예제 #1
0
    def _on_new_episode(self):
        self._carla_settings.randomize_seeds()
        self._carla_settings.randomize_weather()
        scene = self.client.load_settings(self._carla_settings)
        if self._display_map:
            self._city_name = scene.map_name
        number_of_player_starts = len(scene.player_start_spots)
        player_start = np.random.randint(number_of_player_starts)
        print('Starting new episode...')
        self.client.start_episode(player_start)
        self._timer = Timer()
        self._is_on_reverse = False
        
        # increment episode count, reset frame count
        self.episode_count += 1
        self.frame_count = 0

        if self.saver is None and self.save_images_to_disk:
            self.saver = [
                # BufferedImageSaver(f'{self.out_dir}5/ep_{self.episode_count:03d}/CameraDepth/',
                #                    1000, WINDOW_HEIGHT, WINDOW_WIDTH, 1),
                BufferedImageSaver('{}/ep_{}/'.format(self.out_dir,self.episode_count),
                                   1000, WINDOW_HEIGHT, WINDOW_WIDTH, 3, 'CameraRGB'),
                BufferedImageSaver('{}/ep_{}/'.format(self.out_dir,self.episode_count),
                                   1000, WINDOW_HEIGHT, WINDOW_WIDTH, 1, 'CameraSemSeg')
                ]
        elif self.save_images_to_disk:
            for i, image_saver in enumerate(self.saver):
                image_saver.save()
                image_saver.reset()
                image_saver.filename = '{}/ep_{}/'.format(self.out_dir,self.episode_count) +\
                                       image_saver.sensorname + '/'
    def __init__(self, parent_actor, hud):
        self.sensor = None
        self.surface = None
        self._parent = parent_actor
        self.hud = hud
        self.recording = False
        self._camera_transforms = [
            carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)),
            carla.Transform(carla.Location(x=1.6, z=1.7))]
        self.transform_index = 1
        self.sensors = [
            ['sensor.camera.rgb', cc.Raw, 'Camera RGB'],
            ['sensor.camera.depth', cc.Raw, 'Camera Depth (Raw)'],
            ['sensor.camera.depth', cc.Depth, 'Camera Depth (Gray Scale)'],
            ['sensor.camera.depth', cc.LogarithmicDepth, 'Camera Depth (Logarithmic Gray Scale)'],
            ['sensor.camera.semantic_segmentation', cc.Raw, 'Camera Semantic Segmentation (Raw)'],
            ['sensor.camera.semantic_segmentation', cc.CityScapesPalette,
                'Camera Semantic Segmentation (CityScapes Palette)'],
            ['sensor.lidar.ray_cast', None, 'Lidar (Ray-Cast)']]
        world = self._parent.get_world()
        bp_library = world.get_blueprint_library()
        for item in self.sensors:
            bp = bp_library.find(item[0])
            if item[0].startswith('sensor.camera'):
                bp.set_attribute('image_size_x', str(hud.dim[0]))
                bp.set_attribute('image_size_y', str(hud.dim[1]))
            elif item[0].startswith('sensor.lidar'):
                bp.set_attribute('range', '5000')
                ## rotation freq
                bp.set_attribute('rotation_frequency', '20')
            item.append(bp)
        self.index = None
        
        ########################################################################
        ## create custom sensors for collecting rgb image and Lidar data
        #'''
        self.sensor_rgb = None
        self.sensor_lidar = None
        # listen and record control signals on each image
        self.control_listener = None
        
        print("init custum rgb and Lidar sensors")
        
        if self.sensor_rgb is not None:
            self.sensor_rgb.destroy()
            #self.surface = None
        self.sensor_rgb = self._parent.get_world().spawn_actor(
            self.sensors[0][-1],    # rgb image
            self._camera_transforms[self.transform_index],
            attach_to=self._parent)
        # We need to pass the lambda a weak reference to self to avoid
        # circular reference.
        weak_self = weakref.ref(self)
        self.sensor_rgb.listen(lambda image: CameraManager._parse_image_rgblidar(weak_self, image, 0))
        #'''
        
        ## Lidar
        #'''
        #print(self.sensors[6])
        #['sensor.lidar.ray_cast', None, 'Lidar (Ray-Cast)', <carla.libcarla.ActorBlueprint object at 0x7f1b038fd570>]
        #assert(0)
        if self.sensor_lidar is not None:
            self.sensor_lidar.destroy()
            #self.surface = None
        self.sensor_lidar = self._parent.get_world().spawn_actor(
            self.sensors[6][-1],    # Lidar image
            self._camera_transforms[self.transform_index],
            attach_to=self._parent)
        # We need to pass the lambda a weak reference to self to avoid
        # circular reference.
        #weak_self = weakref.ref(self)
        self.sensor_lidar.listen(lambda image: CameraManager._parse_image_rgblidar(weak_self, image, 6))
        
        #'''
        
        ## Control signals
        '''
        if self.control_listener is not None:
            self.control_listener.destroy()
        
        # sync with image input, so use sensors[0]
        self.control_listener = self._parent.get_world().spawn_actor(
            self.sensors[0][-1],    # rgb image
            self._camera_transforms[self.transform_index],
            attach_to=self._parent)

        self.control_listener.listen(lambda image: CameraManager._parse_image_control(weak_self, image, world))
        '''
        
        ## image saver
        
        self.out_dir = "_out_data"
        self.episode_count = 0
        
        #print('%s/ep_%d/' % (self.out_dir, self.episode_count))
        #assert(0)
        
        self.saver = [
            # BufferedImageSaver(f'{self.out_dir}5/ep_{self.episode_count:03d}/CameraDepth/',
            #                    1000, WINDOW_HEIGHT, WINDOW_WIDTH, 1),
            BufferedImageSaver('%s/ep_%d/' % (self.out_dir, self.episode_count),
                               100, WINDOW_HEIGHT, WINDOW_WIDTH, 3, 'CameraRGB'),
            BufferedImageSaver('%s/ep_%d/' % (self.out_dir, self.episode_count),
                               100, 8000, 1, 3, 'Lidar')
                               ## TODO: current limit 5000 points, might be more
            ]
def game_loop(args):

    global current_rgb_frame
    global current_lidar_frame
    
    pygame.init()
    pygame.font.init()
    world = None
    
    #########################################################
    ## set up nural net 
    
    ## GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # Assuming that we are on a CUDA machine, this should print a CUDA device:
    print(device)
    
    '''
    ## CNN/rgb
    net = Net()
    ## load pre trained model
    net.load_state_dict(torch.load('/home/zidong/Desktop/nn/6_5.pth.tar'))
    net.to(device)
    '''
    ## set up pointnet - Lidar
    
    num_classes = 1
    feature_transform = False
    #net = PointNetCls(k=num_classes, feature_transform=False)
    #net = PointNetCls(k=num_classes, feature_transform=True)
    net = PointFusion(k=1, feature_transform=feature_transform)
    #cls_50_6.7_4training
    
    #weights_path = '/home/zidong/Desktop/nn/pointFusion/train_model_6.11_5/cls_model_22.pth'
    #weights_path = '/home/zidong/Desktop/nn/pointFusion/t_6.11_250/cls_model_499.pth'
    weights_path = '/home/zidong/Desktop/nn/pointFusion/6.12_3/cls_model_499.pth'
    
    print('loading pretrained model from.. '+ weights_path)
    #'/home/zidong/Desktop/pointnet.pytorch/utils/cls/cls_model_19.pth'
    net.load_state_dict(torch.load(weights_path))
    #net.to(device)
    net.cuda()
    
    
    ##########################################################

    try:
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode(
            (args.width, args.height),
            pygame.HWSURFACE | pygame.DOUBLEBUF)

        hud = HUD(args.width, args.height)
        
        ## world settings: synchronous_mode TODO not sure..
        carla_world = client.get_world()
        settings = carla_world.get_settings()
        settings.synchronous_mode = True
        carla_world.apply_settings(settings)
        
        frame = None
        count_frame = 0
        
        
        out_dir = "_out_data"
        episode_count = 0
        ## save control signal: throttle, steer, brake, speed
        saver_control = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
                               100, 1, 1, 4, 'Control')
        
        
        #####################################
        
        world = World(client.get_world(), hud, args.filter)
        controller = DualControl(world, args.autopilot)

        clock = pygame.time.Clock()
        while True:
            clock.tick_busy_loop(60)
            if controller.parse_events(world, clock):
                carla_world.tick()
                ts = carla_world.wait_for_tick()
                return
                
            world.tick(clock)
            
            #################################################
            if not world.manual:
                ## set custom control
                cust_ctrl = controller._control
                cust_ctrl.throttle = 0.6    # 18km/h
                
                
                # get image data from sensor - current_rgb_frame

                if (current_lidar_frame is not None) and (current_rgb_frame is not None):
                #    print(current_lidar_frame)

                    ## Lidar pt cloud
                    tst_inputs = np.asarray(current_lidar_frame, dtype=np.float32)
                    
                    # test if there's large points
                    sum_ = np.sum(np.absolute(tst_inputs), axis=1)
                    mask = np.logical_and(sum_ < 50*3, sum_ > 0.0001)
                    pts_filter = tst_inputs[mask]
                    
                    if(pts_filter.shape != tst_inputs.shape):
                        print('pts filter : pts =', pts_filter.shape, tst_inputs.shape)
                    
                    
                    tst_inputs = torch.from_numpy(tst_inputs)
                    print(tst_inputs.shape)
                    
                    tst_inputs = tst_inputs[0:1900,:]   #
                    
                    tst_inputs = tst_inputs.unsqueeze(0)
                    tst_inputs = tst_inputs.transpose(2, 1)
                    tst_inputs = tst_inputs.cuda()#.to(device)
                    
                    points = tst_inputs
                    #print(tst_inputs)
                    
                    ## images
                    raw_img = np.frombuffer(current_rgb_frame.raw_data, dtype=np.uint8)
                    raw_img = raw_img.reshape(720, 1280, -1)
                    raw_img = raw_img[:, :, :3]
                    raw_img = cv2.resize(raw_img, dsize=(180, 180))
                    #print(raw_img)
                    tst_inputs = raw_img /255 *2 -1
                    tst_inputs = np.transpose(tst_inputs, (2, 0, 1))
                    tst_inputs = np.asarray(tst_inputs, dtype=np.float32)
                    tst_inputs = torch.from_numpy(tst_inputs)
                    tst_inputs = tst_inputs.unsqueeze(0)
                    tst_inputs = tst_inputs.cuda()
                    
                    image = tst_inputs
                    
                    net = net.eval()
                    
                    ## get Lidar input
                    outputs = net(image, points)
                    print(outputs)
                    outputs = outputs[0].detach().squeeze().tolist()
                    print(outputs)
                    cust_ctrl.steer = outputs
                    
                
                world.player.apply_control(cust_ctrl)
            
            count_frame += 1
            ## control
            c = world.player.get_control()
            throttle = c.throttle  # 0.0, 1.0
            steer = c.steer #-1.0, 1.0
            brake = c.brake # 0.0, 1.0
            
            #print(throttle, steer, brake)
            v = world.player.get_velocity()
            speed = 3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)
            #print('Speed:   % 15.0f km/h' % (speed))
            
            #print(count_frame)
            
            control = np.array([throttle, steer, brake, speed])
            
            #saver_control.add_image(control, "Control")
            
            ## sync mode TODO not sure..
            carla_world.tick()
            ts = carla_world.wait_for_tick()
            

            #####################################
            
            world.render(display)
            pygame.display.flip()

    finally:

        if world is not None:
            world.destroy()

        pygame.quit()
예제 #4
0
class World(object):
    def __init__(self, carla_world, args):
        self.world = carla_world
        self.actor_role_name = 'hero' #args.rolename
        self.map = self.world.get_map()
        self.player = None
        self.camera_rgb = None
        #self.camera_rgb_1 = None
        #self.camera_rgb_2 = None
        #self.camera_rgb_3 = None
        self.camera_lidar = None
        self.actor_list = []
        self._actor_filter = args.filter
        self.fps = args.fps
        self.restart()
        self.frame = None
        self.delta_seconds = 1.0 / int(args.fps)
        self._queues = []
        self._settings = None
        self.world.wait_for_tick()

    def restart(self):
        blueprint = self.world.get_blueprint_library().find('vehicle.tesla.model3')
        blueprint.set_attribute('role_name', self.actor_role_name)
        if blueprint.has_attribute('color'):
            color = random.choice(blueprint.get_attribute('color').recommended_values)
            blueprint.set_attribute('color', color)
        if blueprint.has_attribute('driver_id'):
            driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values)
            blueprint.set_attribute('driver_id', driver_id)
        if blueprint.has_attribute('is_invincible'):
            blueprint.set_attribute('is_invincible', 'true')

        # Spawn the player.
        if self.player is not None:
            spawn_point = self.player.get_transform()
            spawn_point.location.z += 2.0
            spawn_point.rotation.roll = 0.0
            spawn_point.rotation.pitch = 0.0
            self.destroy()
            print("spawn point is : " + spawn_point)
            self.player = self.world.try_spawn_actor(blueprint, spawn_point)
        while self.player is None:
            spawn_points = self.map.get_spawn_points()
            spawn_point = spawn_points[0] if spawn_points else carla.Transform()
            spawn_point.location.z += 2.0
            spawn_point.rotation.roll = 0.0
            spawn_point.rotation.pitch = 0.0
            self.player = self.world.try_spawn_actor(blueprint, spawn_point)
            print('Spawning player at location = ', self.player.get_location())

        self.actor_list.append(self.player)

        print("Initializing custom rgb and lidar sensors")
        bound_y = 0.5 + self.player.bounding_box.extent.y
        sensor_location = carla.Location(x=1.6, z=1.7)

        if self.camera_rgb is not None:
            self.camera_rgb.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        # self.camera_rgb = self.world.spawn_actor(
        #     bp,
        #     carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)),
        #     attach_to=self.player)
        self.camera_rgb = self.world.spawn_actor(bp, carla.Transform(sensor_location), attach_to=self.player)

        self.actor_list.append(self.camera_rgb)
        
        '''
        if self.camera_rgb_1 is not None:
            self.camera_rgb_1.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_1 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=90)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_1)

        if self.camera_rgb_2 is not None:
            self.camera_rgb_2.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_2 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=180)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_2)

        if self.camera_rgb_3 is not None:
            self.camera_rgb_3.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_3 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=270)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_3)
        '''
        if self.camera_lidar is not None:
            self.camera_lidar.destroy()
        bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
        bp.set_attribute('range', '5000')
        bp.set_attribute('rotation_frequency', self.fps)
        
        
        self.camera_lidar = self.world.spawn_actor(bp, carla.Transform(sensor_location), attach_to=self.player)

        self.actor_list.append(self.camera_lidar)

        self.rgb_saver = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB')
        '''
        self.rgb_saver_1 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_1')
        self.rgb_saver_2 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_2')
        self.rgb_saver_3 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_3')
        '''
        self.lidar_saver = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count), 
            100, 8000, 1, 3, 'Lidar')

    def __enter__(self):
        self._settings = self.world.get_settings()
        self.frame = self.world.apply_settings(carla.WorldSettings(
            no_rendering_mode=False,
            synchronous_mode=True,
            fixed_delta_seconds=self.delta_seconds))

        def make_queue(register_event):
            q = queue.Queue()
            register_event(q.put)
            self._queues.append(q)

        make_queue(self.world.on_tick)        
        make_queue(self.camera_rgb.listen)
        #make_queue(self.camera_rgb_1.listen)
        #make_queue(self.camera_rgb_2.listen)
        #make_queue(self.camera_rgb_3.listen)
        make_queue(self.camera_lidar.listen)
        
        return self

    def _retrieve_data(self, sensor_queue, timeout):
        while True:
            data = sensor_queue.get(timeout=timeout)
            if data.frame == self.frame:
                return data

    def tick(self, timeout):
        self.frame = self.world.tick()
        data = [self._retrieve_data(q, timeout) for q in self._queues]
        assert all(x.frame == self.frame for x in data)
        return data

    def __exit__(self, *args, **kwargs):
        self.world.apply_settings(self._settings)

    def destroy(self):
        for actor in self.actor_list:
            if actor is not None:
                actor.destroy()

    ## Customized parse image
    def parse_image_custom(self, surface, image, sensor_name):
        if sensor_name == 'Lidar':
            points = np.frombuffer(image.raw_data, dtype=np.dtype('f4'))
            points = np.reshape(points, (int(points.shape[0] / 3), 3))
            lidar_data = np.array(points[:, :2])
            lidar_data *= min(1280, 720) / 100.0
            lidar_data += (0.5 * 1280, 0.5 * 720)
            lidar_data = np.fabs(lidar_data)  # pylint: disable=E1111
            lidar_data = lidar_data.astype(np.int32)
            lidar_data = np.reshape(lidar_data, (-1, 2))
            lidar_img_size = (1280, 720, 3)
            lidar_img = np.zeros((lidar_img_size), dtype = int)
            lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
            # self.surface = pygame.surfarray.make_surface(lidar_img)
            self.lidar_saver.add_image(image.raw_data, sensor_name)
        elif sensor_name == 'CameraRGB':
            array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
            array = np.reshape(array, (image.height, image.width, 4))
            array = array[:, :, :3]
            array = array[:, :, ::-1]
            image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
            #if sensor_name == 'CameraRGB':
            surface.blit(image_surface, (0, 0))
            self.rgb_saver.add_image(image.raw_data, sensor_name)
예제 #5
0
def game_loop(args):
    pygame.init()
    pygame.font.init()
    world = None

    try:
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode(
            (args.width, args.height),
            pygame.HWSURFACE | pygame.DOUBLEBUF)

        carla_world = client.get_world()
        # settings = carla_world.get_settings()
        # carla_world.apply_settings(carla.WorldSettings(
        #     no_rendering_mode=False,
        #     synchronous_mode=True,
        #     fixed_delta_seconds=1.0 / 20))

        ## save control signal: throttle, steer, brake, speed
        saver_control = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
                               100, 1, 1, 4, 'Control')
        ## save used control signal: throttle, steer, brake, speed
        saver_control_real = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
                               100, 1, 1, 4, 'Control_real')
        
        clock = pygame.time.Clock()

        world = World(client.get_world(), args)
        controller = KeyboardControl(world, args.autopilot)

        ## PID agent
        print('current pos =', world.map.get_spawn_points()[0])
        print('dest pos =', world.map.get_spawn_points()[10])
        
        #world.player.set_transform(world.map.get_spawn_points()[0])
        world.player.set_location(world.map.get_spawn_points()[0].location)
        print('set: ', world.map.get_spawn_points()[0].location)
        print('NNPID: current location, ', world.player.get_location())
        
        ## training road
        world.player.set_transform(carla.Transform(carla.Location(x=305.0, y=129.0, z=2.0), carla.Rotation(pitch=0.0, yaw=180.0, roll=0.0)))
        
        ## testing road
        world.player.set_transform(carla.Transform(carla.Location(x=310.0, y=326.0, z=2.0), carla.Rotation(pitch=0.138523, yaw=180.0, roll=0.000112504)))

        agent = RoamingAgent(world.player)

        with world:

            while True:
                # clock.tick_busy_loop(60)
                # if controller.parse_events(client, world, clock):
                #     carla_world.tick()
                #     ts = carla_world.wait_for_tick()
                #     return
                if should_quit():
                    return

                ## set custom control
                
                pid_control = agent.run_step()
                pid_control.manual_gear_shift = False
                pid_control.throttle = 0.5
                
                world.player.apply_control(pid_control)
                
                ## control
                c = pid_control
                throttle = c.throttle  # 0.0, 1.0
                steer = c.steer #-1.0, 1.0
                brake = c.brake # 0.0, 1.0
                
                #print(throttle, steer, brake)
                v = world.player.get_velocity()
                speed = 3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)
                #print('Speed:   % 15.0f km/h' % (speed))
                
               
                control = np.array([throttle, steer, brake, speed])
                control_used = np.array([throttle, steer, brake, speed])
                
                # if not tst_mode:
                saver_control.add_image(control, "Control")
                saver_control_real.add_image(control_used, "Control")
                
                clock.tick()
                ret = world.tick(timeout=2.0)
                if ret:
                    #snapshot, img_rgb, img_rgb_1, img_rgb_2, img_rgb_3, img_lidar = ret
                    snapshot, img_rgb, img_lidar = ret
                    world.parse_image_custom(display, img_rgb, 'CameraRGB')
                    #world.parse_image_custom(display, img_rgb_1, 'CameraRGB_1')
                    #world.parse_image_custom(display, img_rgb_2, 'CameraRGB_2')
                    #world.parse_image_custom(display, img_rgb_3, 'CameraRGB_3')
                    world.parse_image_custom(display, img_lidar, 'Lidar')
                else:
                    print("Nothing is returned from world.tick :(")

                pygame.display.flip()

    finally:

        print("Destroying actors...")
        if world is not None:
            world.destroy()

        pygame.quit()
        print("Done")
예제 #6
0
    def restart(self):
        blueprint = self.world.get_blueprint_library().find('vehicle.tesla.model3')
        blueprint.set_attribute('role_name', self.actor_role_name)
        if blueprint.has_attribute('color'):
            color = random.choice(blueprint.get_attribute('color').recommended_values)
            blueprint.set_attribute('color', color)
        if blueprint.has_attribute('driver_id'):
            driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values)
            blueprint.set_attribute('driver_id', driver_id)
        if blueprint.has_attribute('is_invincible'):
            blueprint.set_attribute('is_invincible', 'true')

        # Spawn the player.
        if self.player is not None:
            spawn_point = self.player.get_transform()
            spawn_point.location.z += 2.0
            spawn_point.rotation.roll = 0.0
            spawn_point.rotation.pitch = 0.0
            self.destroy()
            print("spawn point is : " + spawn_point)
            self.player = self.world.try_spawn_actor(blueprint, spawn_point)
        while self.player is None:
            spawn_points = self.map.get_spawn_points()
            spawn_point = spawn_points[0] if spawn_points else carla.Transform()
            spawn_point.location.z += 2.0
            spawn_point.rotation.roll = 0.0
            spawn_point.rotation.pitch = 0.0
            self.player = self.world.try_spawn_actor(blueprint, spawn_point)
            print('Spawning player at location = ', self.player.get_location())

        self.actor_list.append(self.player)

        print("Initializing custom rgb and lidar sensors")
        bound_y = 0.5 + self.player.bounding_box.extent.y
        sensor_location = carla.Location(x=1.6, z=1.7)

        if self.camera_rgb is not None:
            self.camera_rgb.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        # self.camera_rgb = self.world.spawn_actor(
        #     bp,
        #     carla.Transform(carla.Location(x=-5.5, z=2.8), carla.Rotation(pitch=-15)),
        #     attach_to=self.player)
        self.camera_rgb = self.world.spawn_actor(bp, carla.Transform(sensor_location), attach_to=self.player)

        self.actor_list.append(self.camera_rgb)
        
        '''
        if self.camera_rgb_1 is not None:
            self.camera_rgb_1.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_1 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=90)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_1)

        if self.camera_rgb_2 is not None:
            self.camera_rgb_2.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_2 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=180)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_2)

        if self.camera_rgb_3 is not None:
            self.camera_rgb_3.destroy()
        bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
        bp.set_attribute('image_size_x', '1280')
        bp.set_attribute('image_size_y', '720')

        self.camera_rgb_3 = self.world.spawn_actor(bp, carla.Transform(sensor_location, carla.Rotation(yaw=270)), attach_to=self.player)

        self.actor_list.append(self.camera_rgb_3)
        '''
        if self.camera_lidar is not None:
            self.camera_lidar.destroy()
        bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
        bp.set_attribute('range', '5000')
        bp.set_attribute('rotation_frequency', self.fps)
        
        
        self.camera_lidar = self.world.spawn_actor(bp, carla.Transform(sensor_location), attach_to=self.player)

        self.actor_list.append(self.camera_lidar)

        self.rgb_saver = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB')
        '''
        self.rgb_saver_1 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_1')
        self.rgb_saver_2 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_2')
        self.rgb_saver_3 = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count),
            100, 1280, 720, 3, 'CameraRGB_3')
        '''
        self.lidar_saver = BufferedImageSaver('%s/ep_%d/' % (out_dir, episode_count), 
            100, 8000, 1, 3, 'Lidar')
예제 #7
0
def game_loop(args):
    pygame.init()
    pygame.font.init()
    world = None

    try:
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode((args.width, args.height),
                                          pygame.HWSURFACE | pygame.DOUBLEBUF)

        hud = HUD(args.width, args.height)

        ## world settings: synchronous_mode TODO not sure..
        carla_world = client.get_world()
        settings = carla_world.get_settings()
        settings.synchronous_mode = True
        carla_world.apply_settings(settings)

        frame = None
        count_frame = 0

        out_dir = "_out_data"
        episode_count = 0
        ## save control signal: throttle, steer, brake, speed
        saver_control = BufferedImageSaver(
            '%s/ep_%d/' % (out_dir, episode_count), 100, 1, 1, 4, 'Control')

        #####################################

        world = World(client.get_world(), hud, args.filter, args.rolename)
        controller = KeyboardControl(world, args.autopilot)

        clock = pygame.time.Clock()
        while True:
            clock.tick_busy_loop(60)
            if controller.parse_events(client, world, clock):
                carla_world.tick()
                ts = carla_world.wait_for_tick()
                return

            world.tick(clock)

            #################################################
            count_frame += 1
            ## control
            c = world.player.get_control()
            throttle = c.throttle  # 0.0, 1.0
            steer = c.steer  #-1.0, 1.0
            brake = c.brake  # 0.0, 1.0

            #print(throttle, steer, brake)
            v = world.player.get_velocity()
            speed = 3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)
            #print('Speed:   % 15.0f km/h' % (speed))

            print(count_frame)

            control = np.array([throttle, steer, brake, speed])

            saver_control.add_image(control, "Control")

            ## sync mode TODO not sure..
            carla_world.tick()
            ts = carla_world.wait_for_tick()

            #####################################

            world.render(display)
            pygame.display.flip()

    finally:

        if (world and world.recording_enabled):
            client.stop_recorder()

        if world is not None:
            world.destroy()

        pygame.quit()
예제 #8
0
def game_loop(args):
    pygame.init()
    pygame.font.init()
    world = None

    ## Set up pointnet - Lidar
    num_classes = 1
    feature_transform = False
    net = Net()

    global episode_count
    episode_count = int(args.iter)

    load_pretrained = True

    if load_pretrained:
        weights_path = ('./result/dagger_%d.pth' % episode_count)
        print('loading pretrained model from.. ' + weights_path)
        net.load_state_dict(torch.load(weights_path))
    net.cuda()

    try:
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode((args.width, args.height),
                                          pygame.HWSURFACE | pygame.DOUBLEBUF)

        carla_world = client.get_world()
        # settings = carla_world.get_settings()
        # carla_world.apply_settings(carla.WorldSettings(
        #     no_rendering_mode=False,
        #     synchronous_mode=True,
        #     fixed_delta_seconds=1.0 / 20))

        ## save control signal: throttle, steer, brake, speed
        episode_count += 1

        saver_control = BufferedImageSaver(
            '%s/ep_%d/' % (out_dir, episode_count), 100, 1, 1, 4, 'Control')

        ## save used control signal: throttle, steer, brake, speed
        saver_control_real = BufferedImageSaver(
            '%s/ep_%d/' % (out_dir, episode_count), 100, 1, 1, 4,
            'Control_real')

        clock = pygame.time.Clock()
        world = World(client.get_world(), args)
        controller = KeyboardControl(world, args.autopilot)

        ## PID agent

        world.player.set_location(world.map.get_spawn_points()[0].location)

        ## training road
        world.player.set_transform(
            carla.Transform(carla.Location(x=305.0, y=129.0, z=2.0),
                            carla.Rotation(pitch=0.0, yaw=180.0, roll=0.0)))

        clock.tick()
        ret = world.tick(timeout=10.0)

        agent = RoamingAgent(world.player)
        print('NNPID: current location, ', world.player.get_location())

        position = []

        with world:

            while True:
                # clock.tick_busy_loop(60)
                # if controller.parse_events(client, world, clock):
                #     carla_world.tick()
                #     ts = carla_world.wait_for_tick()
                #     return
                if should_quit():
                    return

                ## set custom control
                pid_control = agent.run_step()
                waypt_buffer = agent._waypoint_buffer

                while not waypt_buffer:
                    pid_control = agent.run_step()

                global collision_glb
                if collision_glb:
                    player_loc = world.player.get_location()
                    #waypt = carla_world.get_map().get_waypoint(player_loc)
                    waypt, _ = waypt_buffer[0]
                    world.player.set_transform(waypt.transform)
                    #world.player.set_location(waypt.transform.location)
                    collision_glb = False
                    print('hit! respawn')
                    pid_control = agent.run_step()

                pid_control.manual_gear_shift = False

                ## Neural net control
                cust_ctrl = controller._control
                cust_ctrl.throttle = 0.5  # 18km/h
                cust_ctrl.brake = 0

                clock.tick()
                ret = world.tick(timeout=10.0)
                if ret:
                    snapshot = ret[0]
                    img_rgb = ret[1]
                    img_lidar = ret[2]
                    world.parse_image_custom(display, img_rgb, 'CameraRGB')
                    world.parse_image_custom(display, img_lidar, 'Lidar')
                    # if ret[3]:
                    #     world.on_collision(ret[3])
                    '''
                    ## Lidar
                    tst_inputs = np.frombuffer(img_lidar.raw_data, dtype=np.dtype('f4'))
                    tst_inputs = np.reshape(tst_inputs, (int(tst_inputs.shape[0] / 3), 3))
                    tst_inputs = np.asarray(tst_inputs, dtype=np.float32)

                    # test if there's large points
                    sum_ = np.sum(np.absolute(tst_inputs), axis=1)
                    mask = np.logical_and(sum_ < 50*3, sum_ > 0.0001)
                    pts_filter = tst_inputs[mask]
                    
                    if(pts_filter.shape != tst_inputs.shape):
                        print('pts filter : pts =', pts_filter.shape, tst_inputs.shape)
                    
                    tst_inputs = torch.from_numpy(tst_inputs)
                    #print(tst_inputs.shape)
                    
                    tst_inputs = tst_inputs[0:1900,:]   #
                    
                    tst_inputs = tst_inputs.unsqueeze(0)
                    tst_inputs = tst_inputs.transpose(2, 1)
                    tst_inputs = tst_inputs.cuda()
                    
                    points = tst_inputs
                    '''
                    #print(tst_inputs)

                    ## images
                    raw_img = np.frombuffer(img_rgb.raw_data, dtype=np.uint8)
                    raw_img = raw_img.reshape(720, 1280, -1)
                    raw_img = raw_img[:, :, :3]
                    raw_img = cv2.resize(raw_img, dsize=(180, 180))
                    #print(raw_img)
                    tst_inputs = raw_img / 255
                    tst_inputs = np.transpose(tst_inputs, (2, 0, 1))
                    tst_inputs = np.asarray(tst_inputs, dtype=np.float32)
                    tst_inputs = torch.from_numpy(tst_inputs)
                    tst_inputs = tst_inputs.unsqueeze(0)
                    tst_inputs = tst_inputs.cuda()

                    image = tst_inputs

                    net = net.eval()

                    #print(image)
                    with torch.no_grad():
                        ah = net(image, [])
                        ah = torch.squeeze(ah)
                        #print(a_list[0].detach().squeeze().tolist())
                    #print(ah)
                    outputs = ah

                    #print(outputs)
                    cust_ctrl.steer = outputs.item()
                    #'''
                    world.player.apply_control(cust_ctrl)

                    player_loc = world.player.get_location()
                    position.append([player_loc.x, player_loc.y, player_loc.z])

                    #'''
                    ## check the center of the lane
                    #waypt = carla_world.get_map().get_waypoint(player_loc)

                    waypt, road_option = waypt_buffer[0]
                    lane_center = waypt.transform.location

                    #print(_current_lane_info.lane_type)
                    #print('waypt ', lane_center)
                    #print('player ', player_loc)

                    dist = math.sqrt((lane_center.x - player_loc.x)**2 +
                                     (lane_center.y - player_loc.y)**2)

                    ## dif in direction
                    next_dir = waypt.transform.rotation.yaw % 360.0
                    player_dir = world.player.get_transform(
                    ).rotation.yaw % 360.0

                    diff_angle = (next_dir - player_dir) % 180.0

                    ## too far from road, use PID control
                    if (diff_angle > 85 and diff_angle < 105) or dist >= 15:
                        #print('pid_control')
                        #world.player.apply_control(pid_control)
                        #draw_waypoints(carla_world, [waypt], player_loc.z + 2.0)
                        player_loc = world.player.get_location()
                        #waypt = carla_world.get_map().get_waypoint(player_loc)
                        waypt, _ = waypt_buffer[0]
                        world.player.set_transform(waypt.transform)
                        #world.player.set_location(waypt.transform.location)
                        collision_glb = False
                        print('too far! respawn')
                        pid_control = agent.run_step()

                    #'''
                    # draw_waypoints(carla_world, [waypt], player_loc.z + 2.0)
                    #world.player.apply_control(pid_control)
                else:
                    print("Nothing is returned from world.tick :(")

                ## Record expert (PID) control
                c = pid_control
                throttle = c.throttle  # 0.0, 1.0
                steer = c.steer  #-1.0, 1.0
                brake = c.brake  # 0.0, 1.0

                #print(throttle, steer, brake)
                v = world.player.get_velocity()
                speed = 3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)
                #print('Speed:   % 15.0f km/h' % (speed))

                control = np.array([throttle, steer, brake, speed])
                saver_control.add_image(control, "Control")

                control_used = np.array(
                    [throttle, float(cust_ctrl.steer), brake, speed])
                saver_control_real.add_image(control_used, "Control")

                if len(position) == 2050:
                    break

                pygame.display.flip()

    finally:

        print("Destroying actors...")
        if world is not None:
            world.destroy()

        ## save position
        position = np.asarray(position)
        save_name = './dagger_data/ep_%d/path.npy' % (episode_count)
        np.save(save_name, position)
        print('position saved in ', save_name)

        pygame.quit()
        print("Done")
def game_loop(args):

    global current_rgb_frame

    pygame.init()
    pygame.font.init()
    world = None

    #########################################################
    ## set up nural net
    ## GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # Assuming that we are on a CUDA machine, this should print a CUDA device:
    print(device)
    net = Net()
    ## load pre trained model
    net.load_state_dict(torch.load('/home/zidong/Desktop/nn/6_5.pth.tar'))
    net.to(device)
    ##########################################################

    try:
        client = carla.Client(args.host, args.port)
        client.set_timeout(2.0)

        display = pygame.display.set_mode((args.width, args.height),
                                          pygame.HWSURFACE | pygame.DOUBLEBUF)

        hud = HUD(args.width, args.height)

        ## world settings: synchronous_mode TODO not sure..
        carla_world = client.get_world()
        settings = carla_world.get_settings()
        settings.synchronous_mode = True
        carla_world.apply_settings(settings)

        frame = None
        count_frame = 0

        out_dir = "_out_data"
        episode_count = 0
        ## save control signal: throttle, steer, brake, speed
        saver_control = BufferedImageSaver(
            '%s/ep_%d/' % (out_dir, episode_count), 100, 1, 1, 4, 'Control')

        #####################################

        world = World(client.get_world(), hud, args.filter)
        controller = DualControl(world, args.autopilot)

        clock = pygame.time.Clock()
        while True:
            clock.tick_busy_loop(60)
            if controller.parse_events(world, clock):
                carla_world.tick()
                ts = carla_world.wait_for_tick()
                return

            world.tick(clock)

            #################################################

            ## set custom control
            cust_ctrl = controller._control
            cust_ctrl.throttle = 0.6  # 18km/h

            # get image data from sensor - current_rgb_frame
            if current_rgb_frame is not None:
                #    print(current_rgb_frame)

                raw_img = np.frombuffer(current_rgb_frame.raw_data,
                                        dtype=np.uint8)
                raw_img = raw_img.reshape(720, 1280, -1)
                raw_img = raw_img[:, :, :3]
                raw_img = cv2.resize(raw_img, dsize=(180, 180))
                #print(raw_img)
                tst_inputs = raw_img / 255 * 2 - 1
                tst_inputs = np.transpose(tst_inputs, (2, 0, 1))
                tst_inputs = np.asarray(tst_inputs, dtype=np.float32)
                tst_inputs = torch.from_numpy(tst_inputs)
                #print(tst_inputs.shape)
                tst_inputs = tst_inputs.unsqueeze(0).to(device)
                outputs = net(tst_inputs)  # input is 180 * 180
                outputs = outputs.detach().squeeze().tolist()
                print(outputs)
                cust_ctrl.steer = outputs

            world.player.apply_control(cust_ctrl)

            count_frame += 1
            ## control
            c = world.player.get_control()
            throttle = c.throttle  # 0.0, 1.0
            steer = c.steer  #-1.0, 1.0
            brake = c.brake  # 0.0, 1.0

            #print(throttle, steer, brake)
            v = world.player.get_velocity()
            speed = 3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)
            #print('Speed:   % 15.0f km/h' % (speed))

            #print(count_frame)

            control = np.array([throttle, steer, brake, speed])

            #saver_control.add_image(control, "Control")

            ## sync mode TODO not sure..
            carla_world.tick()
            ts = carla_world.wait_for_tick()

            #####################################

            world.render(display)
            pygame.display.flip()

    finally:

        if world is not None:
            world.destroy()

        pygame.quit()