def generate_NBA(): start = datetime.datetime.now() task = Task() buchi = Buchi(task) buchi.construct_buchi_graph() buchi.get_minimal_length() buchi.get_feasible_accepting_state() buchi_graph = buchi.buchi_graph NBA_time = (datetime.datetime.now() - start).total_seconds() print('Time for constructing the NBA: {0:.4f} s'.format(NBA_time)) return buchi, buchi_graph
save_covariances = True drone_height = 16.0 # altitude of drones waypoint_folder_location = "/home/samarth/catkin_ws/src/rotors_simulator/rotors_gazebo/resource" launch_folder_location = "/home/samarth/catkin_ws/src/rotors_simulator/rotors_gazebo/launch" time_array = [] #stores time for each trial run cost_array = [] #stores cost of each trial run for round_num in range(number_of_trials): print('Trial {}'.format(round_num + 1)) start = datetime.datetime.now() task = Task() buchi = Buchi(task) buchi.construct_buchi_graph() buchi.get_minimal_length() buchi.get_feasible_accepting_state() buchi_graph = buchi.buchi_graph NBA_time = (datetime.datetime.now() - start).total_seconds() print('Time for constructing the NBA: {0:.4f} s'.format(NBA_time)) # workspace workspace = Workspace() geodesic = Geodesic(workspace, task.threshold) # parameters n_max = 100000 para = dict() # lite version, excluding extending and rewiring para['is_lite'] = True # step_size used in function near para['step_size'] = 0.25 * buchi.number_of_robots # probability of choosing node q_p_closest