y

        auc = evaluation.auc_score(y_true, y_pred)
        div = self.diversity.calculate(self.ensemble, self.validation_X, y_true)

        self.ensemble.classifiers.pop() # create interface for this later

        return self.alpha * auc + (1.0 - self.alpha) * div


    def _calc_pos_prob(self):
        y_pred = self.predict(self.validation_X)
        y_true = self.validation_y

        # obtaining recall scores for each label (assuming the labels are binary)
        pos_acc = recall_score(y_true, y_pred, average='binary', pos_label=self.positive_label)
        neg_acc = recall_score(y_true, y_pred, average='binary', pos_label=int(not self.positive_label))

        return neg_acc / (pos_acc + neg_acc)


    def bootstrap_classifiers(self, X, y, K, pos_prob):
        pos_idx = (y == self.positive_label)
        neg_idx = (y == int(not self.positive_label))

        X_pos, y_pos = X[pos_idx,:], y[pos_idx] # positive examples
        X_neg, y_neg = X[neg_idx,:], y[neg_idx] # negative examples

        classifiers = []
        for i in range(K):
            X_new = np.zeros(X.shape)
            y_new = np.zeros(y.shape)

            for j in range(X.shape[0]):
                
                if pos_prob > np.random.random():
                    # add a randomly chosen positive example
                    idx = np.random.randint(X_pos.shape[0])
                    X_new[j,:] = X_pos[idx,:]
                    y_new[j] = self.positive_label

                else:
                    # add a randomly chosen negative example
                    idx = np.random.randint(X_neg.shape[0])
                    X_new[j,:] = X_neg[idx,:]
                    y_new[j] = int(not self.positive_label)

            # if no positive example is present, make sure you insert at least one
            if not np.any(y_new == self.positive_label):
                idx_new = np.random.randint(X_new.shape[0]) # chosen spot for replacement on new array
                idx_pos = np.random.randint(X_pos.shape[0]) # chosen positive example index

                X_new[idx_new,:] = X_pos[idx_pos,:]
                y_new[idx_new] = self.positive_label
            
            # if no negative example is present, make sure you insert at least one
            elif not np.any(y_new == int(not self.positive_label)):
                idx_new = np.random.randint(X_new.shape[0]) # chosen spot for replacement on new array
                idx_neg = np.random.randint(X_neg.shape[0]) # chosen positive example index

                X_new[idx_new,:] = X_neg[idx_neg,:]
                y_new[idx_new] = int(not self.positive_label)

            # train classifier with the bootstrapped data
            clf = sklearn.base.clone(self.base_classifier)
            clf.fit(X_new, y_new)

            classifiers.append(clf)

        return classifiers


    def fit(self, X, y):
        #if self.validation_X == None and self.validation_y == None:
        self.validation_X = X
        self.validation_y = y

        self.classes_ = set(y)
        self.ensemble = Ensemble()

        clfs = self.bootstrap_classifiers(X, y, self.K, 0.5)
        self.ensemble.add(np.random.choice(clfs))

        for i in range(1, self.n_classifiers):
            clfs = self.bootstrap_classifiers(X, y, self.K, self._calc_pos_prob())
            self.ensemble.add(max(clfs, key=lambda clf: self.fitness(clf)))

        self.validation_X = None
        self.validation_y = None
        
        return self


    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #9
0
 def test_add_empty_init(self):
     ens = Ensemble()
     c = MockClassifier()
     ens.add(c)
     assert ens.classifiers[0] is c
예제 #10
0
 def test_len_with_mult_added(self):
     ens = Ensemble()
     ens.add(MockClassifier())
     ens.add(MockClassifier())
     ens.add(MockClassifier())
     assert len(ens) == 3
예제 #11
0
class SmoteBagging(PoolGenerator):
    
    def __init__(self, base_classifier=None,
                n_classifiers=100,
                combination_rule='majority_vote', k=2):

        #self.b = b
        self.k = k
        self.n_classifiers = n_classifiers
        self.base_classifier = base_classifier

        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)


    def smote_bootstrap_sample(self, X, y, b, k):
        
        classes = np.unique(y)
        count = np.bincount(y) # number of instances of each class

        majority_class = count.argmax() # majority clas
        majority_count = count.max() # majority class

        data = np.empty((0, X.shape[1]))
        target = np.empty((0,))

        for i in classes:

            class_data = X[(y==i),:]

            if i == majority_class: # majority class
                # regular bootstrap (i.e. 100% sampling rate)
                idx = np.random.choice(majority_count, (majority_count,))
                data = np.concatenate((data, class_data[idx,:]))
                target = np.concatenate((target, i * np.ones((majority_count,))))
                #print('original class data = {}'.format(class_data.shape))
                #print('sampled class data = {}'.format(class_data[idx,:].shape))
                #print()



            else: # minority classes
                # bootstrap the class data with defined sampling rate
                sample_rate = (majority_count / class_data.shape[0]) * (b/100)
                idx = np.random.choice(class_data.shape[0], (int(sample_rate * class_data.shape[0]),))
                sampled_class_data = class_data[idx,:]
                
                #print('original class data = {}'.format(class_data.shape))
                #print('majority_count = {}'.format(majority_count))
                #print('class data = {}'.format(class_data.shape))
                #print('b = {}'.format(b))
                #print('sample rate = {}'.format(sample_rate))
                #print('sampled class data = {}'.format(sampled_class_data.shape))


                # run smote on bootstrapped data to obtain synthetic samples
                # ceil to make sure N_smote is a multiple of 100, and the small value to avoid a zero
                N_smote = int( np.ceil((majority_count / sampled_class_data.shape[0]) * (1 - b/100 + 10e-8)) * 100 )
                #print(N_smote)

                #print('----------')
                #print('smote parameters:')
                #print('T : {}'.format(sampled_class_data.shape))
                #print('N : {}'.format(N_smote))
                synthetic = smote(sampled_class_data, N=N_smote, k=self.k)
                #print('synthetic data = {})'.format(synthetic.shape))
                #print(synthetic)
               
                # add synthetic samples to sampled class data
                n_missing = majority_count - sampled_class_data.shape[0]
                idx = np.random.choice(synthetic.shape[0], (n_missing,))
                new_class_data = np.concatenate((sampled_class_data, synthetic[idx,:]))
                #print('new class data = {})'.format(new_class_data.shape))
                #print()
                data = np.concatenate((data, new_class_data))
                target = np.concatenate((target, i * np.ones((new_class_data.shape[0],))))

        return data, target


    def fit(self, X, y):

        self.ensemble = Ensemble()

        # this parameter should change between [10, 100] with
        # increments of 10, for every classifier in the ensemble
        b = 10

        for i in range(self.n_classifiers):
            #print()
            #print('classifier : {}'.format(i))
            #print('------------------------')
            #print('b = {}'.format(b))
            data, target = self.smote_bootstrap_sample(X, y, b=b, k=self.k)
            #print('data = {}'.format(data.shape))
            #print()

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)
            
            self.ensemble.add(classifier)

            if b >= 100:
                b = 10
            else:
                b += 10

        return

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #12
0
class SmoteBaggingNew(SmoteBagging):

    def fit(self, X, y):

        self.ensemble = Ensemble()

        # this parameter should change between [10, 100] with
        # increments of 10, for every classifier in the ensemble
        b = 10

        for i in range(self.n_classifiers):
            # print()
            # print('classifier : {}'.format(i))
            # print('------------------------')
            # print('b = {}'.format(b))
            data, target = self.smote_bootstrap_sample(
                X, y, b=float(b), k=self.k)
            # print('data = {}'.format(data.shape))
            # print()

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)

            self.ensemble.add(classifier)

            if b >= 100:
                b = 10
            else:
                b += 10

        return

    def smote_bootstrap_sample(self, X, y, b, k):

        count = np.bincount(y)  # number of instances of each class

        majority_class = count.argmax()  # majority class
        majority_count = count.max()  # majority class

        data = np.empty((0, X.shape[1]))
        target = np.empty((0,))

        class_data = X[(y == majority_class), :]
        idx = np.random.choice(majority_count, (majority_count,))
        data = np.concatenate((data, class_data[idx, :]))
        target = np.concatenate(
            (target, majority_class * np.ones((majority_count,))))

        minority_class = count.argmin()
        minority_count = count.min()

        # print majority_count
        N_syn = int((majority_count) * (b / 100))
        # print N_syn
        N_res = majority_count - N_syn
        # print N_res
        N_syn, N_res = N_res, N_syn

        class_data = X[(y == minority_class), :]
        idx = np.random.choice(class_data.shape[0], (N_res,))
        sampled_min_data = class_data[idx, :]
        # print sampled_min_data.shape
        if N_syn > 0:
            N_smote = np.ceil(N_syn / minority_count) * 100
            N_smote = 100 if N_smote < 100 else int(N_smote - N_smote % 100)
            synthetic = smote(X[y == minority_class], N=int(N_smote), k=self.k)

            idx = np.random.choice(synthetic.shape[0], (N_syn,))
            new_class_data = np.concatenate(
                (sampled_min_data, synthetic[idx, :]))
            data = np.concatenate((data, new_class_data))
            target = np.concatenate(
                (target, minority_class * np.ones((new_class_data.shape[0],))))
        else:
            data = np.concatenate((data, sampled_min_data))
            target = np.concatenate(
                (target, minority_class * np.ones((sampled_min_data.shape[0],))))  # noqa

        return data, target
예제 #13
0
class SmoteBagging(PoolGenerator):
    def __init__(self,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote',
                 k=5):

        #self.b = b
        self.k = k
        self.n_classifiers = n_classifiers
        self.base_classifier = base_classifier

        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

    def smote_bootstrap_sample(self, X, y, b, k):

        classes = np.unique(y)
        count = np.bincount(y)  # number of instances of each class

        majority_class = count.argmax()  # majority clas
        majority_count = count.max()  # majority class

        data = np.empty((0, X.shape[1]))
        target = np.empty((0, ))

        for i in classes:

            class_data = X[(y == i), :]

            if i == majority_class:  # majority class
                # regular bootstrap (i.e. 100% sampling rate)
                idx = np.random.choice(majority_count, (majority_count, ))
                data = np.concatenate((data, class_data[idx, :]))
                target = np.concatenate((target, i * np.ones(
                    (majority_count, ))))
                #print('original class data = {}'.format(class_data.shape))
                #print('sampled class data = {}'.format(class_data[idx,:].shape))
                #print()

            else:  # minority classes
                # bootstrap the class data with defined sampling rate
                sample_rate = (majority_count / class_data.shape[0]) * (b /
                                                                        100)
                idx = np.random.choice(
                    class_data.shape[0],
                    (int(sample_rate * class_data.shape[0]), ))
                sampled_class_data = class_data[idx, :]

                #print('original class data = {}'.format(class_data.shape))
                #print('majority_count = {}'.format(majority_count))
                #print('class data = {}'.format(class_data.shape))
                #print('b = {}'.format(b))
                #print('sample rate = {}'.format(sample_rate))
                #print('sampled class data = {}'.format(sampled_class_data.shape))

                # run smote on bootstrapped data to obtain synthetic samples
                # ceil to make sure N_smote is a multiple of 100, and the small value to avoid a zero
                N_smote = int(
                    np.ceil((majority_count / sampled_class_data.shape[0]) *
                            (1 - b / 100 + 10e-8)) * 100)
                #print(N_smote)

                #print('----------')
                #print('smote parameters:')
                #print('T : {}'.format(sampled_class_data.shape))
                #print('N : {}'.format(N_smote))
                synthetic = smote(sampled_class_data, N=N_smote, k=self.k)
                #print('synthetic data = {})'.format(synthetic.shape))
                #print(synthetic)

                # add synthetic samples to sampled class data
                n_missing = majority_count - sampled_class_data.shape[0]
                idx = np.random.choice(synthetic.shape[0], (n_missing, ))
                new_class_data = np.concatenate(
                    (sampled_class_data, synthetic[idx, :]))
                #print('new class data = {})'.format(new_class_data.shape))
                #print()
                data = np.concatenate((data, new_class_data))
                target = np.concatenate((target, i * np.ones(
                    (new_class_data.shape[0], ))))

        return data, target

    def fit(self, X, y):

        self.ensemble = Ensemble()

        # this parameter should change between [10, 100] with
        # increments of 10, for every classifier in the ensemble
        b = 10

        for i in range(self.n_classifiers):
            #print()
            #print('classifier : {}'.format(i))
            #print('------------------------')
            #print('b = {}'.format(b))
            data, target = self.smote_bootstrap_sample(X,
                                                       y,
                                                       b=float(b),
                                                       k=self.k)
            #print('data = {}'.format(data.shape))
            #print()

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)

            self.ensemble.add(classifier)

            if b >= 100:
                b = 10
            else:
                b += 10

        return

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #14
0
class SmoteBaggingNew(SmoteBagging):
    def fit(self, X, y):

        self.ensemble = Ensemble()

        # this parameter should change between [10, 100] with
        # increments of 10, for every classifier in the ensemble
        b = 10

        for i in range(self.n_classifiers):
            #print()
            #print('classifier : {}'.format(i))
            #print('------------------------')
            #print('b = {}'.format(b))
            data, target = self.smote_bootstrap_sample(X,
                                                       y,
                                                       b=float(b),
                                                       k=self.k)
            #print('data = {}'.format(data.shape))
            #print()

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)

            self.ensemble.add(classifier)

            if b >= 100:
                b = 10
            else:
                b += 10

        return

    def smote_bootstrap_sample(self, X, y, b, k):

        classes = np.unique(y)
        count = np.bincount(y)  # number of instances of each class

        majority_class = count.argmax()  # majority class
        majority_count = count.max()  # majority class

        data = np.empty((0, X.shape[1]))
        target = np.empty((0, ))

        class_data = X[(y == majority_class), :]
        idx = np.random.choice(majority_count, (majority_count, ))
        data = np.concatenate((data, class_data[idx, :]))
        target = np.concatenate((target, majority_class * np.ones(
            (majority_count, ))))

        minority_class = count.argmin()
        minority_count = count.min()

        #        print majority_count
        N_syn = int((majority_count) * (b / 100))
        #        print N_syn
        N_res = majority_count - N_syn
        #        print N_res
        N_syn, N_res = N_res, N_syn

        class_data = X[(y == minority_class), :]
        idx = np.random.choice(class_data.shape[0], (N_res, ))
        sampled_min_data = class_data[idx, :]
        #        print sampled_min_data.shape
        if N_syn > 0:
            N_smote = np.ceil(N_syn / minority_count) * 100
            N_smote = 100 if N_smote < 100 else int(N_smote - N_smote % 100)
            synthetic = smote(X[y == minority_class], N=int(N_smote), k=self.k)

            idx = np.random.choice(synthetic.shape[0], (N_syn, ))
            new_class_data = np.concatenate(
                (sampled_min_data, synthetic[idx, :]))
            data = np.concatenate((data, new_class_data))
            target = np.concatenate((target, minority_class * np.ones(
                (new_class_data.shape[0], ))))
        else:
            data = np.concatenate((data, sampled_min_data))
            target = np.concatenate((target, minority_class * np.ones(
                (sampled_min_data.shape[0], ))))

        return data, target
예제 #15
0
class ICSBagging(PoolGenerator):
    def __init__(self,
                 K=10,
                 alpha=0.75,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote',
                 diversity_metric='e',
                 positive_label=1):

        self.K = K
        self.alpha = alpha

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.combination_rule = combination_rule
        self.positive_label = positive_label

        self.classifiers = None
        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

        self.diversity_metric = diversity_metric
        self.diversity = Diversity(metric=diversity_metric)

        self.validation_X = None
        self.validation_y = None

    def set_validation(self, X, y):
        self.validation_X = X
        self.validation_y = y

    def fitness(self, classifier):
        '''
        #TODO normalize diversity metric.
        '''
        self.ensemble.add(classifier)
        out = self.ensemble.output(self.validation_X)
        y_pred = self.combiner.combine(out)
        y_true = self.validation_y

        auc = evaluation.auc_score(y_true, y_pred)
        div = self.diversity.calculate(self.ensemble, self.validation_X,
                                       self.validation_y)

        #diversity = entropy_measure_e(self.ensemble,
        #        self.validation_X, self.validation_y)

        self.ensemble.classifiers.pop()
        return self.alpha * auc + (1.0 - self.alpha) * div

    def _calc_pos_prob(self):
        y_pred = self.combiner.combine(self.ensemble.output(self.validation_X))
        mask = self.positive_label == self.validation_y
        pos_acc = float(sum(y_pred[mask] == self.validation_y[mask])) / len(
            self.validation_y[mask])
        neg_acc = float(sum(y_pred[~mask] == self.validation_y[~mask])) / len(
            self.validation_y[~mask])
        return 1.0 - (pos_acc / (pos_acc + neg_acc))

    def bootstrap_classifiers(self, X, y, K, pos_prob):
        mask = self.positive_label == y
        negative_label = y[~mask][0]

        clfs = []
        sets_cX, sets_cy = [], []
        for i in range(K):
            cX, cy = [], []
            for j in range(X.shape[0]):
                if np.random.random() < pos_prob:
                    idx = np.random.random_integers(0, len(X[mask]) - 1)
                    cX = cX + [X[mask][idx]]
                    cy = cy + [self.positive_label]
                else:
                    idx = np.random.random_integers(0, len(X[~mask]) - 1)
                    cX = cX + [X[~mask][idx]]
                    cy = cy + [negative_label]
            if not self.positive_label in cy:
                idx_1 = np.random.random_integers(0, len(cX) - 1)
                idx_2 = np.random.random_integers(0, len(X[mask]) - 1)
                cX[idx_1] = X[mask][idx_2]
                cy[idx_1] = self.positive_label
            elif not negative_label in cy:
                idx_1 = np.random.random_integers(0, len(cX) - 1)
                idx_2 = np.random.random_integers(0, len(X[~mask]) - 1)
                cX[idx_1] = X[~mask][idx_2]
                cy[idx_1] = negative_label
            #print len(cX), len(cy), X.shape[0], len(X), np.bincount(cy)

            sets_cX, sets_cy = sets_cX + [cX], sets_cy + [cy]
            clf = sklearn.base.clone(self.base_classifier)
            clfs = clfs + [clf.fit(cX, cy)]

        return clfs

    def fit(self, X, y):
        #if self.validation_X == None and self.validation_y == None:
        self.validation_X = X
        self.validation_y = y

        self.classes_ = set(y)
        self.ensemble = Ensemble()

        clfs = self.bootstrap_classifiers(X, y, self.K, 0.5)
        self.ensemble.add(np.random.choice(clfs))

        for _ in range(1, self.n_classifiers):
            clfs = self.bootstrap_classifiers(X, y, self.K,
                                              self._calc_pos_prob())
            self.ensemble.add(max(clfs, key=lambda clf: self.fitness(clf)))

        self.validation_X = None
        self.validation_y = None

        return self

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)
예제 #16
0
class ICSBaggingNew(PoolGenerator):
    def __init__(self,
                 K=10,
                 alpha=0.75,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote',
                 diversity_metric='e',
                 positive_label=1):

        self.K = K
        self.alpha = alpha

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers
        self.positive_label = positive_label

        self.ensemble = None
        self.combiner = Combiner(rule=combination_rule)

        self.diversity = Diversity(metric=diversity_metric)

        self.validation_X = None
        self.validation_y = None

    def set_validation(self, X, y):
        self.validation_X = X
        self.validation_y = y

    def fitness(self, classifier):
        '''
        #TODO normalize diversity metric.
        '''
        self.ensemble.add(classifier)

        y_pred = self.predict(self.validation_X)
        y_true = self.validation_y

        auc = evaluation.auc_score(y_true, y_pred)
        div = self.diversity.calculate(self.ensemble, self.validation_X,
                                       y_true)

        self.ensemble.classifiers.pop()  # create interface for this later

        return self.alpha * auc + (1.0 - self.alpha) * div

    def _calc_pos_prob(self):
        y_pred = self.predict(self.validation_X)
        y_true = self.validation_y

        # obtaining recall scores for each label (assuming the labels are binary)
        pos_acc = recall_score(y_true,
                               y_pred,
                               average='binary',
                               pos_label=self.positive_label)
        neg_acc = recall_score(y_true,
                               y_pred,
                               average='binary',
                               pos_label=int(not self.positive_label))

        return neg_acc / (pos_acc + neg_acc)

    def bootstrap_classifiers(self, X, y, K, pos_prob):
        pos_idx = (y == self.positive_label)
        neg_idx = (y == int(not self.positive_label))

        X_pos, y_pos = X[pos_idx, :], y[pos_idx]  # positive examples
        X_neg, y_neg = X[neg_idx, :], y[neg_idx]  # negative examples

        classifiers = []
        for i in range(K):
            X_new = np.zeros(X.shape)
            y_new = np.zeros(y.shape)

            for j in range(X.shape[0]):

                if pos_prob > np.random.random():
                    # add a randomly chosen positive example
                    idx = np.random.randint(X_pos.shape[0])
                    X_new[j, :] = X_pos[idx, :]
                    y_new[j] = self.positive_label

                else:
                    # add a randomly chosen negative example
                    idx = np.random.randint(X_neg.shape[0])
                    X_new[j, :] = X_neg[idx, :]
                    y_new[j] = int(not self.positive_label)

            # if no positive example is present, make sure you insert at least one
            if not np.any(y_new == self.positive_label):
                idx_new = np.random.randint(
                    X_new.shape[0])  # chosen spot for replacement on new array
                idx_pos = np.random.randint(
                    X_pos.shape[0])  # chosen positive example index

                X_new[idx_new, :] = X_pos[idx_pos, :]
                y_new[idx_new] = self.positive_label

            # if no negative example is present, make sure you insert at least one
            elif not np.any(y_new == int(not self.positive_label)):
                idx_new = np.random.randint(
                    X_new.shape[0])  # chosen spot for replacement on new array
                idx_neg = np.random.randint(
                    X_neg.shape[0])  # chosen positive example index

                X_new[idx_new, :] = X_neg[idx_neg, :]
                y_new[idx_new] = int(not self.positive_label)

            # train classifier with the bootstrapped data
            clf = sklearn.base.clone(self.base_classifier)
            clf.fit(X_new, y_new)

            classifiers.append(clf)

        return classifiers

    def fit(self, X, y):
        #if self.validation_X == None and self.validation_y == None:
        self.validation_X = X
        self.validation_y = y

        self.classes_ = set(y)
        self.ensemble = Ensemble()

        clfs = self.bootstrap_classifiers(X, y, self.K, 0.5)
        self.ensemble.add(np.random.choice(clfs))

        for i in range(1, self.n_classifiers):
            clfs = self.bootstrap_classifiers(X, y, self.K,
                                              self._calc_pos_prob())
            self.ensemble.add(max(clfs, key=lambda clf: self.fitness(clf)))

        self.validation_X = None
        self.validation_y = None

        return self

    def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out)