import brian_no_units from brian.globalprefs import set_global_preferences set_global_preferences(useweave=True, usecodegen=True, usecodegenweave=True, usecodegenstateupdate = True, usenewpropagate = True, usecstdp = True, gcc_options = ['-O3', '-ffast-math','-march=core2'] ) def run_stdp(NE,NI,v_init,C_e,C_ii,C_ie,mon_bin,dt): from brian.neurongroup import NeuronGroup from brian.monitor import PopulationRateMonitor from brian.stdunits import mV, ms, nS, pF, pA, Hz from brian.units import second from brian.equations import Equations from brian.network import Network from brian.connections import Connection from brian.stdp import STDP from brian.clock import Clock runtime = 10*second eta = 1e-2 # Learning rate tau_stdp = 20*ms # STDP time constant alpha = 3*Hz*tau_stdp*2 # Target rate parameter gmax = 100 # Maximum inhibitory weight eqs_neurons='''
'siemens') self._store_array_with_unit( outfile, group, 'times', np.hstack((self.input_data.root.weights.excitatory.times, self.input_data.root.weights.excitatory.times[-1] + (self.dt * self.weights_timestep + self.m_exc_weights.times) / b.second)), 'second', "Times of the recorded synaptic weights.") if __name__ == '__main__': import argparse import os.path import tables from brian.globalprefs import set_global_preferences set_global_preferences(useweave=True) logging.basicConfig() logger.setLevel(logging.INFO) parser = argparse.ArgumentParser( description="Run the Vogels et al. 2011 single cell model.") parser.add_argument( '-i', '--input', type=str, nargs=1, required=True, help="Path to the input file for which to continue the simulation.") parser.add_argument( '-t', '--time', type=float, nargs=1, required=True, help="Additional time to simulate in seconds.") parser.add_argument( 'output', nargs=1, type=str, help="Filename of the HDF5 output file.")
pass def reset(self): pass def __len__(self): return self._length def num_states(self): return self._numstates def __repr__(self): return 'Virtual group of ' + str(len(self)) + ' neurons' class ServerNetwork(Network): ''' Network class for running a simulation over a cluster. The server manages the clients. ''' pass # Identification myid = pypar.rank() # id of this process nproc = pypar.size() # number of processors if myid > 0: # client import sys run_client() sys.exit(0) # Server #Network=ServerNetwork set_global_preferences(cluster_server=True)