예제 #1
0
파일: io.py 프로젝트: casperfibaek/buteo
def raster_to_disk(
    raster: Union[List[Union[str, gdal.Dataset]], str, gdal.Dataset],
    out_path: Union[List[str], str],
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
) -> Union[List[str], str]:
    """Saves or copies a raster to disk. Can be used to change datatype.
    Input is either a filepath to a raster or a GDAL.Dataset.
    The driver is infered from the file extension.

    Args:
        raster (path | Dataset): The raster to save to disk.
        out_path (path): The destination to save to.

    **kwargs:
        overwrite (bool): If the file exists, should it be overwritten?

        creation_options (list): GDAL creation options. Defaults are:
            "TILED=YES"
            "NUM_THREADS=ALL_CPUS"
            "BIGG_TIF=YES"
            "COMPRESS=LZW"

        opened (bool): Should the resulting raster be opened
        or a path.

    Returns:
        The filepath for the newly created raster.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(out_path, [list, str], "out_path")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options", allow_none=True)

    if creation_options is None:
        creation_options = []

    if not os.path.dirname(os.path.abspath(out_path)):
        raise ValueError(
            f"Output folder does not exist. Please create first. {out_path}")

    raster_list, path_list = ready_io_raster(raster, out_path, overwrite)

    output: List[str] = []
    for index, in_raster in enumerate(raster_list):
        path = _raster_to_disk(
            in_raster,
            path_list[index],
            overwrite=overwrite,
            creation_options=default_options(creation_options),
        )

        output.append(path)

    if isinstance(raster, list):
        return output

    return output[0]
예제 #2
0
파일: io.py 프로젝트: casperfibaek/buteo
def raster_set_datatype(
    raster: Union[List[Union[str, gdal.Dataset]], str, gdal.Dataset],
    dtype: str,
    out_path: Optional[Union[List[str], str]],
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
) -> Union[List[str], str]:
    """Changes the datatype of a raster.

    Args:
        raster (path | Dataset): The raster(s) to convert.

        dtype (str): The destination datatype: Can be float32, uint8 etc..

    **kwargs:
        out_path (str | None): The destination of the output. If none,
        a memory raster with a random name is generated.

        creation_options (list): A list of options for the GDAL creation. Only
        used if an outpath is specified. Defaults are:
            "TILED=YES"
            "NUM_THREADS=ALL_CPUS"
            "BIGG_TIF=YES"
            "COMPRESS=LZW"

    Returns:
        A path to the newly created raster.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(dtype, [str], "dtype")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(creation_options, [list], "creation_options", allow_none=True)

    raster_list, path_list = ready_io_raster(raster, out_path, overwrite)

    output = []
    for index, in_raster in enumerate(raster_list):
        path = _raster_set_datatype(
            in_raster,
            dtype,
            out_path=path_list[index],
            overwrite=overwrite,
            creation_options=default_options(creation_options),
        )

        output.append(path)

    if isinstance(raster, list):
        return output

    return output[0]
예제 #3
0
파일: io.py 프로젝트: casperfibaek/buteo
def _raster_set_datatype(
    raster: Union[str, gdal.Dataset],
    dtype: str,
    out_path: Optional[str],
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
) -> str:
    """OBS: INTERNAL: Single output.

    Changes the datatype of a raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(dtype, [str], "dtype")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(creation_options, [list], "creation_options", allow_none=True)

    ref = open_raster(raster)
    metadata = raster_to_metadata(ref)

    path = out_path
    if path is None:
        name = metadata["name"]
        path = f"/vsimem/{name}_{uuid4().int}.tif"

    driver = gdal.GetDriverByName(path_to_driver_raster(path))

    remove_if_overwrite(path, overwrite)

    copy = driver.Create(
        path,
        metadata["height"],
        metadata["width"],
        metadata["band_count"],
        translate_datatypes(dtype),
        default_options(creation_options),
    )

    copy.SetProjection(metadata["projection"])
    copy.SetGeoTransform(metadata["transform"])

    array = raster_to_array(ref)

    for band_idx in range(metadata["band_count"]):
        band = copy.GetRasterBand(band_idx + 1)
        band.WriteArray(array[:, :, band_idx])
        band.SetNoDataValue(metadata["nodata_value"])

    return path
예제 #4
0
def add_border_to_raster(
    input_raster,
    out_path=None,
    border_size=100,
    border_size_unit="px",
    border_value=0,
    overwrite: bool = True,
    creation_options: list = [],
):
    in_raster = open_raster(input_raster)
    metadata = raster_to_metadata(in_raster)

    # Parse the driver
    driver_name = "GTiff" if out_path is None else path_to_driver_raster(
        out_path)
    if driver_name is None:
        raise ValueError(f"Unable to parse filetype from path: {out_path}")

    driver = gdal.GetDriverByName(driver_name)
    if driver is None:
        raise ValueError(
            f"Error while creating driver from extension: {out_path}")

    output_name = None
    if out_path is None:
        output_name = f"/vsimem/raster_proximity_{uuid4().int}.tif"
    else:
        output_name = out_path

    in_arr = raster_to_array(in_raster)

    if border_size_unit == "px":
        border_size_y = border_size
        border_size_x = border_size
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )
    else:
        border_size_y = round(border_size / metadata["pixel_height"])
        border_size_x = round(border_size / metadata["pixel_width"])
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )

    new_arr = np.full(new_shape, border_value, dtype=in_arr.dtype)
    new_arr[border_size_y:-border_size_y,
            border_size_x:-border_size_x, :] = in_arr

    if isinstance(in_arr, np.ma.MaskedArray):
        mask = np.zeros(new_shape, dtype=bool)
        mask[border_size_y:-border_size_y,
             border_size_x:-border_size_x, :] = in_arr.mask
        new_arr = np.ma.array(new_arr, mask=mask)
        new_arr.fill_value = in_arr.fill_value

    remove_if_overwrite(out_path, overwrite)

    dest_raster = driver.Create(
        output_name,
        new_shape[1],
        new_shape[0],
        metadata["band_count"],
        numpy_to_gdal_datatype(in_arr.dtype),
        default_options(creation_options),
    )

    og_transform = in_raster.GetGeoTransform()

    new_transform = []
    for i in og_transform:
        new_transform.append(i)

    new_transform[0] -= border_size_x * og_transform[1]
    new_transform[3] -= border_size_y * og_transform[5]

    dest_raster.SetGeoTransform(new_transform)
    dest_raster.SetProjection(in_raster.GetProjectionRef())

    for band_num in range(1, metadata["band_count"] + 1):
        dst_band = dest_raster.GetRasterBand(band_num)
        dst_band.WriteArray(new_arr[:, :, band_num - 1])

        if metadata["has_nodata"]:
            dst_band.SetNoDataValue(metadata["nodata_value"])

    return output_name
예제 #5
0
def internal_reproject_raster(
    raster: Union[str, gdal.Dataset],
    projection: Union[int, str, gdal.Dataset, ogr.DataSource,
                      osr.SpatialReference],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    copy_if_already_correct: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_reprojected",
) -> str:
    """OBS: Internal. Single output.

    Reproject a raster(s) to a target coordinate reference system.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(
        projection,
        [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference],
        "projection",
    )
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(copy_if_already_correct, [bool], "copy_if_already_correct")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)
    out_name = path_list[0]
    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    original_projection = parse_projection(ref)
    target_projection = parse_projection(projection)

    if not isinstance(original_projection, osr.SpatialReference):
        raise Exception("Error while parsing input projection.")

    if not isinstance(target_projection, osr.SpatialReference):
        raise Exception("Error while parsing target projection.")

    if original_projection.IsSame(target_projection):
        if not copy_if_already_correct:
            return get_raster_path(ref)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    reprojected = gdal.Warp(
        out_name,
        ref,
        format=out_format,
        srcSRS=original_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if reprojected is None:
        raise Exception(f"Error while reprojecting raster: {raster}")

    return out_name
예제 #6
0
파일: warp.py 프로젝트: casperfibaek/buteo
def _warp_raster(
    raster: Union[str, gdal.Dataset],
    out_path: Optional[str] = None,
    projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource,
                               osr.SpatialReference]] = None,
    clip_geom: Optional[Union[str, ogr.DataSource]] = None,
    target_size: Optional[Union[Tuple[Number], Number]] = None,
    target_in_pixels: bool = False,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    all_touch: bool = True,
    adjust_bbox: bool = True,
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
    src_nodata: Union[str, int, float] = "infer",
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_resampled",
) -> str:
    """WARNING: INTERNAL. DO NOT USE."""
    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)

    origin = open_raster(raster_list[0])
    out_name = path_list[0]
    raster_metadata = raster_to_metadata(origin, create_geometry=True)

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_projection: osr.SpatialReference = raster_metadata["projection_osr"]
    origin_extent: ogr.Geometry = raster_metadata["extent_geom_latlng"]

    target_projection = origin_projection
    if projection is not None:
        target_projection = parse_projection(projection)

    if clip_geom is not None:
        if is_raster(clip_geom):
            opened_raster = open_raster(clip_geom)
            clip_metadata_raster = raster_to_metadata(opened_raster,
                                                      create_geometry=True)
            clip_ds = clip_metadata_raster["extent_datasource"]
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        elif is_vector(clip_geom):
            clip_ds = open_vector(clip_geom)
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        else:
            if file_exists(clip_geom):
                raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
            else:
                raise ValueError(f"Unable to find clip geometry {clip_geom}")

        if layer_to_clip > (clip_metadata["layer_count"] - 1):
            raise ValueError("Requested an unable layer_to_clip.")

        clip_projection = clip_metadata["projection_osr"]
        clip_extent = clip_metadata["extent_geom_latlng"]

        # Fast check: Does the extent of the two inputs overlap?
        if not origin_extent.Intersects(clip_extent):
            raise Exception("Clipping geometry did not intersect raster.")

        # Check if projections match, otherwise reproject target geom.
        if not target_projection.IsSame(clip_projection):
            clip_metadata["extent"] = reproject_extent(
                clip_metadata["extent"],
                clip_projection,
                target_projection,
            )

        # The extent needs to be reprojected to the target.
        # this ensures that adjust_bbox works.
        x_min_og, y_max_og, x_max_og, y_min_og = reproject_extent(
            raster_metadata["extent"],
            origin_projection,
            target_projection,
        )
        output_bounds = (x_min_og, y_min_og, x_max_og, y_max_og
                         )  # gdal_warp format

        if crop_to_geom:

            if adjust_bbox:
                output_bounds = align_bbox(
                    raster_metadata["extent"],
                    clip_metadata["extent"],
                    raster_metadata["pixel_width"],
                    raster_metadata["pixel_height"],
                    warp_format=True,
                )

            else:
                x_min_og, y_max_og, x_max_og, y_min_og = clip_metadata[
                    "extent"]
                output_bounds = (
                    x_min_og,
                    y_min_og,
                    x_max_og,
                    y_max_og,
                )  # gdal_warp format

        if clip_metadata["layer_count"] > 1:
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
                layer_to_extract=layer_to_clip,
            )
        elif not isinstance(clip_ds, str):
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
            )

        if clip_ds is None:
            raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    out_nodata = None
    if src_nodata is not None:
        out_nodata = raster_metadata["nodata_value"]
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        else:
            out_nodata = dst_nodata

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    warped = gdal.Warp(
        out_name,
        origin,
        xRes=x_res,
        yRes=y_res,
        width=x_pixels,
        height=y_pixels,
        cutlineDSName=clip_ds,
        outputBounds=output_bounds,
        format=out_format,
        srcSRS=origin_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        warpOptions=warp_options,
        srcNodata=src_nodata,
        dstNodata=out_nodata,
        targetAlignedPixels=False,
        cropToCutline=False,
        multithread=True,
    )

    if warped is None:
        raise Exception(f"Error while warping raster: {raster}")

    return out_name
예제 #7
0
def internal_resample_raster(
    raster: Union[str, gdal.Dataset],
    target_size: Union[tuple, int, float, str, gdal.Dataset],
    target_in_pixels: bool = False,
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    overwrite: bool = True,
    creation_options: list = [],
    dtype=None,
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_resampled",
    add_uuid: bool = False,
) -> str:
    """OBS: Internal. Single output.

    Reprojects a raster given a target projection. Beware if your input is in
    latitude and longitude, you'll need to specify the target_size in degrees as well.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(target_size, [tuple, int, float, str, gdal.Dataset],
               "target_size")
    type_check(target_in_pixels, [bool], "target_in_pixels")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(
        raster,
        out_path,
        overwrite=overwrite,
        prefix=prefix,
        postfix=postfix,
        uuid=add_uuid,
    )

    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)
    out_name = path_list[0]

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    resampled = gdal.Warp(
        out_name,
        ref,
        width=x_pixels,
        height=y_pixels,
        xRes=x_res,
        yRes=y_res,
        format=out_format,
        outputType=translate_datatypes(dtype),
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if resampled is None:
        raise Exception(f"Error while resampling raster: {out_name}")

    return out_name
예제 #8
0
파일: io.py 프로젝트: casperfibaek/buteo
def array_to_raster(
    array: Union[np.ndarray, np.ma.MaskedArray],
    reference: Union[str, gdal.Dataset],
    out_path: Optional[str] = None,
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
) -> str:
    """Turns a numpy array into a GDAL dataset or exported
        as a raster using a reference raster.

    Args:
        array (np.ndarray): The numpy array to convert

        reference (path or Dataset): A reference on which to base
        the geographical extent and projection of the raster.

    **kwargs:
        out_path (path): The location to save the raster. If None is
        supplied an in memory raster is returned. filetype is infered
        from the extension.

        overwrite (bool): Specifies if the file already exists, should
        it be overwritten?

        creation_options (list): A list of options for the GDAL creation. Only
        used if an outpath is specified. Defaults are:
            "TILED=YES"
            "NUM_THREADS=ALL_CPUS"
            "BIGG_TIF=YES"
            "COMPRESS=LZW"

    Returns:
        If an out_path has been specified, it returns the path to the
        newly created raster file.
    """
    type_check(array, [np.ndarray, np.ma.MaskedArray], "array")
    type_check(reference, [str, gdal.Dataset], "reference")
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options", allow_none=True)

    # Verify the numpy array
    if (not isinstance(array, (np.ndarray, np.ma.MaskedArray))
            or array.size == 0 or array.ndim < 2 or array.ndim > 3):
        raise ValueError(f"Input array is invalid {array}")

    # Parse the driver
    driver_name = "GTiff" if out_path is None else path_to_driver_raster(
        out_path)
    if driver_name is None:
        raise ValueError(f"Unable to parse filetype from path: {out_path}")

    driver = gdal.GetDriverByName(driver_name)
    if driver is None:
        raise ValueError(
            f"Error while creating driver from extension: {out_path}")

    # How many bands?
    bands = 1
    if array.ndim == 3:
        bands = array.shape[2]

    overwrite_required(out_path, overwrite)

    metadata = raster_to_metadata(reference)
    reference_nodata = metadata["nodata_value"]

    # handle nodata. GDAL python throws error if conversion in not explicit.
    if reference_nodata is not None:
        reference_nodata = float(reference_nodata)
        if (reference_nodata).is_integer() is True:
            reference_nodata = int(reference_nodata)

    # Handle nodata
    input_nodata = None
    if np.ma.is_masked(array) is True:
        input_nodata = array.get_fill_value(
        )  # type: ignore (because it's a masked array.)

    destination_dtype = numpy_to_gdal_datatype(array.dtype)

    # Weird double issue with GDAL and numpy. Cast to float or int
    if input_nodata is not None:
        input_nodata = float(input_nodata)
        if (input_nodata).is_integer() is True:
            input_nodata = int(input_nodata)

    output_name = None
    if out_path is None:
        output_name = f"/vsimem/array_to_raster_{uuid4().int}.tif"
    else:
        output_name = out_path

    if metadata["width"] != array.shape[1] or metadata[
            "height"] != array.shape[0]:
        print("WARNING: Input array and raster are not of equal size.")

    remove_if_overwrite(out_path, overwrite)

    destination = driver.Create(
        output_name,
        array.shape[1],
        array.shape[0],
        bands,
        destination_dtype,
        default_options(creation_options),
    )

    destination.SetProjection(metadata["projection"])
    destination.SetGeoTransform(metadata["transform"])

    for band_idx in range(bands):
        band = destination.GetRasterBand(band_idx + 1)
        if bands > 1 or array.ndim == 3:
            band.WriteArray(array[:, :, band_idx])
        else:
            band.WriteArray(array)

        if input_nodata is not None:
            band.SetNoDataValue(input_nodata)
        elif reference_nodata is not None:
            band.SetNoDataValue(reference_nodata)

    return output_name
예제 #9
0
파일: io.py 프로젝트: casperfibaek/buteo
def stack_rasters(
    rasters: List[Union[str, gdal.Dataset]],
    out_path: Optional[str] = None,
    overwrite: bool = True,
    dtype: Optional[str] = None,
    creation_options: Union[list, None] = None,
) -> str:
    """Stacks a list of rasters. Must be aligned."""
    type_check(rasters, [list], "rasters")
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(dtype, [str], "dtype", allow_none=True)
    type_check(creation_options, [list], "creation_options", allow_none=True)

    if not rasters_are_aligned(rasters, same_extent=True):
        raise ValueError("Rasters are not aligned. Try running align_rasters.")

    overwrite_required(out_path, overwrite)

    # Ensures that all the input rasters are valid.
    raster_list = get_raster_path(rasters, return_list=True)

    if out_path is not None and path_to_ext(out_path) == ".vrt":
        raise ValueError("Please use stack_rasters_vrt to create vrt files.")

    # Parse the driver
    driver_name = "GTiff" if out_path is None else path_to_driver_raster(
        out_path)
    if driver_name is None:
        raise ValueError(f"Unable to parse filetype from path: {out_path}")

    driver = gdal.GetDriverByName(driver_name)
    if driver is None:
        raise ValueError(
            f"Error while creating driver from extension: {out_path}")

    output_name = None
    if out_path is None:
        output_name = f"/vsimem/stacked_rasters_{uuid4().int}.tif"
    else:
        output_name = out_path

    raster_dtype = raster_to_metadata(raster_list[0])["datatype_gdal_raw"]

    datatype = translate_datatypes(
        dtype) if dtype is not None else raster_dtype

    nodata_values: List[Union[int, float, None]] = []
    nodata_missmatch = False
    nodata_value = None
    total_bands = 0
    metadatas = []
    for raster in raster_list:
        metadata = raster_to_metadata(raster)
        metadatas.append(metadata)

        nodata_value = metadata["nodata_value"]
        total_bands += metadata["band_count"]

        if nodata_missmatch is False:
            for ndv in nodata_values:
                if nodata_missmatch:
                    continue

                if metadata["nodata_value"] != ndv:
                    print(
                        "WARNING: NoDataValues of input rasters do not match. Removing nodata."
                    )
                    nodata_missmatch = True

        nodata_values.append(metadata["nodata_value"])

    if nodata_missmatch:
        nodata_value = None

    remove_if_overwrite(out_path, overwrite)

    destination = driver.Create(
        output_name,
        metadatas[0]["width"],
        metadatas[0]["height"],
        total_bands,
        datatype,
        default_options(creation_options),
    )

    destination.SetProjection(metadatas[0]["projection"])
    destination.SetGeoTransform(metadatas[0]["transform"])

    bands_added = 0
    for index, raster in enumerate(raster_list):
        metadata = metadatas[index]
        band_count = metadata["band_count"]

        array = raster_to_array(raster)

        for band_idx in range(band_count):
            dst_band = destination.GetRasterBand(bands_added + 1)
            dst_band.WriteArray(array[:, :, band_idx])

            if nodata_value is not None:
                dst_band.SetNoDataValue(nodata_value)

            bands_added += 1

    return output_name
예제 #10
0
파일: shift.py 프로젝트: casperfibaek/buteo
def shift_raster(
    raster: Union[gdal.Dataset, str],
    shift: Union[Number, Tuple[Number, Number], List[Number]],
    out_path: Optional[str] = None,
    overwrite: bool = True,
    creation_options: list = [],
) -> Union[gdal.Dataset, str]:
    """Shifts a raster in a given direction.

    Returns:
        An in-memory raster. If an out_path is given the output is a string containing
        the path to the newly created raster.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(shift, [tuple, list], "shift")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")

    ref = open_raster(raster)
    metadata = raster_to_metadata(ref)

    x_shift: float = 0.0
    y_shift: float = 0.0
    if isinstance(shift, tuple) or isinstance(shift, list):
        if len(shift) == 1:
            if is_number(shift[0]):
                x_shift = float(shift[0])
                y_shift = float(shift[0])
            else:
                raise ValueError(
                    "shift is not a number or a list/tuple of numbers.")
        elif len(shift) == 2:
            if is_number(shift[0]) and is_number(shift[1]):
                x_shift = float(shift[0])
                y_shift = float(shift[1])
        else:
            raise ValueError("shift is either empty or larger than 2.")
    elif is_number(shift):
        x_shift = float(shift)
        y_shift = float(shift)
    else:
        raise ValueError("shift is invalid.")

    out_name = None
    out_format = None
    out_creation_options = []
    if out_path is None:
        raster_name = metadata["basename"]
        out_name = f"/vsimem/{raster_name}_{uuid4().int}_resampled.tif"
        out_format = "GTiff"
    else:
        out_creation_options = default_options(creation_options)
        out_name = out_path
        out_format = path_to_driver_raster(out_path)

    remove_if_overwrite(out_path, overwrite)

    driver = gdal.GetDriverByName(out_format)

    shifted = driver.Create(
        out_name,  # Location of the saved raster, ignored if driver is memory.
        metadata["width"],  # Dataframe width in pixels (e.g. 1920px).
        metadata["height"],  # Dataframe height in pixels (e.g. 1280px).
        metadata["band_count"],  # The number of bands required.
        metadata["datatype_gdal_raw"],  # Datatype of the destination.
        out_creation_options,
    )

    new_transform = list(metadata["transform"])
    new_transform[0] += x_shift
    new_transform[3] += y_shift

    shifted.SetGeoTransform(new_transform)
    shifted.SetProjection(metadata["projection"])

    src_nodata = metadata["nodata_value"]

    for band in range(metadata["band_count"]):
        origin_raster_band = ref.GetRasterBand(band + 1)
        target_raster_band = shifted.GetRasterBand(band + 1)

        target_raster_band.WriteArray(origin_raster_band.ReadAsArray())
        target_raster_band.SetNoDataValue(src_nodata)

    if out_path is not None:
        shifted = None
        return out_path
    else:
        return shifted
예제 #11
0
파일: align.py 프로젝트: casperfibaek/buteo
def align_rasters(
    rasters: List[Union[str, gdal.Dataset]],
    out_path: Optional[Union[List[str], str]] = None,
    master: Optional[Union[gdal.Dataset, str]] = None,
    postfix: str = "_aligned",
    bounding_box: Union[str, gdal.Dataset, ogr.DataSource, list,
                        tuple] = "intersection",
    resample_alg: str = "nearest",
    target_size: Optional[Union[tuple, list, int, float, str,
                                gdal.Dataset]] = None,
    target_in_pixels: bool = False,
    projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource,
                               osr.SpatialReference]] = None,
    overwrite: bool = True,
    creation_options: list = [],
    src_nodata: Optional[Union[str, int, float]] = "infer",
    dst_nodata: Optional[Union[str, int, float]] = "infer",
    prefix: str = "",
    ram=8000,
    skip_existing=False,
) -> List[str]:
    type_check(rasters, [list], "rasters")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(master, [list, str], "master", allow_none=True)
    type_check(bounding_box, [str, gdal.Dataset, ogr.DataSource, list, tuple],
               "bounding_box")
    type_check(resample_alg, [str], "resample_alg")
    type_check(
        target_size,
        [tuple, list, int, float, str, gdal.Dataset],
        "target_size",
        allow_none=True,
    )
    type_check(
        target_in_pixels,
        [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference],
        "target_in_pixels",
        allow_none=True,
    )
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(src_nodata, [str, int, float], "src_nodata", allow_none=True)
    type_check(dst_nodata, [str, int, float], "dst_nodata", allow_none=True)
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(
        rasters,
        out_path,
        overwrite=overwrite,
        prefix=prefix,
        postfix=postfix,
        uuid=False,
    )

    x_pixels = None
    y_pixels = None
    x_res = None
    y_res = None
    target_projection = None
    target_bounds = None

    reprojected_rasters: List[str] = []

    # Read the metadata for each raster.
    # Catalogue the used projections, to choose the most common one if necessary.
    used_projections: List[dict] = []
    metadata: List[str] = []

    for raster in rasters:
        meta = raster_to_metadata(raster)
        metadata.append(meta)
        used_projections.append(meta["projection"])

    # If there is a master layer, copy information from that layer.
    if master is not None:
        master_metadata = raster_to_metadata(master)

        target_projection = master_metadata["projection_osr"]
        x_min, y_max, x_max, y_min = master_metadata["extent"]

        # Set the target values.
        target_bounds = (x_min, y_min, x_max, y_max)
        x_res = master_metadata["pixel_width"]
        y_res = master_metadata["pixel_height"]
        x_pixels = master_metadata["width"]
        y_pixels = master_metadata["height"]
        target_size = (x_res, y_res)

        target_in_pixels = False

    # We allow overwrite of parameters specifically set.
    # Handle projection
    if projection is not None:
        target_projection = parse_projection(projection)

    # If no projection is specified, other from master or parameters. The most common one is chosen.
    elif target_projection is None:

        # Sort and count the projections
        projection_counter: dict = {}
        for proj in used_projections:
            if proj in projection_counter:
                projection_counter[proj] += 1
            else:
                projection_counter[proj] = 1

        # Choose most common projection
        most_common_projection = sorted(projection_counter,
                                        key=projection_counter.get,
                                        reverse=True)

        target_projection = parse_projection(most_common_projection[0])

    if target_size is not None:

        # If a raster is input, use it's pixel size as target values.
        if isinstance(target_size, (gdal.Dataset, str)):
            if isinstance(target_size, str) and not is_raster(target_size):
                raise ValueError(
                    f"Unable to parse the raster used for target_size: {target_size}"
                )

            # Reprojection is necessary to ensure the correct pixel_size
            reprojected_target_size = internal_reproject_raster(
                target_size, target_projection)
            target_size_raster = raster_to_metadata(reprojected_target_size)

            # Set the target values.
            x_res = target_size_raster["width"]
            y_res = target_size_raster["height"]
        else:
            # If a list, tuple, int or float is passed. Turn them into target values.
            x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
                target_size, target_in_pixels)

    # If nothing has been specified, we will infer the pixel_size based on the median of all input rasters.
    elif x_res is None and y_res is None and x_pixels is None and y_pixels is None:

        # Ready numpy arrays for insertion
        x_res_arr = np.empty(len(raster_list), dtype="float32")
        y_res_arr = np.empty(len(raster_list), dtype="float32")

        for index, raster in enumerate(raster_list):
            # It is necessary to reproject each raster, as pixel height and width might be different after projection.
            reprojected = internal_reproject_raster(raster, target_projection)
            target_size_raster = raster_to_metadata(reprojected)

            # Add the pixel sizes to the numpy arrays
            x_res_arr[index] = target_size_raster["pixel_width"]
            y_res_arr[index] = target_size_raster["pixel_height"]

            # Keep track of the reprojected arrays so we only reproject rasters once.
            reprojected_rasters.append(reprojected)

        # Use the median values of pixel sizes as target values.
        x_res = np.median(x_res_arr)
        y_res = np.median(y_res_arr)

    if target_bounds is None:

        # If a bounding box is supplied, simply use that one. It must be in the target projection.
        if isinstance(bounding_box, (list, tuple)):
            if len(bounding_box) != 4:
                raise ValueError(
                    "bounding_box as a list/tuple must have 4 values.")
            target_bounds = bounding_box

        # If the bounding box is a raster. Take the extent and reproject it to the target projection.
        elif is_raster(bounding_box):
            reprojected_bbox_raster = raster_to_metadata(
                internal_reproject_raster(bounding_box, target_projection))

            x_min, y_max, x_max, y_min = reprojected_bbox_raster["extent"]

            # add to target values.
            target_bounds = (x_min, y_min, x_max, y_max)

        # If the bounding box is a raster. Take the extent and reproject it to the target projection.
        elif is_vector(bounding_box):
            reprojected_bbox_vector = internal_vector_to_metadata(
                internal_reproject_vector(bounding_box, target_projection))

            x_min, y_max, x_max, y_min = reprojected_bbox_vector["extent"]

            # add to target values.
            target_bounds = (x_min, y_min, x_max, y_max)

        # If the bounding box is a string, we either take the union or the intersection of all the
        # bounding boxes of the input rasters.
        elif isinstance(bounding_box, str):
            if bounding_box == "intersection" or bounding_box == "union":
                extents = []

                # If the rasters have not been reprojected, reproject them now.
                if len(reprojected_rasters) != len(raster_list):
                    reprojected_rasters = []

                    for raster in raster_list:
                        raster_metadata = raster_to_metadata(raster)

                        if raster_metadata["projection_osr"].IsSame(
                                target_projection):
                            reprojected_rasters.append(raster)
                        else:
                            reprojected = internal_reproject_raster(
                                raster, target_projection)
                            reprojected_rasters.append(reprojected)

                # Add the extents of the reprojected rasters to the extents list.
                for reprojected_raster in reprojected_rasters:
                    reprojected_raster_metadata = dict(
                        raster_to_metadata(reprojected_raster))
                    extents.append(reprojected_raster_metadata["extent"])

                # Placeholder values
                x_min, y_max, x_max, y_min = extents[0]

                # Loop the extents. Narrowing if intersection, expanding if union.
                for index, extent in enumerate(extents):
                    if index == 0:
                        continue

                    if bounding_box == "intersection":
                        if extent[0] > x_min:
                            x_min = extent[0]
                        if extent[1] < y_max:
                            y_max = extent[1]
                        if extent[2] < x_max:
                            x_max = extent[2]
                        if extent[3] > y_min:
                            y_min = extent[3]

                    elif bounding_box == "union":
                        if extent[0] < x_min:
                            x_min = extent[0]
                        if extent[1] > y_max:
                            y_max = extent[1]
                        if extent[2] > x_max:
                            x_max = extent[2]
                        if extent[3] < y_min:
                            y_min = extent[3]

                # Add to target values.
                target_bounds = (x_min, y_min, x_max, y_max)

            else:
                raise ValueError(
                    f"Unable to parse or infer target_bounds: {target_bounds}")
        else:
            raise ValueError(
                f"Unable to parse or infer target_bounds: {target_bounds}")
    """ 
        If the rasters have not been reprojected, we reproject them now.
        The reprojection is necessary as warp has to be a two step process
        in order to align the rasters properly. This might not be necessary
        in a future version of gdal.
    """
    if len(reprojected_rasters) != len(raster_list):
        reprojected_rasters = []

        for raster in raster_list:
            raster_metadata = raster_to_metadata(raster)

            # If the raster is already the correct projection, simply append the raster.
            if raster_metadata["projection_osr"].IsSame(target_projection):
                reprojected_rasters.append(raster)
            else:
                reprojected = internal_reproject_raster(
                    raster, target_projection)
                reprojected_rasters.append(reprojected)

    # If any of the target values are still undefined. Throw an error!
    if target_projection is None or target_bounds is None:
        raise Exception(
            "Error while preparing the target projection or bounds.")

    if x_res is None and y_res is None and x_pixels is None and y_pixels is None:
        raise Exception("Error while preparing the target pixel size.")

    # This is the list of rasters to return. If output is not memory, it's a list of paths.
    return_list: List[str] = []
    for index, raster in enumerate(reprojected_rasters):
        raster_metadata = raster_to_metadata(raster)

        out_name = path_list[index]
        out_format = path_to_driver_raster(out_name)

        if skip_existing and os.path.exists(out_name):
            return_list.append(out_name)
            continue

        # Handle nodata.
        out_src_nodata = None
        out_dst_nodata = None
        if src_nodata == "infer":
            out_src_nodata = raster_metadata["nodata_value"]

            if out_src_nodata is None:
                out_src_nodata = gdal_nodata_value_from_type(
                    raster_metadata["datatype_gdal_raw"])

        elif src_nodata == None:
            out_src_nodata = None
        elif not isinstance(src_nodata, str):
            out_src_nodata = src_nodata

        if dst_nodata == "infer":
            out_dst_nodata = out_src_nodata
        elif dst_nodata == False or dst_nodata == None:
            out_dst_nodata = None
        elif src_nodata == None:
            out_dst_nodata = None
        elif not isinstance(dst_nodata, str):
            out_dst_nodata = dst_nodata

        # Removes file if it exists and overwrite is True.
        remove_if_overwrite(out_name, overwrite)

        # Hand over to gdal.Warp to do the heavy lifting!
        warped = gdal.Warp(
            out_name,
            raster,
            xRes=x_res,
            yRes=y_res,
            width=x_pixels,
            height=y_pixels,
            dstSRS=target_projection,
            outputBounds=target_bounds,
            format=out_format,
            resampleAlg=translate_resample_method(resample_alg),
            creationOptions=default_options(creation_options),
            srcNodata=out_src_nodata,
            dstNodata=out_dst_nodata,
            targetAlignedPixels=False,
            cropToCutline=False,
            multithread=True,
            warpMemoryLimit=ram,
        )

        if warped == None:
            raise Exception("Error while warping rasters.")

        return_list.append(out_name)

    if not rasters_are_aligned(return_list, same_extent=True):
        raise Exception("Error while aligning rasters. Output is not aligned")

    return return_list
예제 #12
0
파일: clip.py 프로젝트: casperfibaek/buteo
def _clip_raster(
    raster: Union[str, gdal.Dataset],
    clip_geom: Union[str, ogr.DataSource, gdal.Dataset],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    adjust_bbox: bool = True,
    all_touch: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_clipped",
    verbose: int = 1,
    uuid: bool = False,
    ram: int = 8000,
) -> str:
    """OBS: Internal. Single output.

    Clips a raster(s) using a vector geometry or the extents of
    a raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(clip_geom, [str, ogr.DataSource, gdal.Dataset], "clip_geom")
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(crop_to_geom, [bool], "crop_to_geom")
    type_check(adjust_bbox, [bool], "adjust_bbox")
    type_check(all_touch, [bool], "all_touch")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(layer_to_clip, [int], "layer_to_clip")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")
    type_check(verbose, [int], "verbose")
    type_check(uuid, [bool], "uuid")

    _, path_list = ready_io_raster(raster,
                                   out_path,
                                   overwrite=overwrite,
                                   prefix=prefix,
                                   postfix=postfix,
                                   uuid=uuid)

    if out_path is not None:
        if "vsimem" not in out_path:
            if not os.path.isdir(os.path.split(os.path.normpath(out_path))[0]):
                raise ValueError(
                    f"out_path folder does not exists: {out_path}")

    # Input is a vector.
    if is_vector(clip_geom):
        clip_ds = open_vector(clip_geom)

        clip_metadata = internal_vector_to_metadata(
            clip_ds, process_layer=layer_to_clip)

        if clip_metadata["layer_count"] > 1:
            clip_ds = internal_vector_to_memory(clip_ds,
                                                layer_to_extract=layer_to_clip)

        if isinstance(clip_ds, ogr.DataSource):
            clip_ds = clip_ds.GetName()

    # Input is a raster (use extent)
    elif is_raster(clip_geom):
        clip_metadata = raster_to_metadata(clip_geom, create_geometry=True)
        clip_metadata["layer_count"] = 1
        clip_ds = clip_metadata["extent_datasource"].GetName()
    else:
        if file_exists(clip_geom):
            raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
        else:
            raise ValueError(f"Unable to locate clip geometry {clip_geom}")

    if layer_to_clip > (clip_metadata["layer_count"] - 1):
        raise ValueError("Requested an unable layer_to_clip.")

    if clip_ds is None:
        raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    clip_projection = clip_metadata["projection_osr"]
    clip_extent = clip_metadata["extent"]

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_layer = open_raster(raster)

    raster_metadata = raster_to_metadata(raster)
    origin_projection = raster_metadata["projection_osr"]
    origin_extent = raster_metadata["extent"]

    # Check if projections match, otherwise reproject target geom.
    if not origin_projection.IsSame(clip_projection):
        clip_metadata["extent"] = reproject_extent(
            clip_metadata["extent"],
            clip_projection,
            origin_projection,
        )

    # Fast check: Does the extent of the two inputs overlap?
    if not gdal_bbox_intersects(origin_extent, clip_extent):
        raise Exception("Geometries did not intersect.")

    output_bounds = raster_metadata["extent_gdal_warp"]

    if crop_to_geom:

        if adjust_bbox:
            output_bounds = align_bbox(
                raster_metadata["extent"],
                clip_metadata["extent"],
                raster_metadata["pixel_width"],
                raster_metadata["pixel_height"],
                warp_format=True,
            )

        else:
            output_bounds = clip_metadata["extent_gdal_warp"]

    # formats
    out_name = path_list[0]
    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    src_nodata = raster_metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        elif dst_nodata is None:
            out_nodata = None
        elif isinstance(dst_nodata, (int, float)):
            out_nodata = dst_nodata
        else:
            raise ValueError(f"Unable to parse nodata_value: {dst_nodata}")

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    if verbose == 0:
        gdal.PushErrorHandler("CPLQuietErrorHandler")

    clipped = gdal.Warp(
        out_name,
        origin_layer,
        format=out_format,
        resampleAlg=translate_resample_method(resample_alg),
        targetAlignedPixels=False,
        outputBounds=output_bounds,
        xRes=raster_metadata["pixel_width"],
        yRes=raster_metadata["pixel_height"],
        cutlineDSName=clip_ds,
        cropToCutline=
        False,  # GDAL does this incorrectly when targetAlignedPixels is True.
        creationOptions=out_creation_options,
        warpMemoryLimit=ram,
        warpOptions=warp_options,
        srcNodata=raster_metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if verbose == 0:
        gdal.PopErrorHandler()

    if clipped is None:
        raise Exception("Error while clipping raster.")

    return out_name
예제 #13
0
def rasterize_vector(
    vector,
    pixel_size,
    out_path=None,
    extent=None,
    all_touch=False,
    dtype="uint8",
    optim="raster",
    band=1,
    fill_value=0,
    nodata_value=None,
    check_memory=True,
    burn_value=1,
    attribute=None,
):
    vector_fn = vector

    if out_path is None:
        raster_fn = f"/vsimem/{str(uuid4())}.tif"
    else:
        raster_fn = out_path

    # Open the data source and read in the extent
    source_ds = open_vector(vector_fn)
    source_meta = internal_vector_to_metadata(vector_fn)
    source_layer = source_ds.GetLayer()
    x_min, x_max, y_min, y_max = source_layer.GetExtent()

    # Create the destination data source
    x_res = int((x_max - x_min) / pixel_size)
    y_res = int((y_max - y_min) / pixel_size)

    if extent is not None:
        extent_vector = internal_vector_to_metadata(extent)
        extent_dict = extent_vector["extent_dict"]
        x_res = int((extent_dict["right"] - extent_dict["left"]) / pixel_size)
        y_res = int((extent_dict["top"] - extent_dict["bottom"]) / pixel_size)
        x_min = extent_dict["left"]
        y_max = extent_dict["top"]

    if check_memory is False:
        gdal.SetConfigOption("CHECK_DISK_FREE_SPACE", "FALSE")

    try:
        target_ds = gdal.GetDriverByName("GTiff").Create(
            raster_fn,
            x_res,
            y_res,
            1,
            numpy_to_gdal_datatype2(dtype),
        )
    finally:
        gdal.SetConfigOption("CHECK_DISK_FREE_SPACE", "TRUE")

    if target_ds is None:
        raise Exception("Unable to rasterize.")

    target_ds.SetGeoTransform((x_min, pixel_size, 0, y_max, 0, -pixel_size))
    target_ds.SetProjection(source_meta["projection"])

    band = target_ds.GetRasterBand(1)

    if nodata_value is not None:
        band.SetNoDataValue(nodata_value)
    else:
        band.Fill(fill_value)

    options = []
    if all_touch == True:
        options.append("ALL_TOUCHED=TRUE")
    else:
        options.append("ALL_TOUCHED=FALSE")

    if optim == "raster":
        options.append("OPTIM=RASTER")
    elif optim == "vector":
        options.append("OPTIM=VECTOR")
    else:
        options.append("OPTIM=AUTO")

    if attribute is None:
        gdal.RasterizeLayer(
            target_ds,
            [1],
            source_layer,
            burn_values=[burn_value],
            options=options,
        )
    else:
        options.append(f"ATTRIBUTE={attribute}")
        gdal.RasterizeLayer(target_ds, [1],
                            source_layer,
                            options=default_options(options))

    return raster_fn
예제 #14
0
파일: grid.py 프로젝트: casperfibaek/buteo
def raster_to_grid(
    raster: Union[str, gdal.Dataset],
    grid: Union[str, ogr.DataSource],
    out_dir: str,
    use_field: Optional[str] = None,
    generate_vrt: bool = True,
    overwrite: bool = True,
    process_layer: int = 0,
    creation_options: list = [],
    verbose: int = 1,
) -> Union[List[str], Tuple[Optional[List[str]], Optional[str]]]:
    """Clips a raster to a grid. Generate .vrt.

    Returns:
        The filepath for the newly created raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(grid, [str, ogr.DataSource], "grid")
    type_check(out_dir, [str], "out_dir")
    type_check(overwrite, [bool], "overwrite")
    type_check(process_layer, [int], "process_layer")
    type_check(creation_options, [list], "creation_options")
    type_check(verbose, [int], "verbose")

    use_grid = open_vector(grid)
    grid_metadata = internal_vector_to_metadata(use_grid)
    raster_metadata = raster_to_metadata(raster, create_geometry=True)

    # Reproject raster if necessary.
    if not raster_metadata["projection_osr"].IsSame(grid_metadata["projection_osr"]):
        use_grid = reproject_vector(grid, raster_metadata["projection_osr"])
        grid_metadata = internal_vector_to_metadata(use_grid)

        if not isinstance(grid_metadata, dict):
            raise Exception("Error while parsing metadata.")

    # Only use the polygons in the grid that intersect the extent of the raster.
    use_grid = intersect_vector(use_grid, raster_metadata["extent_datasource"])

    ref = open_raster(raster)
    use_grid = open_vector(use_grid)

    layer = use_grid.GetLayer(process_layer)
    feature_count = layer.GetFeatureCount()
    raster_extent = raster_metadata["extent_ogr"]
    filetype = path_to_ext(raster)
    name = raster_metadata["name"]
    geom_type = grid_metadata["layers"][process_layer]["geom_type_ogr"]

    if use_field is not None:
        if use_field not in grid_metadata["layers"][process_layer]["field_names"]:
            names = grid_metadata["layers"][process_layer]["field_names"]
            raise ValueError(
                f"Requested field not found. Fields available are: {names}"
            )

    generated = []

    # For the sake of good reporting - lets first establish how many features intersect
    # the raster.

    if verbose:
        print("Finding intersections.")

    intersections = 0
    for _ in range(feature_count):
        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        intersections += 1

    layer.ResetReading()

    if verbose:
        print(f"Found {intersections} intersections.")

    if intersections == 0:
        print("Warning: Found 0 intersections. Returning empty list.")
        return ([], None)

    # TODO: Replace this in gdal. 3.1
    driver = ogr.GetDriverByName("Esri Shapefile")

    clipped = 0
    for _ in range(feature_count):

        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        if verbose == 1:
            progress(clipped, intersections - 1, "clip_grid")

        fid = feature.GetFID()

        test_ds_path = f"/vsimem/grid_{uuid4().int}.shp"
        test_ds = driver.CreateDataSource(test_ds_path)
        test_ds_lyr = test_ds.CreateLayer(
            "mem_layer_grid",
            geom_type=geom_type,
            srs=raster_metadata["projection_osr"],
        )
        test_ds_lyr.CreateFeature(feature.Clone())
        test_ds.FlushCache()

        out_name = None

        if use_field is not None:
            out_name = f"{out_dir}{feature.GetField(use_field)}{filetype}"
        else:
            out_name = f"{out_dir}{name}_{fid}{filetype}"

        clip_raster(
            ref,
            test_ds_path,
            out_path=out_name,
            adjust_bbox=True,
            crop_to_geom=True,
            all_touch=False,
            postfix="",
            prefix="",
            creation_options=default_options(creation_options),
            verbose=0,
        )

        generated.append(out_name)
        clipped += 1

    if generate_vrt:
        vrt_name = f"{out_dir}{name}.vrt"
        stack_rasters_vrt(generated, vrt_name, seperate=False)

        return (generated, vrt_name)

    return generated