def f(cardNO_1,num): print("尝试数:",num,) cardNO_1=list(cardNO_1) cardNO_1.append(num) cardNO_1.reverse() print("尝试数:",num,cardNO_1) #resvCardNO = cardNO_1[::-1].append(num) #print(cardNO_1) jiweisum=0 for i in range(len(cardNO_1)): if i%2==0: jiweisum+=int(cardNO_1[i]) #print(cardNO_1[i],jiweisum) print("奇数和",jiweisum) oushsum=0 for i in range(len(cardNO_1)): tmp=0 if i%2==1: tmp=int(cardNO_1[i])*2 if tmp>10: tmp=tmp-9 oushsum+=tmp print("偶数和",oushsum) if (jiweisum+oushsum)%10==0 : print(num, "is the key") return "ok" else: print(num, "is not the key") cardNO_1.reverse() cardNO_1.pop()
def find_cycle(graph): # select any node to start cycle, may as well be the first cycle = [] current_node = find_start_node(graph) # list(graph.values())[0] cycle.append(current_node) # do initial cycle cycle = get_path_from_node(current_node, graph, cycle) done = False while not done: c = cycle[:] for i in range(0, len(c)): if len(c[i].edges) > 0: cycle_prime = [] cycle_prime.append(c[i]) cycle_prime = get_path_from_node(c[i], graph, cycle_prime) cycle = cycle[:i] + cycle_prime + cycle[i + 1:] break # if we get here an there are no more nodes then we're done if i == len(c) - 1: done = True return cycle
def get_individual_records(db, tables, table_headers, foreign_keys): cursor = db.cursor() var_string = '' table = '' refs = '' var_string += table_headers[0] + "." var_string += table_headers[1] + ", " var_string = var_string[:-2] for table_name in tables: table += table_name + ", " table = table[:-2] if table_headers[0].find("discrete", 0) >= 0: for i in range(len(foreign_keys)): refs += "discrete_" refs += foreign_keys[i][2]+ "." refs += foreign_keys[i][0]+ " = " refs += "discrete_" refs += foreign_keys[i][1] refs += ".id and " else: for i in range(len(foreign_keys)): refs += foreign_keys[i][2]+ "." refs += foreign_keys[i][0]+ " = " refs += foreign_keys[i][1] refs += ".id and " refs = refs[:-5] sql = 'SELECT {} FROM {} WHERE {}'.format(var_string, table, refs) logging.debug("SQL query: %s", sql) cursor.execute(sql) return cursor
def get_records(db, tables, headers, foreign_keys): cursor = db.cursor() var_string = '' table = '' refs = '' for i, table_headers in enumerate(headers): for j in range(len(table_headers)): var_string += tables[i] + "." var_string += headers[i][j] + ", " var_string = var_string[:-2] for i in range(len(tables)): table += tables[i] + ", " table = table[:-2] if tables[0].find("discrete", 0) >= 0: for i in range(len(foreign_keys)): refs += "discrete_" refs += foreign_keys[i][2]+ "." refs += foreign_keys[i][0]+ " = " refs += "discrete_" refs += foreign_keys[i][1] refs += ".id and " else: for i in range(len(foreign_keys)): refs += foreign_keys[i][2]+ "." refs += foreign_keys[i][0]+ " = " refs += foreign_keys[i][1] refs += ".id and " refs = refs[:-5] sql = 'SELECT {} FROM {} WHERE {}'.format(var_string, table, refs) cursor.execute(sql) return cursor
def store_db_struct(db, tables, headers, types, user_input, attributes, discretize, scripts, partition_sizes, offsets, decision, foreign_keys, references): cursor = db.cursor() cursor.execute("DROP TABLE IF EXISTS _tables") cursor.execute("DROP TABLE IF EXISTS _headers") cursor.execute("DROP TABLE IF EXISTS _foreign_keys") create_db_struct(db) for i in range(len(tables)): cursor.execute("INSERT INTO _tables " "(name) " "VALUES (?)", (tables[i],)) for i, table_headers in enumerate(headers): for j in range(len(table_headers)): cursor.execute("INSERT INTO _headers " "(table_id, name, type, user_input, attributes, discretize, script, partition_size, offset, decision) " "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", (i + 1, headers[i][j], types[i][j], user_input[i][j], attributes[i][j], discretize[i][j], scripts[i][j], partition_sizes[i][j], offsets[i][j], decision[i][j])) for i, foreign_key in enumerate(foreign_keys): for j in range(len(foreign_key)): cursor.execute("INSERT INTO _foreign_keys " "(table_id, name, reference) " "VALUES (?, ?, ?)", (i + 1, foreign_key[j], references[i][j],)) db.commit()
def build_alphabet(spectrum, m): """ :param spectrum: an experimental spectrum :param m: the multiplicity threshold :return: a convolution spectrum, trimmed to contain only peptide masses appearing m times or more. """ convolutions = dict() for i in range(0, len(spectrum)): for j in range(i + 1, len(spectrum)): diff = spectrum[j] - spectrum[i] if diff > 0 and 57 <= diff <= 200: if diff in convolutions.keys(): convolutions[diff] += 1 else: convolutions[diff] = 1 sorted_list = sorted(convolutions.items(), key=operator.itemgetter(1), reverse=True) score_to_beat = sorted_list[m - 1][1] result = [] for item in sorted_list: if item[1] >= score_to_beat: result.append(item[0]) return result
def create_paths(self): self.activity_list.sort(key=lambda predecessor: predecessor["Predecessor"]) for i in range(len(self.activity_list)): if self.activity_list[i]["Predecessor"] is '-': self.activity_list[i]["Total Time"] += self.activity_list[i]["Time"] self.paths.append([self.activity_list[i]]) continue else: for path in self.paths: if int(self.activity_list[i]["Predecessor"]) is path[-1]["ID"]: if i+1 < len(self.activity_list) and self.activity_list[i]["Predecessor"] == self.activity_list[i+1]["Predecessor"]: self.paths.append(cp.copy(path)) self.activity_list[i]["Total Time"] += path[-1]["Total Time"]+self.activity_list[i]["Time"] path.append(self.activity_list[i]) break else: self.activity_list[i]["Total Time"] += path[-1]["Total Time"]+self.activity_list[i]["Time"] path.append(self.activity_list[i]) break else: for path1 in self.paths: if int(self.activity_list[i]["Predecessor"]) is path1[-1]["ID"]: self.activity_list[i]["Total Time"] += path1[-1]["Total Time"]+self.activity_list[i]["Time"] path1.append(self.activity_list[i]) break for path1 in self.paths: if int(self.activity_list[i]["Predecessor"]) is path1[-1]["ID"]: self.activity_list[i]["Total Time"] += path1[-1]["Total Time"]+self.activity_list[i]["Time"] path1.append(self.activity_list[i]) break for i in range(len(self.paths)): print("Path %d: "%(i+1), self.paths[i]) return self.paths
def obtain_reduced_table(db, discrete_tables, tables, headers, foreign_keys, relevant_attribute_list, dreduct, map_i, map_j): reduced_table = [] table_header_names = [] records = [] results = [] for attribute in dreduct: reduced_table.append([]) i = map_i[attribute-1] j = map_j[attribute-1] table_header_names.append([discrete_tables[i],headers[i][j]]) i = map_i[len(map_i)-1] j = map_j[len(map_j)-1] table_header_names.append([tables[i],headers[i][j]]) logging.debug("Table-header pairs: %s", table_header_names) for k in range(len(table_header_names)): if k < len(table_header_names) - 1: records.append(get_individual_records(db, discrete_tables, table_header_names[k], foreign_keys)) else: results_record = get_individual_records(db, tables, table_header_names[k], foreign_keys) #records = get_records(db, new_tables, new_headers, foreign_keys) for record in results_record: results.append(record[0]) for i, record in enumerate(records): for j, value in enumerate(record): if relevant_attribute_list[j].count(dreduct[i]) > 0: reduced_table[i].append([value[0], results[j]]) logging.debug("i: %s, j:%s Value: %s, Result: %s, Relevant: %s", i, j, value[0], results[j], relevant_attribute_list[j]) logging.debug("Reduced table: %s", reduced_table) return reduced_table
def import_records_fromXML(db, tables, headers, types, foreign_keys, user_input): value_table = [] value_row = [] value = [] filename = "records.xml" #filename = Console.get_string("Import from", "filename") if not filename: return try: tree = xml.etree.ElementTree.parse(filename) except (EnvironmentError, xml.parsers.expat.ExpatError) as err: print("ERROR:", err) return for i, table_header in enumerate(headers): reset_tables(db, [tables[i]]) for element in tree.findall(tables[i]): try: for j in range(len(table_header)): if user_input[i][j]==1: if types[i][j] == "int" or types[i][j] == "float": instr = 'value.append(' + types[i][j] + '(element.get("' + headers[i][j] + '")))' else: instr = 'value.append(element.get("' + headers[i][j] + '"))' eval(instr) value_row.append(value) value = [] except ValueError as err: db.rollback() print("ERROR:", err) break value_table.append(value_row) value_row = [] logging.debug("Imported data: %s", value_table) ref_table_id = 0 main_table_id = 0 if len(foreign_keys) > 0: for i, current_key in enumerate(foreign_keys): for p, table in enumerate(tables): '''Store the index of the table that contains the reference''' if table == foreign_keys[i][1]: ref_table_id = p if table == foreign_keys[i][2]: main_table_id = p for k, current_value_row in enumerate(value_table[ref_table_id]): try: key_value = get_and_set_foreign(db, tables[ref_table_id], headers[ref_table_id], current_key, current_value_row) value_table[main_table_id][k].append(key_value) insert_sqlite(db, tables[main_table_id], headers[main_table_id], value_table[main_table_id][k]) except ValueError as err: db.rollback() print("ERROR:", err) break else: db.commit()
def __init__(self, point_map, original, generated): self.generated = generated self.original = original self.point_map = point_map self.width = len(point_map[0]) self.height = len(point_map) self.cell_size = int(min(MAX_X / self.width, MAX_Y / self.height)) self.offset = self.cell_size / 2
def score_motifs(motifs): motif_score = 0 for i in range(0, len(motifs)): for j in range(i + 1, len(motifs)): motif_score += gms.get_hamming_distance(motifs[i], motifs[j]) return motif_score
def refresh_discrete_tables(db, tables, headers, types, foreign_keys, discretize, offsets, decision, partition_sizes, user_input): value_table = [] value = [] discrete_tables = list_discrete_tables(tables) reset_tables(db, discrete_tables) records = get_records(db, tables, headers, foreign_keys) for i in tables: value_table.append([]) for record in records: for i, table_headers in enumerate(headers): try: for j in range(len(table_headers)): if user_input[i][j] == 1: if discretize[i][j] == 1: if types[i][j] == "int": value.append(int(ceil(int(record[i*len(table_headers) + j]/ partition_sizes[i][j]))) + offsets[i][j]) elif types[i][j] == "float": value.append(int(ceil(float(record[i*len(table_headers) + j]/ partition_sizes[i][j]))) + offsets[i][j]) else: value.append(record[i*len(table_headers)+j]) value_table[i].append(value) value = [] except ValueError as err: db.rollback() print("ERROR:", err) break logging.debug("Imported data: %s", value_table) ref_table_id = 0 main_table_id = 0 if len(foreign_keys) > 0: for i, current_key in enumerate(foreign_keys): for p, table in enumerate(discrete_tables): '''Store the index of the table that contains the reference''' if table == "discrete_" + foreign_keys[i][1]: ref_table_id = p if table == "discrete_" + foreign_keys[i][2]: main_table_id = p for k, current_value_row in enumerate(value_table[ref_table_id]): try: key_value = get_and_set_foreign(db, discrete_tables[ref_table_id], headers[ref_table_id], current_key, current_value_row) value_table[main_table_id][k].append(key_value) insert_sqlite(db, discrete_tables[main_table_id], headers[main_table_id], value_table[main_table_id][k]) except ValueError as err: db.rollback() print("ERROR:", err) break else: db.commit()
def _read_entity(self, data): import builtins upack = { 5 : { 1 : '>b', 2 : '>h', 4 : '>i', 8 : '>q' }, # int 6 : { 1 : '>B', 2 : '>H', 4 : '>I', 8 : '>Q' } # uint } result = None tlf = data[self._dataoffset] type = (tlf & 112) >> 4 more = tlf & 128 len = tlf & 15 self._dataoffset += 1 if more > 0: tlf = data[self._dataoffset] len = (len << 4) + (tlf & 15) self._dataoffset += 1 len -= 1 if len == 0: # skip empty optional value return result if self._dataoffset + len >= builtins.len(data): raise Exception("Try to read {} bytes, but only have {}".format(len, builtins.len(data) - self._dataoffset)) if type == 0: # octet string result = data[self._dataoffset:self._dataoffset+len] elif type == 5 or type == 6: # int or uint d = data[self._dataoffset:self._dataoffset+len] ulen = len if ulen not in upack[type]: # extend to next greather unpack unit while ulen not in upack[type]: d = b'\x00' + d ulen += 1 result = struct.unpack(upack[type][ulen], d)[0] elif type == 7: # list result = [] self._dataoffset += 1 for i in range(0, len + 1): result.append(self._read_entity(data)) return result else: logger.warning('Skipping unkown field {}'.format(hex(tlf))) self._dataoffset += len return result
def get_relative_discernibility(m, target): '''construct discernibility matrix (collection) relative to current row''' collection = [[] for i in enumerate(m)] for idx in range(len(m)): v = m[idx] for i, row in enumerate(m): if i <= idx: continue collection[i].append(set([(j + 1) for j in range(len(v)-1) if (v[j] != row[j] and v[target] != row[target])])) del collection[0] return collection
def discretize_record(headers, types, discretize, offsets, decision, partition_sizes, user_input, new_record): idx = 0 discrete_record = [] value = [] for i, table_headers in enumerate(headers): for j in range(len(table_headers)): if user_input[i][j] == 1: if discretize[i][j] == 1: if decision[i][j] == 0: if types[i][j] == "int": value.append(int(ceil(int(new_record[i][idx]/ partition_sizes[i][j]))) + offsets[i][j]) idx += 1 elif types[i][j] == "float": value.append(int(ceil(float(new_record[i][idx]/ partition_sizes[i][j]))) + offsets[i][j]) idx += 1 else: value.append(new_record[i][idx]) idx += 1 discrete_record.append(value) value = [] idx = 0 logging.debug("Discrete record: %s", discrete_record) return discrete_record
def leaderboard_sequence(spectrum, n, alphabet): spectrum = sorted(spectrum) parent_mass = max(spectrum) leader_board = [[]] leader_peptide = [] while len(leader_board) > 0: leader_board = expand(leader_board, alphabet) # copy for loop # leader_score = score(leader_peptide, spectrum) leader_score = 0 temp = leader_board[:] for peptide in temp: mass = sum(peptide) if mass == parent_mass: s = cyc_score(peptide, spectrum) if s > leader_score: leader_peptide = peptide leader_score = s elif mass > parent_mass: leader_board.remove(peptide) leader_board = trim(leader_board, spectrum, n) return leader_peptide
def get_profile_score(kmer, profile): profile_score = 1 for i in range(0, len(kmer)): profile_score *= profile[kmer[i]][i] return profile_score
def store_discrete_record(db, discrete_tables, headers, foreign_keys, discrete_record): logging.debug("Discrete record to be added: %s", discrete_record) ref_table_id = 0 main_table_id = 0 if len(foreign_keys) > 0: for i, current_key in enumerate(foreign_keys): for p, table in enumerate(discrete_tables): '''Store the index of the table that contains the reference''' if table == "discrete_" + foreign_keys[i][1]: ref_table_id = p if table == "discrete_" + foreign_keys[i][2]: main_table_id = p try: key_value = get_and_set_foreign(db, discrete_tables[ref_table_id], headers[ref_table_id], current_key, discrete_record[ref_table_id]) discrete_record[main_table_id].append(key_value) insert_sqlite(db, discrete_tables[main_table_id], headers[main_table_id], discrete_record[main_table_id]) except ValueError as err: db.rollback() print("ERROR:", err) break else: db.commit()
def score_motifs(motifs): motif_score = 0 for i in range(1, len(motifs)): motif_score += get_hamming_distance(motifs[0], motifs[i]) return motif_score
def read_record_from_scripts(headers, user_input, modules, decision): idx_script = 0 idx_decision = 0 record = [] value = [] for i, table_headers in enumerate(headers): for j in range(len(table_headers)): if user_input[i][j] == 1: if decision[i][j] == 0: try: value.append(modules[idx_script].run()) idx_script += 1 idx_decision += 1 except ValueError as err: print("ERROR:", err) break else: decision_script = idx_script decision_i = i decision_j = idx_decision real_j = j idx_script += 1 idx_decision += 1 idx_decision = 0 record.append(value) value = [] logging.debug("Record added from scripts: %s", record) logging.debug("i: %s, j: %s", decision_i, decision_j) logging.debug("Decision script: %s", modules[decision_script]) return record, decision_script, decision_i, decision_j, real_j
def reconstruct(kmers): reconstructed = "" for i in range(0, len(kmers) - 1): reconstructed += (kmers[i][0]) reconstructed += (kmers[-1]) return reconstructed
def insert_sqlite(db, tablename, headers, values): cursor = db.cursor() columns = ', '.join(headers) columns = columns[4:] placeholders = ', '.join('?' * len(values)) sql = 'INSERT INTO {} ({}) VALUES ({})'.format(tablename, columns, placeholders) logging.debug("SQL: %s", sql) cursor.execute(sql, values)
def trim(leader_board, spectrum, n): if len(leader_board) > n: leader_scores = [] for peptide in leader_board: leader_scores.append((lin_score(peptide, spectrum), peptide)) leader_scores = sorted(leader_scores, key=operator.itemgetter(0), reverse=True) nth_score = leader_scores[n - 1][0] temp = [] for i in range(0, len(leader_scores)): if leader_scores[i][0] >= nth_score: temp.append(leader_scores[i][1]) leader_board = temp return leader_board
def initialize_random_motifs(dna, k): result = [] l = len(dna[0]) i = random.randint(0, l - k) for row in dna: result.append(row[i:i + k]) return result
def matrix_segment_absorption(main_row, i, k, min_matrix): for j, row in enumerate(min_matrix, start = i): for l in range(len(row)): if i == j and k >= l or main_row[k] == set() or row[l] == set() or main_row[k].issuperset(row[l]): continue if main_row[k].issubset(row[l]): row[l] = main_row[k] return min_matrix
def test_each_kmer(self): result = [] for kmer in gms.each_kmer("ACGTTT", 3): result.append(kmer) self.assertEqual(len(result), 4) self.assertEqual(result[0], "ACG") self.assertEqual(result[3], "TTT")
def linear_spectrum(peptide): """ :param peptide: string representation of a peptide :return: integer linear spectrum as a list of int """ prefix_mass = [0] for i in range(0, len(peptide)): prefix_mass.append(prefix_mass[i] + peptide[i]) linear_spectrum = [] for i in range(0, len(peptide)): for j in range(i + 1, len(peptide) + 1): linear_spectrum.append(prefix_mass[j] - prefix_mass[i]) return sorted(linear_spectrum)
def read_problem(data): first_line = data[0] try: circles = None lines = None if first_line.startswith("/ Meta information:"): data.pop(0) circles, lines = parse_meta_information(data) filtered_input = filter_input(data) width = int(filtered_input.pop(0).strip()) height = int(filtered_input.pop(0).strip()) map = [] for x in range(0, height): line = filtered_input[x].strip() row = [] for char in line: if char in '_': row.append(False) elif char in '#': row.append(True) else: error("Invalid character: %s" % char) if not len(row) == width: error("Invalid row length %s expected %s" % (len(row), width)) error(row) error(line) sys.exit(-1) map.append(row) if not len(row) == width: error("Invalid number of lines %s expected %s" % (len(map), height)) error(row) error(line) sys.exit(-1) return circles, lines, map except ValueError: error("Invalid input!") sys.exit(0)
def create_tables(db, tables, headers, attributes, foreign_keys, references): '''This function is only executed the first time the DB is created''' cursor = db.cursor() drop_tables(db, tables) for i, table_headers in enumerate(headers): elements = "" for j in range(len(table_headers)): elements += headers[i][j] + " " elements += attributes[i][j] + ", " if(i < len(foreign_keys)): for k in range(len(foreign_keys[i])): elements += ' FOREIGN KEY (' elements += foreign_keys[i][k] elements += ') REFERENCES ' elements += references[i][k] + ", " elements = elements[:-2] sql = 'CREATE TABLE IF NOT EXISTS {} ({})'.format(tables[i], elements) cursor.execute(sql)
def deletion_no_empty_sets(A, i, k, min_matrix): for j, row in enumerate(min_matrix, start = i): for l in range(len(row)): current_value = row[l].difference(A) if (i == j and k >= l) or row[l] == set(): continue elif current_value == set(): return False return True
def _read_entity(self, data): upack = { 5: { 1: '>b', 2: '>h', 4: '>i', 8: '>q' }, # int 6: { 1: '>B', 2: '>H', 4: '>I', 8: '>Q' } # uint } result = None packetstart = self._dataoffset tlf = data[self._dataoffset] type = (tlf & 112) >> 4 more = tlf & 128 len = tlf & 15 self._dataoffset += 1 if more > 0: tlf = data[self._dataoffset] len = (len << 4) + (tlf & 15) self._dataoffset += 1 len -= 1 if len == 0: # skip empty optional value return result if self._dataoffset + len >= builtins.len(data): self._parse_error('Tried to read {} bytes, but only have {}', [len, builtins.len(data) - self._dataoffset], data, self._dataoffset, packetstart) elif type == 0: # octet string result = data[self._dataoffset:self._dataoffset + len] elif type == 5 or type == 6: # int or uint d = data[self._dataoffset:self._dataoffset + len] ulen = len if ulen not in upack[type]: # extend to next greather unpack unit while ulen not in upack[type]: d = b'\x00' + d ulen += 1 result = struct.unpack(upack[type][ulen], d)[0] elif type == 7: # list result = [] self._dataoffset += 1 for i in range(0, len + 1): result.append(self._read_entity(data)) return result else: self._parse_error('Skipping unkown field {}', [hex(tlf)], data, self._dataoffset, packetstart) self._dataoffset += len return result
def extract_type(my_sample, play_feature_dic_new, feature_orders): # print (feature_weights) my_vote = {"Achiever": 0, "Explorer": 0, "Careless": 0, "other": 0} my_lst_key = ["Id_Name", "Achiever", "Explorer", "Careless", "other"] my_vote_id = { "Id_Name": my_sample[0], "Achiever": [], "Explorer": [], "Careless": [], "other": [] } my_vote_id_con = { "Id_Name": my_sample[0], "Achiever": 0, "Achiever_Conf": 0, "Explorer": 0, "Explorer_Conf": 0, "Careless": 0, "Careless_Conf": 0, "other": 0, "other_Conf": 0 } for key, item in play_feature_dic_new.items(): # print(key) if my_sample[key] == 'medium': # there is no effect with this medium vaue #print('this feature is medium') pass else: feature_weight = feature_orders[key] my_ordertest = {} my_ordertest = sorted(feature_orders.values(), reverse=True) feature_order = my_ordertest.index(feature_orders[key]) feature_weight = feature_orders[key] #feature_weight=feature_weights[key] for key1 in item.keys(): if (item[key1] == my_sample[key]): my_vote[key1] += feature_weight * (1 / (feature_order + 1)) # my_vote[key1]+=feature_weight else: my_vote[key1] -= feature_weight * (1 / (feature_order + 1)) #my_vote[key1]-=feature_weight #print(my_vote) total_weight = sum(feature_orders.values()) for cokey in my_vote.keys(): my_confidence = round((my_vote[cokey] / total_weight) * 100) my_vote_id_con.update(my_vote) my_vote_id_con[cokey + str('_Conf')] = my_confidence #my_vote_id[cokey].append(my_vote[cokey]) #my_vote_id[cokey].append(my_confidence) if len(set(my_vote.values())) == 2: print('they are similar') print(my_vote) #return(max(my_vote,key=my_vote.get)) #returns only labels return (sorted(my_vote, key=my_vote.get, reverse=True)[0], my_vote_id_con[sorted(my_vote, key=my_vote.get, reverse=True)[0] + str('_Conf')], my_vote_id_con)
sum += temp return sum strings = open("x_yurchik", "r").read().split("\n") x = [float(x) for x in strings] strings = open("y_yurchik", "r").read().split("\n") y = [float(y) for y in strings] strings = open("points2_yurchik").read().split("\n") points = [float(points) for points in strings] table = coef(x, y) for list in table: print(len(list), list) values = [] for point in points: values.append(Eval(table, x, point)) for value in values: print("%.2f" % value) plt.subplot(211) plt.plot(x, y) plt.subplot(212) #plt.axis([x[0], x[-1], -100, y[-1]]) plt.plot(points, values) plt.show()
def length(self): return len(self.accuracies)
def pad_it(word): return word + '*' * (n - len(word))
from builtins import len from selenium import webdriver from BotFunction import Main_Program # Instagram_Info - Edit this for personal info username = "******" password = "******" hash_tags = "HASH_TAGS,SEPARATED,BY,COMMAS" web_driver = webdriver.Chrome('/web/driver/path') hash_tags_list = hash_tags.split(',') hash_tags_number = len(hash_tags_list) def main(): Main_Program.main_program(username, password, hash_tags_number, hash_tags_list, web_driver) main()
def len(obj): # @ReservedAssignment return builtins.len(obj)
def xml_parser(data, project_id, scan_id): """ :param data: :param project_id: :param scan_id: :return: """ fileName = 'Na' filePath = 'Na' evidenceCollected = 'Na' name = 'Na' cvssScore = 'Na' cvssAccessVector = 'Na' cvssAccessComplexity = 'Na' cvssAuthenticationr = 'Na' cvssConfidentialImpact = 'Na' cvssIntegrityImpact = 'Na' cvssAvailabilityImpact = 'Na' severity = 'Na' cwe = 'Na' description = 'Na' references = 'Na' vulnerableSoftware = 'Na' vul_col = 'Na' pt = data.xpath('namespace-uri(.)') # root = data.getroot() inst = [] for scan in data: for dependencies in scan: for dependency in dependencies: if dependency.tag == '{%s}fileName' % pt: fileName = dependency.text if dependency.tag == '{%s}filePath' % pt: filePath = dependency.text if dependency.tag == '{%s}evidenceCollected' % pt: evidenceCollected = dependency.text for vuln in dependency: if vuln.tag == '{%s}vulnerability' % pt: if pt == 'https://jeremylong.github.io/DependencyCheck/dependency-check.2.0.xsd': for vulner in vuln: if vulner.tag == '{%s}name' % pt: name = vulner.text if vulner.tag == '{%s}description' % pt: description = vulner.text if vulner.tag == '{%s}references' % pt: references = vulner.text if vulner.tag == '{%s}vulnerableSoftware' % pt: vulnerableSoftware = vulner.text for vuln_dat in vulner: if vuln_dat.tag == '{%s}cwe' % pt: cwe = vuln_dat.text if vuln_dat.tag == '{%s}severity' % pt: severity_dat = vuln_dat.text if severity_dat == 'HIGH': severity = 'High' elif severity_dat == 'MEDIUM': severity = 'Medium' elif severity_dat == 'LOW': severity = 'Low' elif pt == 'https://jeremylong.github.io/DependencyCheck/dependency-check.2.2.xsd': for dc22 in vuln: if dc22.tag == '{%s}name' % pt: name = dc22.text if dc22.tag == '{%s}description' % pt: description = dc22.text if dc22.tag == '{%s}vulnerableSoftware' % pt: vulnerableSoftware = dc22.text for vuln_dat in dc22: for d in vuln_dat: if d.tag == '{%s}url' % pt: references = d.text if vuln_dat.tag == '{%s}cwe' % pt: cwe = vuln_dat.text if vuln_dat.tag == '{%s}severity' % pt: severity_dat = vuln_dat.text if severity_dat == 'HIGH': severity = 'High' elif severity_dat == 'MEDIUM': severity = 'Medium' elif severity_dat == 'LOW': severity = 'Low' elif pt == 'https://jeremylong.github.io/DependencyCheck/dependency-check.2.3.xsd': for dc22 in vuln: if dc22.tag == '{%s}name' % pt: name = dc22.text if dc22.tag == '{%s}description' % pt: description = dc22.text if dc22.tag == '{%s}vulnerableSoftware' % pt: vulnerableSoftware = dc22.text for vuln_dat in dc22: for d in vuln_dat: if d.tag == '{%s}url' % pt: references = d.text if vuln_dat.tag == '{%s}cwe' % pt: cwe = vuln_dat.text if vuln_dat.tag == '{%s}severity' % pt: severity_dat = vuln_dat.text if severity_dat == 'HIGH': severity = 'High' elif severity_dat == 'MEDIUM': severity = 'Medium' elif severity_dat == 'LOW': severity = 'Low' else: for vulner in vuln: if vulner.tag == '{%s}name' % pt: name = vulner.text if vulner.tag == '{%s}cvssScore' % pt: cvssScore = vulner.text if vulner.tag == '{%s}cvssAccessVector' % pt: cvssAccessVector = vulner.text if vulner.tag == '{%s}cvssAccessComplexity' % pt: cvssAccessComplexity = vulner.text if vulner.tag == '{%s}cvssAuthenticationr' % pt: cvssAuthenticationr = vulner.text if vulner.tag == '{%s}cvssConfidentialImpact' % pt: cvssConfidentialImpact = vulner.text if vulner.tag == '{%s}cvssIntegrityImpact' % pt: cvssIntegrityImpact = vulner.text if vulner.tag == '{%s}cvssAvailabilityImpact' % pt: cvssAvailabilityImpact = vulner.text if vulner.tag == '{%s}severity' % pt: severity = vulner.text if vulner.tag == '{%s}cwe' % pt: cwe = vulner.text if vulner.tag == '{%s}description' % pt: description = vulner.text if vulner.tag == '{%s}references' % pt: references = vulner.text if vulner.tag == '{%s}vulnerableSoftware' % pt: vulnerableSoftware = vulner.text date_time = datetime.now() vul_id = uuid.uuid4() if severity == "High": vul_col = "danger" elif severity == 'Medium': vul_col = "warning" elif severity == 'Low': vul_col = "info" dup_data = name + fileName + severity duplicate_hash = hashlib.sha256(dup_data.encode('utf-8')).hexdigest() match_dup = dependencycheck_scan_results_db.objects.filter( dup_hash=duplicate_hash).values('dup_hash') lenth_match = len(match_dup) if lenth_match == 1: duplicate_vuln = 'Yes' elif lenth_match == 0: duplicate_vuln = 'No' else: duplicate_vuln = 'None' false_p = dependencycheck_scan_results_db.objects.filter( false_positive_hash=duplicate_hash) fp_lenth_match = len(false_p) if fp_lenth_match == 1: false_positive = 'Yes' else: false_positive = 'No' if cwe == 'Na': cwe = name save_all = dependencycheck_scan_results_db( # date_time=date_time, vuln_id=vul_id, scan_id=scan_id, project_id=project_id, fileName=fileName, filePath=filePath, evidenceCollected=evidenceCollected, name=name, cvssScore=cvssScore, cvssAccessVector=cvssAccessVector, cvssAccessComplexity=cvssAccessComplexity, cvssAuthenticationr=cvssAuthenticationr, cvssConfidentialImpact=cvssConfidentialImpact, cvssIntegrityImpact=cvssIntegrityImpact, cvssAvailabilityImpact=cvssAvailabilityImpact, severity=severity, cwe=cwe, description=description, references=references, vulnerableSoftware=vulnerableSoftware, vul_col=vul_col, vuln_status='Open', dup_hash=duplicate_hash, vuln_duplicate=duplicate_vuln, false_positive=false_positive ) save_all.save() all_dependency_data = dependencycheck_scan_results_db.objects.filter(scan_id=scan_id, false_positive='No') total_vul = len(all_dependency_data) total_high = len(all_dependency_data.filter(severity="High")) total_medium = len(all_dependency_data.filter(severity="Medium")) total_low = len(all_dependency_data.filter(severity="Low")) total_duplicate = len(all_dependency_data.filter(vuln_duplicate='Yes')) dependencycheck_scan_db.objects.filter(scan_id=scan_id).update( total_vuln=total_vul, SEVERITY_HIGH=total_high, SEVERITY_MEDIUM=total_medium, SEVERITY_LOW=total_low, total_dup=total_duplicate ) subject = 'Archery Tool Scan Status - DependencyCheck Report Uploaded' message = 'DependencyCheck Scanner has completed the scan ' \ ' %s <br> Total: %s <br>High: %s <br>' \ 'Medium: %s <br>Low %s' % (name, total_vul, total_high, total_medium, total_low) email_sch_notify(subject=subject, message=message) return HttpResponse(status=201)
# If the current model has a better score than one we've already trained then save it if acc > best: best = acc with open(Constants.pickle_dump, "wb") as f: pickle.dump(linear, f) x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split( training_data, result_only, test_size=Constants.training_sample_size) pickle_in = open(Constants.pickle_dump, "rb") linear = pickle.load(pickle_in) print( 'The %s different coefficients (m):' % (len(Constants.dataset_member_names) - 1), linear.coef_) print('Y Intercept:', linear.intercept_) predictions = linear.predict(x_test) for i in range(len(predictions)): rounded_prediction = int(round(predictions[i])) #rounded_prediction = 0 if rounded_prediction < 0 else rounded_prediction print( "Prediction: {0}, Actual result: {1}, Data used to make prediction: {2}" .format( str(rounded_prediction).zfill(2), str(y_test[i]).zfill(2), x_test[i])) p = "studytime"
def __str__(self): return "<Cube of " + len(self.clusters) + " clusters"
def Culstring_Players(My_data): # creating dictionary of play style with their characteristics play_feature_dic = { 'items_visited_total': { 'Achiever': 'low', 'Explorer': 'high', 'Careless': 'low', 'other': 'low' }, 'questions_right_ratio': { 'Achiever': 'high', 'Explorer': 'high', 'Careless': 'low', 'other': 'low' }, 'questions_visited_total': { 'Achiever': 'high', 'Explorer': 'low', 'Careless': 'low', 'other': 'low' }, 'questions_wrong_ratio': { 'Achiever': 'low', 'Explorer': 'low', 'Careless': 'high', 'other': 'high' }, 'time_read_time_total': { 'Achiever': 'high', 'Explorer': 'low', 'Careless': 'low', 'other': 'low' }, 'time_nav_time_total': { 'Achiever': 'high', 'Explorer': 'low', 'Careless': 'low', 'other': 'low' }, 'time_map/time_total': { 'Achiever': 'high', 'Explorer': 'high', 'Careless': 'low', 'other': 'low' } } play_style_dic = { 'Achiever': { 'items_visited_total': 'low', 'questions_right_ratio': 'high', 'questions_visited_total': 'high', 'questions_wrong_ratio': 'low', 'time_read_time_total': 'high', 'time_nav_time_total': 'low', 'time_map/time_total': 'high' }, 'Explorer': { 'items_visited_total': 'high', 'questions_right_ratio': 'high', 'questions_visited_total': 'low', 'questions_wrong_ratio': 'low', 'time_read_time_total': 'low', 'time_nav_time_total': 'high', 'time_map/time_total': 'high' }, 'Careless': { 'items_visited_total': 'low', 'questions_right_ratio': 'low', 'questions_visited_total': 'low', 'questions_wrong_ratio': 'high', 'time_read_time_total': 'low', 'time_nav_time_total': 'low', 'time_map/time_total': 'low' }, 'other': { 'items_visited_total': 'low', 'questions_right_ratio': 'low', 'questions_visited_total': 'low', 'questions_wrong_ratio': 'high', 'time_read_time_total': 'low', 'time_nav_time_total': 'high', 'time_map/time_total': 'low' } } #df=pd.DataFrame(data) #Defining Lables labels_Player_Style = ["Achiever", "Explorer", "CareLess", "Lost"] # list_features=['items_visited_total','time_map/time_total','questions_visited_total','time_read_time_total','questions_right_ratio','time_nav_time_total'] # main order info gain list_features = [ 'items_visited_total', 'questions_right_ratio', 'questions_visited_total', 'questions_wrong_ratio', 'time_read_time_total', 'time_nav_time_total', 'time_map/time_total' ] # inf gain # list_features=['items_visited_total','time_map/time_total','questions_visited_total','questions_wrong_ratio','time_read_time_total','time_nav_time_total','questions_right_ratio'] # inf gain BnData = My_data.iloc[:, 1:8] # selecting categorical data from dataset df = pd.DataFrame(BnData) #Assigning players type My_data['Player_Type'] = 'other' # assignin other as a defult type counter = 0 ThresholdValue = 0.1 while (counter < len(list_features) + 1): counter = counter + 1 print(My_data) ########### 3 Features to compare #############^ if counter == 1: ###### new code with new dictionary ######### My_data['Player_Type'] = np.where( (df[list_features[0]] == 'low') & (df[list_features[1]] == 'high'), 'Achiever', # np.where((df[list_features[0]] == 'high') & (df[list_features[1]] == 'high'), 'Explorer', np.where((df[list_features[0]] == 'low') & (df[list_features[1]] == 'low'), 'Careless', np.where((df[list_features[0]] == 'low') & (df[list_features[1]] == 'high'), 'other', My_data['Player_Type'])))) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break elif counter == 2: My_data['Player_Type'] = np.where( (df[list_features[0]] == 'medium') & (df[list_features[2]] == 'high') & (My_data['Player_Type'] == 'other'), 'Achiever', np.where((df[list_features[0]] == 'medium') & (df[list_features[2]] == 'low') & (My_data['Player_Type'] == 'other'), 'Explorer', My_data['Player_Type'])) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break elif counter == 3: My_data['Player_Type'] = np.where( (df[list_features[2]] == 'medium') & (df[list_features[3]] == 'high') & (My_data['Player_Type'] == 'other'), 'Careless', np.where((df[list_features[2]] == 'medium') & (df[list_features[3]] == 'low') & (My_data['Player_Type'] == 'other'), 'Explorer', My_data['Player_Type'])) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break elif counter == 4: My_data['Player_Type'] = np.where( (df[list_features[3]] == 'medium') & (df[list_features[4]] == 'high') & (My_data['Player_Type'] == 'other'), 'Achiever', np.where((df[list_features[3]] == 'medium') & (df[list_features[4]] == 'low') & (My_data['Player_Type'] == 'other'), 'Explorer', My_data['Player_Type'])) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break elif counter == 5: My_data['Player_Type'] = np.where( (df[list_features[4]] == 'medium') & (df[list_features[5]] == 'high') & (My_data['Player_Type'] == 'other'), 'Explorer', np.where((df[list_features[4]] == 'medium') & (df[list_features[5]] == 'low') & (My_data['Player_Type'] == 'other'), 'Achiever', My_data['Player_Type'])) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break elif counter == 6: My_data['Player_Type'] = np.where( (df[list_features[5]] == 'medium') & (df[list_features[6]] == 'high') & (My_data['Player_Type'] == 'other'), 'Explorer', np.where((df[list_features[5]] == 'medium') & (df[list_features[6]] == 'low') & (My_data['Player_Type'] == 'other'), 'Careless', My_data['Player_Type'])) print(My_data) if My_data[My_data['Player_Type'] == "other"].shape[0] / My_data.shape[0] < ThresholdValue: break print('Player Style Assigning is done') return My_data
def clean_password2(self): value = super(CustomSetPasswordForm, self).clean_password2() if value: if len(value) > 128: self._errors['password1'] = self.error_class( ['Password is too long (max: 128 characters)'])
def reconstruct(self): print("\tStep 4 of 4: Image reconstruction") # create an array as the canvas of the final image groundtruthImage = np.zeros((self.imageHeight, self.imageWidth)) linedImage = np.array(self.imageData.convert('RGB')) for key in sorted( self.offsetDictionary, key=lambda key: builtins.len(self.offsetDictionary[key]), reverse=True): if self.offsetDictionary[key].__len__() < self.Nf * 2: break print('\t', key, self.offsetDictionary[key].__len__()) for i in range(self.offsetDictionary[key].__len__()): # The original image (grayscale) for j in range( self.offsetDictionary[key][i][1], self.offsetDictionary[key][i][1] + self.blockDimension): for k in range( self.offsetDictionary[key][i][0], self.offsetDictionary[key][i][0] + self.blockDimension): groundtruthImage[j][k] = 255 # creating a line edge from the original image (for the visual purpose) for xCoordinate in range(2, self.imageHeight - 2): for yCordinate in range(2, self.imageWidth - 2): if groundtruthImage[xCoordinate, yCordinate] == 255 and \ (groundtruthImage[xCoordinate + 1, yCordinate] == 0 or groundtruthImage[ xCoordinate - 1, yCordinate] == 0 or groundtruthImage[xCoordinate, yCordinate + 1] == 0 or groundtruthImage[ xCoordinate, yCordinate - 1] == 0 or groundtruthImage[xCoordinate - 1, yCordinate + 1] == 0 or groundtruthImage[ xCoordinate + 1, yCordinate + 1] == 0 or groundtruthImage[xCoordinate - 1, yCordinate - 1] == 0 or groundtruthImage[ xCoordinate + 1, yCordinate - 1] == 0): # creating the edge line, respectively left-upper, right-upper, left-down, right-down if groundtruthImage[xCoordinate - 1, yCordinate] == 0 and \ groundtruthImage[xCoordinate, yCordinate - 1] == 0 and \ groundtruthImage[xCoordinate - 1, yCordinate - 1] == 0: linedImage[xCoordinate - 2:xCoordinate, yCordinate, 1] = 255 linedImage[xCoordinate, yCordinate - 2:yCordinate, 1] = 255 linedImage[xCoordinate - 2:xCoordinate, yCordinate - 2:yCordinate, 1] = 255 elif groundtruthImage[xCoordinate + 1, yCordinate] == 0 and \ groundtruthImage[xCoordinate, yCordinate - 1] == 0 and \ groundtruthImage[xCoordinate + 1, yCordinate - 1] == 0: linedImage[xCoordinate + 1:xCoordinate + 3, yCordinate, 1] = 255 linedImage[xCoordinate, yCordinate - 2:yCordinate, 1] = 255 linedImage[xCoordinate + 1:xCoordinate + 3, yCordinate - 2:yCordinate, 1] = 255 elif groundtruthImage[xCoordinate - 1, yCordinate] == 0 and \ groundtruthImage[xCoordinate, yCordinate + 1] == 0 and \ groundtruthImage[xCoordinate - 1, yCordinate + 1] == 0: linedImage[xCoordinate - 2:xCoordinate, yCordinate, 1] = 255 linedImage[xCoordinate, yCordinate + 1:yCordinate + 3, 1] = 255 linedImage[xCoordinate - 2:xCoordinate, yCordinate + 1:yCordinate + 3, 1] = 255 elif groundtruthImage[xCoordinate + 1, yCordinate] == 0 and \ groundtruthImage[xCoordinate, yCordinate + 1] == 0 and \ groundtruthImage[xCoordinate + 1, yCordinate + 1] == 0: linedImage[xCoordinate + 1:xCoordinate + 3, yCordinate, 1] = 255 linedImage[xCoordinate, yCordinate + 1:yCordinate + 3, 1] = 255 linedImage[xCoordinate + 1:xCoordinate + 3, yCordinate + 1:yCordinate + 3, 1] = 255 # creating the straigh line, respectively upper, down, left, right line elif groundtruthImage[xCoordinate, yCordinate + 1] == 0: linedImage[xCoordinate, yCordinate + 1:yCordinate + 3, 1] = 255 elif groundtruthImage[xCoordinate, yCordinate - 1] == 0: linedImage[xCoordinate, yCordinate - 2:yCordinate, 1] = 255 elif groundtruthImage[xCoordinate - 1, yCordinate] == 0: linedImage[xCoordinate - 2:xCoordinate, yCordinate, 1] = 255 elif groundtruthImage[xCoordinate + 1, yCordinate] == 0: linedImage[xCoordinate + 1:xCoordinate + 3, yCordinate, 1] = 255 timeStamp = time.strftime("%Y%m%d_%H%M%S") scipy.misc.imsave( self.imageOutputDirectory + timeStamp + "_" + self.imagePath, groundtruthImage) scipy.misc.imsave( self.imageOutputDirectory + timeStamp + "_lined_" + self.imagePath, linedImage) return self.imageOutputDirectory + timeStamp + "_lined_" + self.imagePath
def vector_length(value): return b.len(value)
def _refresh(self): if self.connected: start = time.time() retry = 5 data = None while retry > 0: try: data = self._read(512) if builtins.len(data) == 0: self.logger.error( 'Reading data from device returned 0 bytes!') else: end_pos = len(data) while end_pos > 0: end_pos = data.rfind(self._v1_end) start_pos = data.rfind(self._v1_start, 0, end_pos) if start_pos != -1 and end_pos == -1: data = data[:start_pos] elif start_pos != -1 and end_pos != -1: chunk = data[start_pos:end_pos + len(self._v1_end) + 3] self.logger.debug( 'Found chunk at {} - {} ({} bytes):{}'. format( start_pos, end_pos, end_pos - start_pos, ''.join(' {:02x}'.format(x) for x in chunk))) chunk_crc_str = '{:02X}{:02X}'.format( chunk[-2], chunk[-1]) chunk_crc_calc = self._crc16(chunk[:-2]) chunk_crc_calc_str = '{:02X}{:02X}'.format( (chunk_crc_calc >> 8) & 0xff, chunk_crc_calc & 0xff) if chunk_crc_str != chunk_crc_calc_str: self.logger.warn( 'CRC checksum mismatch: Expected {}, but was {}' .format(chunk_crc_str, chunk_crc_calc_str)) data = data[:start_pos] else: end_pos = 0 retry = 0 except Exception as e: self.logger.error( 'Reading data from {0} failed: {1} - reconnecting!'. format(self._target, e)) self.disconnect() time.sleep(1) self.connect() retry = retry - 1 if retry == 0: self.logger.warn( 'Trying to read data in next cycle due to connection errors!' ) if data is not None: retry = 0 values = self._parse(self._prepare(data)) for obis in values: self.logger.debug('Entry {}'.format(values[obis])) if obis in self._items: for prop in self._items[obis]: for item in self._items[obis][prop]: item(values[obis][prop], 'Sml') else: values = {} cycletime = time.time() - start self.logger.debug("cycle takes {0} seconds".format(cycletime)) return values
def __init__(self, elements, start=1): self.elements = list(elements) self.start = start self.length = len(elements)
def fire_bullets(ai_settings, screen, ship, bullets): if len(bullets) < ai_settings.bullets_allowed: new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet)
radius = 0.7 stepSize = 5 / 180 * math.pi # assumption that start and end are in degrees for i in startpos: assert 0 <= i <= 358.0 * math.pi / 180 for j in endpos: assert 0 <= j <= 358.0 * math.pi / 180 updates = [startpos] deltas = tuple(map(lambda m, n: m - n, endpos, startpos)) deltas = [i * stepSize / norm(deltas) for i in deltas] print(deltas) while True: acc = True for i in range(len(endpos)): acc = acc and abs(updates[-1][i] - endpos[i]) < 0.05 if acc: break updates.append(tuple(map(lambda m, n: m + n, updates[-1], deltas))) # TODO: valid configuration implementation without tree argument # assert valid_configuration(startpos[0], startpos[1], startpos[2], startpos[3], startpos[4], startpos[5]) # assert valid_configuration(endpos[0], endpos[1], endpos[2], endpos[3], endpos[4], endpos[5]) finalUpdates = updates for i in updates: if not temp_valid_configuration(i[0], i[1], i[2], i[3], i[4], i[5]): for k in updates[updates.index(i) + 1:]: if temp_valid_configuration(k[0], k[1], k[2], k[3], k[4], k[5]):
def printSubTable(self): for row in self.subTable: separator = ' ' print(len(row), " - ", " ".join(format(x, "8.5f") for x in row))
elif "mysql" in file_content['dependencies']: back_list.append(y) elif "pg" in file_content['dependencies']: back_list.append(y) else: other_list.append(y) # print('OTHERS') except: other_list.append(y) continue print(' ') return json_designer(front_list, back_list, other_list, user_name) df1 = pd.read_json('Json files/(2019-01-01)---(2019-06-30).json') column_names = df1['owner_name'][0:len(df1['owner_name'])] count = 0 part = 0 print('Processing starts') initial_start = 0 for each_name in column_names: start_time = time.time() count += 1 try: if len(collect_repo(each_name)) < 1000: json_string = sort_repo(each_name, collect_repo(each_name)) json_file = json.loads(json_string) if (len(json_file['front_list']) > 0) and (len(json_file['back_list']) > 0):
def get_accuracy_rate(self): return sum(self.accuracies.values()) / len(self.accuracies) * 100
print(front_repo['repo_name'] + ' and ' + back_repo['repo_name'] + ' compared') if similar(front_repo['repo_name'], back_repo['repo_name']) > 0.5: matched_repos.append(front_repo['repo_name'] + '///' + back_repo['repo_name']) return matched_repos with open( '/Json files/' + 'Separated repos((2019-01-01)---(2019-06-30)(1)).json', 'r') as filehandle: file_content = json.load(filehandle) for user in file_content: if len(user['front_list']) != 0 and len(user['back_list']) != 0: preferred_users.append(user) print('All preferred users collected.') count = 0 for each_user in preferred_users: if len(front_back(each_user['front_list'], each_user['back_list'])) == 0: print('No matches for user: '******'user_name']) else: count += 1 found_repos.append( front_back(each_user['front_list'], each_user['back_list'])) # print(similar('happy-ionic-frontend', 'happy-express-backend')) print('############################################################') print(found_repos)
import numpy as np import numpy.linalg as alg import scipy as spy import builtins import matplotlib.pylab as pl import time # sizeList = [2,3,4,5,6,7,8,9,10,50,100,200,300,500,707,900,1000,1100] sizeList = [100] #[15,17,20,25] timeList = [10] useCVX = True np.random.seed(0) timingVals = np.zeros([builtins.len(sizeList), builtins.len(timeList)]) for sizeTemp in range(builtins.len(sizeList)): for timeTemp in range(builtins.len(timeList)): size = sizeList[sizeTemp] timesteps = timeList[timeTemp] print("Solving for size", size, ", timesteps ", timesteps) samplesPerStep = 10 #int(np.log2(size)) timeShift = timesteps / 3 #Number of steps till new covariance matrix appears eps = 1e-3 # Optimization parameters alpha = 0.1 # Lasso parameter beta = 0.6 # Weight between basis nodes FroError = []
#!/usr/bin/python3 # generate config and genesis files for test import json import os import string import subprocess import conf import conf_type import sys from builtins import len, int, dict, open, set nodeCount = len(conf.nodes) # pkgen 명령 위치(path)를 적어줄 것 cliCmd = "./aergocli" def low_bool(b): if b: return "true" else: return "false" def generate_genesis(conf, template): genesis_filename = "genesis_%s.json" % conf.testname bps = list() for n in conf.nodes: if n.role == conf_type.Role.producer:
def count_uniq(iterable): '''Return the unique element count of ``iterable``.''' return builtins.len(builtins.set(iterable))
else: minefield.minefield[individual.get_position_y()][individual.get_position_x()] = '0' except IndexError: distance_dict[str(population_copy.index(individual))] = find_distance(minefield.get_exit_x(), minefield.get_exit_y(), individual.get_position_x(), individual.get_position_y()) population.remove(individual) rows -= 1 row -= 1 row += 1 column += 1 print(len(population)) print(len(distance_dict)) if reached_end: break if len(distance_dict) >= individuals_per_generation: break print() print() print() print() minefield.print() minefield.remove_zeros()
def len(channel): return builtins.len(channel.buffer)
def len(s): '''Replacement for the built-in :func:`len() <python:len>` function.''' return builtins.len(s)
_VSCODE_columnNames = list(_VSCODE_df) # Compute the index column. It may have been renamed _VSCODE_indexColumn = _VSCODE_df.index.name if _VSCODE_df.index.name else "index" _VSCODE_columnTypes = _VSCODE_builtins.list(_VSCODE_df.dtypes) del _VSCODE_df # Make sure the index column exists if _VSCODE_indexColumn not in _VSCODE_columnNames: _VSCODE_columnNames.insert(0, _VSCODE_indexColumn) _VSCODE_columnTypes.insert(0, "int64") # Then loop and generate our output json _VSCODE_columns = [] for _VSCODE_n in _VSCODE_builtins.range( 0, _VSCODE_builtins.len(_VSCODE_columnNames)): _VSCODE_column_type = _VSCODE_columnTypes[_VSCODE_n] _VSCODE_column_name = str(_VSCODE_columnNames[_VSCODE_n]) _VSCODE_colobj = {} _VSCODE_colobj["key"] = _VSCODE_column_name _VSCODE_colobj["name"] = _VSCODE_column_name _VSCODE_colobj["type"] = str(_VSCODE_column_type) _VSCODE_columns.append(_VSCODE_colobj) del _VSCODE_column_name del _VSCODE_column_type del _VSCODE_columnNames del _VSCODE_columnTypes # Save this in our target _VSCODE_targetVariable["columns"] = _VSCODE_columns
def process_images(path, rgb_line_ending, depth_line_ending, manual): """ Finds images at the specified [path] and runs the edge detection code to generate predictions on RGB, D, and RGD versions of the image. Requires: Files of the same object MUST have the same name + an additional line ending. The line endings for the rgb and depth frames MUST BE DISTINCT. Ex. path="home/images", rgb_line_ending=".png", depth_line_ending="depth.png" Each object MUST HAVE BOTH A RGB AND DEPTH IMAGE. """ # TODO: add a toggle to store manual/user input also formats = ["rgb", "d", "rgd"] # store image names of incorrect preds incorrect_preds = [[], [], []] manual_incorrect_preds = [[], [], []] # store accuracy percentages # [rgb, d, rgd] holds sum of pred evals. divide by num preds later percentages = [0, 0, 0] manual_percentages = [0, 0, 0] # stores list of unique image names with line ending removed image_names = [] # checks for image files in immediate directory for entry in os.scandir(path): if entry.is_file(): image_name = "" if entry.name.endswith(rgb_line_ending): # remove line ending image_name = entry.name[0:-len(rgb_line_ending)] image_names.append(image_name) elif entry.name.endswith(depth_line_ending): # remove line ending image_name = entry.name[0:-len(depth_line_ending)] image_names.append(image_name) # get unique vals image_names = set(image_names) # print(image_names) # loop over image names for image_name in image_names: # Generate all the actual images # rgb image stored in bgr order because OpenCV is just like that bgr = cv2.imread(path + image_name + rgb_line_ending) depth = process_depth(path + image_name, depth_line_ending) # If you haven't already, do any cropping/scaling necessary (BIGBIRD) # resizing to fit on screen when displaying output image whratio = bgr.shape[1] / bgr.shape[0] # need to scale down labels also - new width/old width scale = int(whratio * 400) / bgr.shape[1] # resize takes parameter order (img, width, height) bgr = cv2.resize(bgr, (int(whratio * 400), 400)) depth = cv2.resize(depth, (int(whratio * 400), 400)) b, g, r = cv2.split(bgr) dgr = cv2.merge((depth, g, r)) depth3channel = cv2.merge((depth, depth, depth)) images = [bgr, depth3channel, dgr] # iterate over for comparison width, height = bgr.shape[1], bgr.shape[0] for i in range(3): pred_coords = grab_points(0, 0, width, height, images[i]) # TODO: search image_name.txt file for labels and eval pred pred_grasp_valid = eval_pred(images[i], pred_coords, path + image_name + "_grasps.txt", scale) cv2.imshow("preds", images[i]) cv2.waitKey(0) if pred_grasp_valid: print(image_name + " " + str(i) + " was a valid grasp") percentages[i] += 1 else: print(image_name + " " + str(i) + " was NOT a valid grasp") incorrect_preds[i].append(image_name) if manual: # user input to confirm whether grasp was correct userinput = input("Is the grasp valid? (y/n) \n") while userinput != "y" and userinput != "n": print("Invalid input. Please enter y/n") userinput = input("Is the grasp valid? (y/n) \n") if userinput == "y": manual_percentages[i] += 1 else: manual_incorrect_preds[i].append(image_name) print("Checked predictions on ", len(image_names), " images.") print("Automated rgb, d, rgd percentages: ", np.array(percentages) / len(image_names)) # print incorrectly classified image names, and the channel format print("Automatically-identified incorrect preds ", incorrect_preds) if manual: print("Manual rgb, d, rgd percentages: ", np.array(manual_percentages) / len(image_names)) print("Manually-identified incorrect preds ", manual_incorrect_preds)