class TestSingleNeuronTypeSetup(unittest.TestCase): def setUp(self): config = JSONConfig(file=single_neuron_config) self.scaffold = Scaffold(config) self.scaffold.compile_network() self.nest_adapter = self.scaffold.configuration.simulations[ "test_single_neuron"] self.nest_adapter.reset() def tearDown(self): self.nest_adapter.delete_lock() def test_single_neuron(self): self.scaffold.run_simulation("test_single_neuron") test_cell_model = self.nest_adapter.cell_models["test_cell"] self.assertEqual(test_cell_model.nest_identifiers, list(range(1, 5))) test_neuron_status = self.nest_adapter.nest.GetStatus( test_cell_model.nest_identifiers) self.assertEqual(test_neuron_status[0]["t_ref"], 1.5) self.assertEqual(test_neuron_status[0]["C_m"], 7.0) self.assertEqual(test_neuron_status[0]["V_th"], -41.0) self.assertEqual(test_neuron_status[0]["V_reset"], -70.0) self.assertEqual(test_neuron_status[0]["E_L"], -62.0) self.assertEqual(test_neuron_status[0]["I_e"], 0.0)
def test_aa_goc(self): # 5) GrC (aa) - GoC # To check it, 20syn on basal dendrites, not near the soma. # AMPA/NMDA syn with a burst of 5 spike at 100Hz. The response should be a burst # composed by 3 spikes config = JSONConfig(aa_goc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_golgi"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("GolgiCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = m_gol.get_compartments(["basal_dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 20) morpho_map = ["GranuleCell", "GolgiCell"] morphologies = np.array([[0, 1]] * 20) compartments = np.ones( (20, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=20) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_grc_sc(self): # 9) GrC - SC # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz. # It should do a burst of 5 spikes. config = JSONConfig(grc_sc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_stellate"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("stellate_cell").identifiers m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") m_gol = scaffold.morphology_repository.get_morphology("StellateCell") comps = m_gol.get_compartments(["dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 3) morpho_map = ["GranuleCell", "StellateCell"] morphologies = np.array([[0, 1]] * 3) compartments = np.ones( (3, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=3) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_pf_pc(self): # 6) GrC (aa) - PC # 100 random syn, on the apical dendrites. AMPA only, 10 spikes # 500Hz. The response should be a burst composed by 3 spikes. config = JSONConfig(aa_pc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_purkinje"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("purkinje_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("PurkinjeCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = [c.id for c in m_gol.compartments if c.type == 3] conns = np.array([[grcs[0], golgis[0]]] * 80) morpho_map = ["GranuleCell", "PurkinjeCell"] morphologies = np.array([[0, 1]] * 80) compartments = np.ones( (80, 2)) * m_grc.get_compartments(["parallel_fiber"])[0].id compartments[:, 1] = np.random.choice(comps, size=80) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_pf_goc(self): # 7) GrC (pf) - GoC # The same as 5) except on 80 apical dendrites. config = JSONConfig(aa_goc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() grc_to_golgi = scaffold.configuration.connection_types[ "granule_to_golgi"] grcs = scaffold.get_placement_set("granule_cell").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers m_gol = scaffold.morphology_repository.get_morphology("GolgiCell") m_grc = scaffold.morphology_repository.get_morphology("GranuleCell") comps = m_gol.get_compartments(["apical_dendrites"]) conns = np.array([[grcs[0], golgis[0]]] * 80) morpho_map = ["GranuleCell", "GolgiCell"] morphologies = np.array([[0, 1]] * 80) compartments = np.ones( (80, 2)) * m_grc.get_compartments(["ascending_axon"])[0].id compartments[:, 1] = np.random.choice([c.id for c in comps], size=80) scaffold.connect_cells( grc_to_golgi, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), go.Scatter( x=f["recorders/soma_voltages/1"][:, 0], y=f["recorders/soma_voltages/1"][:, 1], ), ]).show()
def test_mf_granule(self): config = JSONConfig(mf_grc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() mf_to_glom = scaffold.configuration.connection_types[ "mossy_to_glomerulus"] glom_to_grc = scaffold.configuration.connection_types[ "glomerulus_to_granule"] mfs = scaffold.get_placement_set("mossy_fibers").identifiers gloms = scaffold.get_placement_set("glomerulus").identifiers grcs = scaffold.get_placement_set("granule_cell").identifiers scaffold.connect_cells( mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]])) scaffold.connect_cells( mf_to_glom, np.array([[mfs[0], gloms[0]], [mfs[1], gloms[1]]])) conns = np.array([[gloms[0], grcs[0]], [gloms[1], grcs[0]]]) morpho_map = ["GranuleCell"] morphologies = np.array([[0, 0], [0, 0]]) compartments = np.array([[0, 9], [0, 18]]) scaffold.connect_cells( glom_to_grc, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure( go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], )).show()
def test_sc_pc(self): # 9) GrC - SC # 3 random synapses on the dendrites. AMPA/NMDA, 10 spikes at 100Hz. # It should do a burst of 5 spikes. config = JSONConfig(sc_pc_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: go.Figure([ go.Scatter( x=f["recorders/soma_voltages/0"][:, 0], y=f["recorders/soma_voltages/0"][:, 1], ), ]).show()
def test_glom_golgi_granule(self): config = JSONConfig(mf_gol_config) scaffold = Scaffold(config) scaffold.place_cell_types() scaffold.compile_output() mf_to_glom = scaffold.configuration.connection_types[ "mossy_to_glomerulus"] glom_to_gc = scaffold.configuration.connection_types[ "glomerulus_to_golgi"] gc_to_grc = scaffold.configuration.connection_types["golgi_to_granule"] mfs = scaffold.get_placement_set("mossy_fibers").identifiers gloms = scaffold.get_placement_set("glomerulus").identifiers golgis = scaffold.get_placement_set("golgi_cell").identifiers granules = scaffold.get_placement_set("granule_cell").identifiers scaffold.connect_cells(mf_to_glom, np.array([[mfs[0], gloms[0]]])) conns = np.array([[gloms[0], golgis[0]]] * 20) m = scaffold.morphology_repository.get_morphology("GolgiCell") morpho_map = ["GolgiCell"] morphologies = np.zeros((20, 2)) compartments = np.zeros((20, 2)) compartments[:, 1] = np.random.choice( [c.id for c in m.compartments if c.type == 302], size=20) scaffold.connect_cells( glom_to_gc, conns, morphologies=morphologies, compartments=compartments, morpho_map=morpho_map, ) conns_grc = np.array([[golgis[0], granules[0]]] * 4) morpho_map_grc = ["GranuleCell", "GolgiCell"] morphologies_grc = np.zeros((4, 2)) morphologies_grc[:, 0] = [1] * 4 compartments_grc = np.zeros((4, 2)) compartments_grc[:, 0] = [c.id for c in m.compartments if c.type == 2][0:4] compartments_grc[:, 1] = [9 * (i + 1) for i in range(4)] scaffold.connect_cells( gc_to_grc, conns_grc, morphologies=morphologies_grc, compartments=compartments_grc, morpho_map=morpho_map_grc, ) scaffold.compile_output() scaffold = from_hdf5(scaffold.output_formatter.file) scaffold.run_simulation("test") from glob import glob from plotly import graph_objs as go results = glob("results_test_*")[-1] with h5py.File(results, "r") as f: g = f["recorders/soma_voltages"] a = f["recorders/axons"] def L(g, s): h = g[s] return {"x": h[:, 0], "y": h[:, 1], "name": h.attrs["label"]} go.Figure([ *(go.Scatter(**L(g, i)) for i in g), *(go.Scatter(**L(a, i)) for i in a), ]).show()