def __init__(self, lemmatization=False): BugModel.__init__(self, lemmatization) self.sampler = BorderlineSMOTE(random_state=0) self.calculate_importance = False feature_extractors = [ bug_features.has_str(), bug_features.has_regression_range(), bug_features.severity(), bug_features.is_coverity_issue(), bug_features.has_crash_signature(), bug_features.has_url(), bug_features.has_w3c_url(), bug_features.has_github_url(), bug_features.whiteboard(), bug_features.product(), # TODO: We would like to use the component at the time of filing too, # but we can't because the rollback script doesn't support changes to # components yet. # bug_features.component(), bug_features.num_words_title(), bug_features.num_words_comments(), bug_features.keywords(), ] cleanup_functions = [ feature_cleanup.fileref(), feature_cleanup.url(), feature_cleanup.synonyms(), ] self.extraction_pipeline = Pipeline( [ ( "bug_extractor", bug_features.BugExtractor( feature_extractors, cleanup_functions, rollback=True ), ), ( "union", ColumnTransformer( [ ("data", DictVectorizer(), "data"), ("title", self.text_vectorizer(min_df=0.0001), "title"), ( "comments", self.text_vectorizer(min_df=0.0001), "comments", ), ] ), ), ] ) self.clf = xgboost.XGBClassifier(n_jobs=16) self.clf.set_params(predictor="cpu_predictor")
def __init__(self, lemmatization=False): BugModel.__init__(self, lemmatization) self.sampler = RandomUnderSampler(random_state=0) self.calculate_importance = False feature_extractors = [ bug_features.has_str(), bug_features.has_regression_range(), bug_features.severity(), bug_features.is_coverity_issue(), bug_features.has_crash_signature(), bug_features.has_url(), bug_features.has_w3c_url(), bug_features.has_github_url(), bug_features.whiteboard(), bug_features.patches(), bug_features.landings(), bug_features.product(), bug_features.component(), bug_features.num_words_title(), bug_features.num_words_comments(), bug_features.keywords(), ] cleanup_functions = [ feature_cleanup.fileref(), feature_cleanup.url(), feature_cleanup.synonyms(), ] self.extraction_pipeline = Pipeline( [ ( "bug_extractor", bug_features.BugExtractor( feature_extractors, cleanup_functions, rollback=True ), ), ( "union", ColumnTransformer( [ ("data", DictVectorizer(), "data"), ("title", self.text_vectorizer(), "title"), ("comments", self.text_vectorizer(), "comments"), ] ), ), ] ) self.clf = xgboost.XGBClassifier(n_jobs=16) self.clf.set_params(predictor="cpu_predictor")