예제 #1
0
def LagkJointMomentsFromMMAP(D, K=0, L=1):
    """
    Returns the lag-L joint moments of a marked Markovian 
    arrival process.
    
    Parameters
    ----------
    D : list/cell of matrices of shape(M,M), length(N)
        The D0...DN matrices of the MMAP to check
    K : int, optional
        The dimension of the matrix of joint moments to 
        compute. If K=0, the MxM joint moments will be 
        computed. The default value is 0
    L : int, optional
        The lag at which the joint moments are computed.
        The default value is 1
    prec : double, optional
        Numerical precision to check if the input is valid. 
        The default value is 1e-14
    
    Returns
    -------
    Nm : list/cell of matrices of shape(K+1,K+1), length(L)
        The matrices containing the lag-L joint moments,
        starting from moment 0.
    """

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            "LagkJointMomentsFromMMAP: Input is not a valid MMAP representation!"
        )

    return LagkJointMomentsFromMRAP(D, K, L)
예제 #2
0
def MarginalMomentsFromMMAP(D, K=0):
    """
    Returns the moments of the marginal distribution of a 
    marked Markovian arrival process.
    
    Parameters
    ----------
    D : list/cell of matrices of shape(M,M), length(N)
        The D0...DN matrices of the MMAP
    K : int, optional
        Number of moments to compute. If K=0, 2*M-1 moments
        are computed. The default value is K=0.
    precision : double, optional
        Numerical precision for checking if the input is valid.
        The default value is 1e-14
    
    Returns
    -------
    moms : row vector of doubles, length K
        The vector of moments.
    """

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            "MarginalMomentsFromMMAP: Input is not a valid MMAP representation!"
        )

    alpha, A = MarginalDistributionFromMMAP(D)
    return MomentsFromPH(alpha, A, K)
예제 #3
0
def MarginalDistributionFromMMAP(D):
    """
    Returns the phase type distributed marginal distribution
    of a marked Markovian arrival process.
    
    Parameters
    ----------
    D : list/cell of matrices of shape(M,M), length(N)
        The D0...DN matrices of the MMAP
    precision : double, optional
        Numerical precision for checking if the input is valid.
        The default value is 1e-14
    
    Returns
    -------
    alpha : matrix, shape (1,M)
        The initial probability vector of the phase type 
        distributed marginal distribution
    A : matrix, shape (M,M)
        The transient generator of the phase type distributed
        marginal distribution    
    """

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            "MarginalDistributionFromMMAP: Input is not a valid MMAP representation!"
        )

    return MarginalDistributionFromMRAP(D)
예제 #4
0
def MMAPPH1NPPR(D, sigma, S, *argv):
    """
    Returns various performane measures of a continuous time 
    MMAP[K]/PH[K]/1 non-preemptive priority queue, see [1]_.
    
    Parameters
    ----------
    D : list of matrices of shape (N,N), length (K+1)
        The D0...DK matrices of the arrival process.
        D1 corresponds to the lowest, DK to the highest priority.
    sigma : list of row vectors, length (K)
        The list containing the initial probability vectors of the service
        time distributions of the various customer types. The length of the
       vectors does not have to be the same.
    S : list of square matrices, length (K)
        The transient generators of the phase type distributions representing
        the service time of the jobs belonging to various types.
    further parameters : 
        The rest of the function parameters specify the options
        and the performance measures to be computed.
    
        The supported performance measures and options in this 
        function are:
    
        +----------------+--------------------+----------------------------------------+
        | Parameter name | Input parameters   | Output                                 |
        +================+====================+========================================+
        | "ncMoms"       | Number of moments  | The moments of the number of customers |
        +----------------+--------------------+----------------------------------------+
        | "ncDistr"      | Upper limit K      | The distribution of the number of      |
        |                |                    | customers from level 0 to level K-1    |
        +----------------+--------------------+----------------------------------------+
        | "stMoms"       | Number of moments  | The sojourn time moments               |
        +----------------+--------------------+----------------------------------------+
        | "stDistr"      | A vector of points | The sojourn time distribution at the   |
        |                |                    | requested points (cummulative, cdf)    |
        +----------------+--------------------+----------------------------------------+
        | "prec"         | The precision      | Numerical precision used as a stopping |
        |                |                    | condition when solving the Riccati and |
        |                |                    | the matrix-quadratic equations         |
        +----------------+--------------------+----------------------------------------+
        | "erlMaxOrder"  | Integer number     | The maximal Erlang order used in the   |
        |                |                    | erlangization procedure. The default   |
        |                |                    | value is 200.                          |
        +----------------+--------------------+----------------------------------------+
        | "classes"      | Vector of integers | Only the performance measures          |
        |                |                    | belonging to these classes are         |
        |                |                    | returned. If not given, all classes    |
        |                |                    | are analyzed.                          |
        +----------------+--------------------+----------------------------------------+
        
        (The quantities related to the number of customers in 
        the system include the customer in the server, and the 
        sojourn time related quantities include the service 
        times as well)
    
    Returns
    -------
    Ret : list of the performance measures
        Each entry of the list corresponds to a performance 
        measure requested. Each entry is a matrix, where the
        columns belong to the various job types.
        If there is just a single item, 
        then it is not put into a list.
    
    References
    ----------
    .. [1] G. Horvath, "Efficient analysis of the MMAP[K]/PH[K]/1
           priority queue", European Journal of Operational 
           Research, 246(1), 128-139, 2015.
    """

    K = len(D) - 1

    # parse options
    eaten = []
    erlMaxOrder = 200
    precision = 1e-14
    classes = np.arange(0, K)
    for i in range(len(argv)):
        if argv[i] == "prec":
            precision = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "erlMaxOrder":
            erlMaxOrder = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "classes":
            classes = np.array(argv[i + 1]) - 1
            eaten.append(i)
            eaten.append(i + 1)

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            'MMAPPH1PRPR: The arrival process is not a valid MMAP representation!'
        )

    if butools.checkInput:
        for k in range(K):
            if not CheckPHRepresentation(sigma[k], S[k]):
                raise Exception(
                    'MMAPPH1PRPR: the vector and matrix describing the service times is not a valid PH representation!'
                )

    # some preparation
    D0 = D[0]
    N = D0.shape[0]
    I = ml.eye(N)
    sD = ml.zeros((N, N))
    for Di in D:
        sD += Di

    s = []
    M = np.empty(K)
    for i in range(K):
        s.append(np.sum(-S[i], 1))
        M[i] = sigma[i].size

    # step 1. solution of the workload process of the joint queue
    # ===========================================================
    sM = np.sum(M)
    Qwmm = ml.matrix(D0)
    Qwpm = ml.zeros((N * sM, N))
    Qwmp = ml.zeros((N, N * sM))
    Qwpp = ml.zeros((N * sM, N * sM))
    kix = 0
    for i in range(K):
        Qwmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i])
        Qwpm[kix:kix + N * M[i], :] = np.kron(I, s[i])
        Qwpp[kix:kix + N * M[i], :][:, kix:kix + N * M[i]] = np.kron(I, S[i])
        kix += N * M[i]

    # calculate fundamental matrices
    Psiw, Kw, Uw = FluidFundamentalMatrices(Qwpp, Qwpm, Qwmp, Qwmm, 'PKU',
                                            precision)

    # calculate boundary vector
    Ua = ml.ones((N, 1)) + 2 * np.sum(Qwmp * (-Kw).I, 1)
    pm = Linsolve(
        ml.hstack((Uw, Ua)).T,
        ml.hstack((ml.zeros((1, N)), ml.ones((1, 1)))).T).T

    ro = ((1.0 - np.sum(pm)) / 2.0) / (
        np.sum(pm) + (1.0 - np.sum(pm)) / 2.0
    )  # calc idle time with weight=1, and the busy time with weight=1/2
    kappa = pm / np.sum(pm)

    pi = CTMCSolve(sD)
    lambd = []
    for i in range(K):
        lambd.append(np.sum(pi * D[i + 1]))

    Psiw = []
    Qwmp = []
    Qwzp = []
    Qwpp = []
    Qwmz = []
    Qwpz = []
    Qwzz = []
    Qwmm = []
    Qwpm = []
    Qwzm = []
    for k in range(K):
        # step 2. construct a workload process for classes k...K
        # ======================================================
        Mlo = np.sum(M[:k])
        Mhi = np.sum(M[k:])

        Qkwpp = ml.zeros((N * Mlo * Mhi + N * Mhi, N * Mlo * Mhi + N * Mhi))
        Qkwpz = ml.zeros((N * Mlo * Mhi + N * Mhi, N * Mlo))
        Qkwpm = ml.zeros((N * Mlo * Mhi + N * Mhi, N))
        Qkwmz = ml.zeros((N, N * Mlo))
        Qkwmp = ml.zeros((N, N * Mlo * Mhi + N * Mhi))
        Dlo = ml.matrix(D0)
        for i in range(k):
            Dlo = Dlo + D[i + 1]
        Qkwmm = Dlo
        Qkwzp = ml.zeros((N * Mlo, N * Mlo * Mhi + N * Mhi))
        Qkwzm = ml.zeros((N * Mlo, N))
        Qkwzz = ml.zeros((N * Mlo, N * Mlo))
        kix = 0
        for i in range(k, K):
            kix2 = 0
            for j in range(k):
                bs = N * M[j] * M[i]
                bs2 = N * M[j]
                Qkwpp[kix:kix + bs,
                      kix:kix + bs] = np.kron(I, np.kron(ml.eye(M[j]), S[i]))
                Qkwpz[kix:kix + bs,
                      kix2:kix2 + bs2] = np.kron(I,
                                                 np.kron(ml.eye(M[j]), s[i]))
                Qkwzp[kix2:kix2 + bs2,
                      kix:kix + bs] = np.kron(D[i + 1],
                                              np.kron(ml.eye(M[j]), sigma[i]))
                kix += bs
                kix2 += bs2
        for i in range(k, K):
            bs = N * M[i]
            Qkwpp[kix:kix + bs, :][:, kix:kix + bs] = np.kron(I, S[i])
            Qkwpm[kix:kix + bs, :] = np.kron(I, s[i])
            Qkwmp[:, kix:kix + bs] = np.kron(D[i + 1], sigma[i])
            kix += bs
        kix = 0
        for j in range(k):
            bs = N * M[j]
            Qkwzz[kix:kix + bs, kix:kix +
                  bs] = np.kron(Dlo, ml.eye(M[j])) + np.kron(I, S[j])
            Qkwzm[kix:kix + bs, :] = np.kron(I, s[j])
            kix += bs

        if Qkwzz.shape[0] > 0:
            Psikw = FluidFundamentalMatrices(
                Qkwpp + Qkwpz * (-Qkwzz).I * Qkwzp,
                Qkwpm + Qkwpz * (-Qkwzz).I * Qkwzm, Qkwmp, Qkwmm, 'P',
                precision)
        else:
            Psikw = FluidFundamentalMatrices(Qkwpp, Qkwpm, Qkwmp, Qkwmm, 'P',
                                             precision)
        Psiw.append(Psikw)

        Qwzp.append(Qkwzp)
        Qwmp.append(Qkwmp)
        Qwpp.append(Qkwpp)
        Qwmz.append(Qkwmz)
        Qwpz.append(Qkwpz)
        Qwzz.append(Qkwzz)
        Qwmm.append(Qkwmm)
        Qwpm.append(Qkwpm)
        Qwzm.append(Qkwzm)

    # step 3. calculate Phi vectors
    # =============================
    lambdaS = sum(lambd)
    phi = [(1 - ro) * kappa * (-D0) / lambdaS]
    q0 = [[]]
    qL = [[]]
    for k in range(K - 1):
        sDk = ml.matrix(D0)
        for j in range(k + 1):
            sDk = sDk + D[j + 1]
        # pk
        pk = sum(lambd[:k + 1]) / lambdaS - (1 - ro) * kappa * np.sum(
            sDk, 1) / lambdaS
        # A^(k,1)
        Qwzpk = Qwzp[k + 1]
        vix = 0
        Ak = []
        for ii in range(k + 1):
            bs = N * M[ii]
            V1 = Qwzpk[vix:vix + bs, :]
            Ak.append(
                np.kron(I, sigma[ii]) *
                (-np.kron(sDk, ml.eye(M[ii])) - np.kron(I, S[ii])).I *
                (np.kron(I, s[ii]) + V1 * Psiw[k + 1]))
            vix += bs
        # B^k
        Qwmpk = Qwmp[k + 1]
        Bk = Qwmpk * Psiw[k + 1]
        ztag = phi[0] * ((-D0).I * D[k + 1] * Ak[k] - Ak[0] + (-D0).I * Bk)
        for i in range(k):
            ztag += phi[i + 1] * (Ak[i] - Ak[i + 1]) + phi[0] * (
                -D0).I * D[i + 1] * Ak[i]
        Mx = ml.eye(Ak[k].shape[0]) - Ak[k]
        Mx[:, 0] = ml.ones((N, 1))
        phi.append(
            ml.hstack((pk, ztag[:, 1:])) *
            Mx.I)  # phi(k) = Psi^(k)_k * p(k). Psi^(k)_i = phi(i) / p(k)

        q0.append(phi[0] * (-D0).I)
        qLii = []
        for ii in range(k + 1):
            qLii.append((phi[ii + 1] - phi[ii] + phi[0] *
                         (-D0).I * D[ii + 1]) * np.kron(I, sigma[ii]) *
                        (-np.kron(sDk, ml.eye(M[ii])) - np.kron(I, S[ii])).I)
        qL.append(ml.hstack(qLii))

    # step 4. calculate performance measures
    # ======================================
    Ret = []
    for k in classes:

        sD0k = ml.matrix(D0)
        for i in range(k):
            sD0k += D[i + 1]

        if k < K - 1:
            # step 4.1 calculate distribution of the workload process right
            # before the arrivals of class k jobs
            # ============================================================
            if Qwzz[k].shape[0] > 0:
                Kw = Qwpp[k] + Qwpz[k] * (
                    -Qwzz[k]).I * Qwzp[k] + Psiw[k] * Qwmp[k]
            else:
                Kw = Qwpp[k] + Psiw[k] * Qwmp[k]
            BM = ml.zeros((0, 0))
            CM = ml.zeros((0, N))
            DM = ml.zeros((0, 0))
            for i in range(k):
                BM = la.block_diag(BM, np.kron(I, S[i]))
                CM = ml.vstack((CM, np.kron(I, s[i])))
                DM = la.block_diag(DM, np.kron(D[k + 1], ml.eye(M[i])))
            if k > 0:
                Kwu = ml.vstack((ml.hstack(
                    (Kw, (Qwpz[k] + Psiw[k] * Qwmz[k]) * (-Qwzz[k]).I * DM)),
                                 ml.hstack((ml.zeros(
                                     (BM.shape[0], Kw.shape[1])), BM))))
                Bwu = ml.vstack((Psiw[k] * D[k + 1], CM))
                iniw = ml.hstack(
                    (q0[k] * Qwmp[k] + qL[k] * Qwzp[k], qL[k] * DM))
                pwu = q0[k] * D[k + 1]
            else:
                Kwu = Kw
                Bwu = Psiw[k] * D[k + 1]
                iniw = pm * Qwmp[k]
                pwu = pm * D[k + 1]

            norm = np.sum(pwu) + np.sum(iniw * (-Kwu).I * Bwu)
            pwu = pwu / norm
            iniw = iniw / norm

            # step 4.2 create the fluid model whose first passage time equals the
            # WAITING time of the low prioroity customers
            # ==================================================================
            KN = Kwu.shape[0]
            Qspp = ml.zeros(
                (KN + N * np.sum(M[k + 1:]), KN + N * np.sum(M[k + 1:])))
            Qspm = ml.zeros((KN + N * np.sum(M[k + 1:]), N))
            Qsmp = ml.zeros((N, KN + N * np.sum(M[k + 1:])))
            Qsmm = sD0k + D[k + 1]
            kix = 0
            for i in range(k + 1, K):
                bs = N * M[i]
                Qspp[KN + kix:KN + kix + bs, :][:, KN + kix:KN + kix +
                                                bs] = np.kron(I, S[i])
                Qspm[KN + kix:KN + kix + bs, :] = np.kron(I, s[i])
                Qsmp[:, KN + kix:KN + kix + bs] = np.kron(D[i + 1], sigma[i])
                kix += bs

            Qspp[:KN, :][:, :KN] = Kwu
            Qspm[:KN, :] = Bwu
            inis = ml.hstack((iniw, ml.zeros((1, N * np.sum(M[k + 1:])))))

            # calculate fundamental matrix
            Psis = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, Qsmm, 'P',
                                            precision)

            # step 4.3. calculate the performance measures
            # ==========================================
            argIx = 0
            while argIx < len(argv):
                if argIx in eaten:
                    argIx += 1
                    continue
                elif type(argv[argIx]) is str and argv[argIx] == "stMoms":
                    # MOMENTS OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    numOfSTMoms = argv[argIx + 1]
                    # calculate waiting time moments
                    Pn = [Psis]
                    wtMoms = []
                    for n in range(1, numOfSTMoms + 1):
                        A = Qspp + Psis * Qsmp
                        B = Qsmm + Qsmp * Psis
                        C = -2 * n * Pn[n - 1]
                        bino = 1
                        for i in range(1, n):
                            bino = bino * (n - i + 1) / i
                            C += bino * Pn[i] * Qsmp * Pn[n - i]
                        P = la.solve_sylvester(A, B, -C)
                        Pn.append(P)
                        wtMoms.append(np.sum(inis * P * (-1)**n) / 2**n)
                    # calculate RESPONSE time moments
                    Pnr = [np.sum(inis * Pn[0]) * sigma[k]]
                    rtMoms = []
                    for n in range(1, numOfSTMoms + 1):
                        P = n * Pnr[n - 1] * (-S[k]).I + (-1)**n * np.sum(
                            inis * Pn[n]) * sigma[k] / 2**n
                        Pnr.append(P)
                        rtMoms.append(
                            np.sum(P) + np.sum(pwu) * math.factorial(n) *
                            np.sum(sigma[k] * (-S[k]).I**n))
                    Ret.append(rtMoms)
                    argIx += 1
                elif type(argv[argIx]) is str and argv[argIx] == "stDistr":
                    # DISTRIBUTION OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    stCdfPoints = argv[argIx + 1]
                    res = []
                    for t in stCdfPoints:
                        L = erlMaxOrder
                        lambdae = L / t / 2
                        Psie = FluidFundamentalMatrices(
                            Qspp - lambdae * ml.eye(Qspp.shape[0]), Qspm, Qsmp,
                            Qsmm - lambdae * ml.eye(Qsmm.shape[0]), 'P',
                            precision)
                        Pn = [Psie]
                        pr = (np.sum(pwu) + np.sum(inis * Psie)) * (1 - np.sum(
                            sigma[k] *
                            (ml.eye(S[k].shape[0]) - S[k] / 2 / lambdae).I**L))
                        for n in range(1, L):
                            A = Qspp + Psie * Qsmp - lambdae * ml.eye(
                                Qspp.shape[0])
                            B = Qsmm + Qsmp * Psie - lambdae * ml.eye(
                                Qsmm.shape[0])
                            C = 2 * lambdae * Pn[n - 1]
                            for i in range(1, n):
                                C += Pn[i] * Qsmp * Pn[n - i]
                            P = la.solve_sylvester(A, B, -C)
                            Pn.append(P)
                            pr += np.sum(inis * P) * (
                                1 - np.sum(sigma[k] *
                                           (np.eye(S[k].shape[0]) -
                                            S[k] / 2 / lambdae).I**(L - n)))
                        res.append(pr)
                    Ret.append(np.array(res))
                    argIx += 1
                elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or
                                                   argv[argIx] == "ncDistr"):
                    W = (-np.kron(sD - D[k + 1], ml.eye(M[k])) -
                         np.kron(I, S[k])).I * np.kron(D[k + 1], ml.eye(M[k]))
                    iW = (ml.eye(W.shape[0]) - W).I
                    w = np.kron(ml.eye(N), sigma[k])
                    omega = (-np.kron(sD - D[k + 1], ml.eye(M[k])) -
                             np.kron(I, S[k])).I * np.kron(I, s[k])
                    if argv[argIx] == "ncMoms":
                        # MOMENTS OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLMoms = argv[argIx + 1]
                        # first calculate it at departure instants
                        Psii = [Psis]
                        QLDPn = [inis * Psii[0] * w * iW]
                        for n in range(1, numOfQLMoms + 1):
                            A = Qspp + Psis * Qsmp
                            B = Qsmm + Qsmp * Psis
                            C = n * Psii[n - 1] * D[k + 1]
                            bino = 1
                            for i in range(1, n):
                                bino = bino * (n - i + 1) / i
                                C = C + bino * Psii[i] * Qsmp * Psii[n - i]
                            P = la.solve_sylvester(A, B, -C)
                            Psii.append(P)
                            QLDPn.append(n * QLDPn[n - 1] * iW * W +
                                         inis * P * w * iW)
                        for n in range(numOfQLMoms + 1):
                            QLDPn[n] = (QLDPn[n] +
                                        pwu * w * iW**(n + 1) * W**n) * omega
                        # now calculate it at random time instance
                        QLPn = [pi]
                        qlMoms = []
                        iTerm = (ml.ones((N, 1)) * pi - sD).I
                        for n in range(1, numOfQLMoms + 1):
                            sumP = np.sum(QLDPn[n]) + n * np.sum(
                                (QLDPn[n - 1] - QLPn[n - 1] * D[k + 1] /
                                 lambd[k]) * iTerm * D[k + 1])
                            P = sumP * pi + n * (
                                QLPn[n - 1] * D[k + 1] -
                                QLDPn[n - 1] * lambd[k]) * iTerm
                            QLPn.append(P)
                            qlMoms.append(np.sum(P))
                        qlMoms = MomsFromFactorialMoms(qlMoms)
                        Ret.append(qlMoms)
                        argIx += 1
                    elif argv[argIx] == "ncDistr":
                        # DISTRIBUTION OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLProbs = argv[argIx + 1]
                        Psid = FluidFundamentalMatrices(
                            Qspp, Qspm, Qsmp, sD0k, 'P', precision)
                        Pn = [Psid]
                        XDn = inis * Psid * w
                        dqlProbs = (XDn + pwu * w) * omega
                        for n in range(1, numOfQLProbs):
                            A = Qspp + Psid * Qsmp
                            B = sD0k + Qsmp * Psid
                            C = Pn[n - 1] * D[k + 1]
                            for i in range(1, n):
                                C += Pn[i] * Qsmp * Pn[n - i]
                            P = la.solve_sylvester(A, B, -C)
                            Pn.append(P)
                            XDn = XDn * W + inis * P * w
                            dqlProbs = ml.vstack(
                                (dqlProbs, (XDn + pwu * w * W**n) * omega))
                        # now calculate it at random time instance
                        iTerm = -(sD - D[k + 1]).I
                        qlProbs = lambd[k] * dqlProbs[0, :] * iTerm
                        for n in range(1, numOfQLProbs):
                            P = (qlProbs[n - 1, :] * D[k + 1] + lambd[k] *
                                 (dqlProbs[n, :] - dqlProbs[n - 1, :])) * iTerm
                            qlProbs = ml.vstack((qlProbs, P))
                        qlProbs = np.sum(qlProbs, 1).A.flatten()
                        Ret.append(qlProbs)
                        argIx += 1
                else:
                    raise Exception("MMAPPH1NPPR: Unknown parameter " +
                                    str(argv[argIx]))
                argIx += 1
        elif k == K - 1:
            # step 3. calculate the performance measures
            # ==========================================
            argIx = 0
            while argIx < len(argv):
                if argIx in eaten:
                    argIx += 1
                    continue
                elif type(argv[argIx]) is str and (argv[argIx] == "stMoms" or
                                                   argv[argIx] == "stDistr"):
                    Kw = Qwpp[k] + Qwpz[k] * (
                        -Qwzz[k]).I * Qwzp[k] + Psiw[k] * Qwmp[k]
                    AM = ml.zeros((0, 0))
                    BM = ml.zeros((0, 0))
                    CM = ml.zeros((0, 1))
                    DM = ml.zeros((0, 0))
                    for i in range(k):
                        AM = la.block_diag(
                            AM,
                            np.kron(ml.ones((N, 1)),
                                    np.kron(ml.eye(M[i]), s[k])))
                        BM = la.block_diag(BM, S[i])
                        CM = ml.vstack((CM, s[i]))
                        DM = la.block_diag(DM, np.kron(D[k + 1], ml.eye(M[i])))
                    Z = ml.vstack((ml.hstack(
                        (Kw, ml.vstack((AM, ml.zeros(
                            (N * M[k], AM.shape[1])))))),
                                   ml.hstack((ml.zeros(
                                       (BM.shape[0], Kw.shape[1])), BM))))
                    z = ml.vstack((ml.zeros(
                        (AM.shape[0], 1)), np.kron(ml.ones((N, 1)), s[k]), CM))
                    iniw = ml.hstack((q0[k] * Qwmp[k] + qL[k] * Qwzp[k],
                                      ml.zeros((1, BM.shape[0]))))
                    zeta = iniw / np.sum(iniw * (-Z).I * z)
                    if argv[argIx] == "stMoms":
                        # MOMENTS OF THE SOJOURN TIME
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfSTMoms = argv[argIx + 1]
                        rtMoms = []
                        for i in range(1, numOfSTMoms + 1):
                            rtMoms.append(
                                np.sum(
                                    math.factorial(i) * zeta *
                                    (-Z).I**(i + 1) * z))
                        Ret.append(rtMoms)
                        argIx += 1
                    if argv[argIx] == "stDistr":
                        # DISTRIBUTION OF THE SOJOURN TIME
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        stCdfPoints = argv[argIx + 1]
                        rtDistr = []
                        for t in stCdfPoints:
                            rtDistr.append(
                                np.sum(zeta * (-Z).I *
                                       (ml.eye(Z.shape[0]) - la.expm(Z * t)) *
                                       z))
                        Ret.append(np.array(rtDistr))
                        argIx += 1
                elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or
                                                   argv[argIx] == "ncDistr"):
                    L = ml.zeros((N * np.sum(M), N * np.sum(M)))
                    B = ml.zeros((N * np.sum(M), N * np.sum(M)))
                    F = ml.zeros((N * np.sum(M), N * np.sum(M)))
                    kix = 0
                    for i in range(K):
                        bs = N * M[i]
                        F[kix:kix + bs, :][:, kix:kix + bs] = np.kron(
                            D[k + 1], ml.eye(M[i]))
                        L[kix:kix + bs, :][:, kix:kix + bs] = np.kron(
                            sD0k, ml.eye(M[i])) + np.kron(I, S[i])
                        if i < K - 1:
                            L[kix:kix + bs, :][:,
                                               N * np.sum(M[:k]):] = np.kron(
                                                   I, s[i] * sigma[k])
                        else:
                            B[kix:kix + bs, :][:,
                                               N * np.sum(M[:k]):] = np.kron(
                                                   I, s[i] * sigma[k])
                        kix += bs
                    R = QBDFundamentalMatrices(B, L, F, 'R', precision)
                    p0 = ml.hstack((qL[k], q0[k] * np.kron(I, sigma[k])))
                    p0 = p0 / np.sum(p0 * (ml.eye(R.shape[0]) - R).I)
                    if argv[argIx] == "ncMoms":
                        # MOMENTS OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLMoms = argv[argIx + 1]
                        qlMoms = []
                        for i in range(1, numOfQLMoms + 1):
                            qlMoms.append(
                                np.sum(
                                    math.factorial(i) * p0 * R**i *
                                    (ml.eye(R.shape[0]) - R).I**(i + 1)))
                        Ret.append(MomsFromFactorialMoms(qlMoms))
                    elif argv[argIx] == "ncDistr":
                        # DISTRIBUTION OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLProbs = argv[argIx + 1]
                        qlProbs = [np.sum(p0)]
                        for i in range(1, numOfQLProbs):
                            qlProbs.append(np.sum(p0 * R**i))
                        Ret.append(np.array(qlProbs))
                    argIx += 1
                else:
                    raise Exception("MMAPPH1NPPR: Unknown parameter " +
                                    str(argv[argIx]))
                argIx += 1

    if len(Ret) == 1:
        return Ret[0]
    else:
        return Ret
예제 #5
0
def MMAPPH1FCFS(D, sigma, S, *argv):
    """
    Returns various performane measures of a MMAP[K]/PH[K]/1 
    first-come-first-serve queue, see [1]_.
    
    Parameters
    ----------
    D : list of matrices of shape (N,N), length (K+1)
        The D0...DK matrices of the arrival process.
    sigma : list of row vectors, length (K)
        The list containing the initial probability vectors of the service
        time distributions of the various customer types. The length of the
       vectors does not have to be the same.
    S : list of square matrices, length (K)
        The transient generators of the phase type distributions representing
        the service time of the jobs belonging to various types.
    further parameters : 
        The rest of the function parameters specify the options
        and the performance measures to be computed.
    
        The supported performance measures and options in this 
        function are:
    
        +----------------+--------------------+----------------------------------------+
        | Parameter name | Input parameters   | Output                                 |
        +================+====================+========================================+
        | "ncMoms"       | Number of moments  | The moments of the number of customers |
        +----------------+--------------------+----------------------------------------+
        | "ncDistr"      | Upper limit K      | The distribution of the number of      |
        |                |                    | customers from level 0 to level K-1    |
        +----------------+--------------------+----------------------------------------+
        | "stMoms"       | Number of moments  | The sojourn time moments               |
        +----------------+--------------------+----------------------------------------+
        | "stDistr"      | A vector of points | The sojourn time distribution at the   |
        |                |                    | requested points (cummulative, cdf)    |
        +----------------+--------------------+----------------------------------------+
        | "stDistrME"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution              |
        +----------------+--------------------+----------------------------------------+
        | "stDistrPH"    | None               | The vector-matrix parameters of the    |
        |                |                    | matrix-exponentially distributed       |
        |                |                    | sojourn time distribution, converted   |
        |                |                    | to a continuous PH representation      |
        +----------------+--------------------+----------------------------------------+
        | "prec"         | The precision      | Numerical precision used as a stopping |
        |                |                    | condition when solving the Riccati     |
        |                |                    | equation                               |
        +----------------+--------------------+----------------------------------------+
        | "classes"      | Vector of integers | Only the performance measures          |
        |                |                    | belonging to these classes are         |
        |                |                    | returned. If not given, all classes    |
        |                |                    | are analyzed.                          |
        +----------------+--------------------+----------------------------------------+
        
        (The quantities related to the number of customers in 
        the system include the customer in the server, and the 
        sojourn time related quantities include the service 
        times as well)
    
    Returns
    -------
    Ret : list of the performance measures
        Each entry of the list corresponds to a performance 
        measure requested. Each entry is a matrix, where the
        columns belong to the various job types.
        If there is just a single item, 
        then it is not put into a list.
    
    References
    ----------
    .. [1] Qiming He, "Analysis of a continuous time 
           SM[K]/PH[K]/1/FCFS queue: Age process, sojourn times,
           and queue lengths", Journal of Systems Science and 
           Complexity, 25(1), pp 133-155, 2012.
    """

    K = len(D) - 1

    # parse options
    eaten = []
    precision = 1e-14
    classes = np.arange(0, K)
    for i in range(len(argv)):
        if argv[i] == "prec":
            precision = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "classes":
            classes = np.array(argv[i + 1]) - 1
            eaten.append(i)
            eaten.append(i + 1)

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            'MMAPPH1FCFS: The arrival process is not a valid MMAP representation!'
        )

    if butools.checkInput:
        for k in range(K):
            if not CheckPHRepresentation(sigma[k], S[k]):
                raise Exception(
                    'MMAPPH1FCFS: the vector and matrix describing the service times is not a valid PH representation!'
                )

    # some preparation
    D0 = D[0]
    N = D0.shape[0]
    Ia = ml.eye(N)
    Da = ml.zeros((N, N))
    for q in range(K):
        Da += D[q + 1]
    theta = CTMCSolve(D0 + Da)
    beta = [CTMCSolve(S[k] + ml.sum(-S[k], 1) * sigma[k]) for k in range(K)]
    lambd = [np.sum(theta * D[k + 1]) for k in range(K)]
    mu = [np.sum(beta[k] * (-S[k])) for k in range(K)]
    Nsk = [S[k].shape[0] for k in range(K)]
    ro = np.sum(np.array(lambd) / np.array(mu))
    alpha = theta * Da / sum(lambd)
    D0i = (-D0).I

    Sa = S[0]
    sa = [ml.zeros(sigma[0].shape)] * K
    sa[0] = sigma[0]
    ba = [ml.zeros(beta[0].shape)] * K
    ba[0] = beta[0]
    sv = [ml.zeros((Nsk[0], 1))] * K
    sv[0] = ml.sum(-S[0], 1)
    Pk = [D0i * D[q + 1] for q in range(K)]

    for k in range(1, K):
        Sa = la.block_diag(Sa, S[k])
        for q in range(K):
            if q == k:
                sa[q] = ml.hstack((sa[q], sigma[k]))
                ba[q] = ml.hstack((ba[q], beta[k]))
                sv[q] = ml.vstack((sv[q], -np.sum(S[k], 1)))
            else:
                sa[q] = ml.hstack((sa[q], ml.zeros(sigma[k].shape)))
                ba[q] = ml.hstack((ba[q], ml.zeros(beta[k].shape)))
                sv[q] = ml.vstack((sv[q], ml.zeros((Nsk[k], 1))))
    Sa = ml.matrix(Sa)
    P = D0i * Da
    iVec = ml.kron(D[1], sa[0])
    for k in range(1, K):
        iVec += ml.kron(D[k + 1], sa[k])
    Ns = Sa.shape[0]
    Is = ml.eye(Ns)

    # step 1. solve the age process of the queue
    # ==========================================

    # solve Y0 and calculate T
    Y0 = FluidFundamentalMatrices(ml.kron(Ia, Sa), ml.kron(Ia, -ml.sum(Sa, 1)),
                                  iVec, D0, "P", precision)
    T = ml.kron(Ia, Sa) + Y0 * iVec

    # calculate pi0 and v0
    pi0 = ml.zeros((1, T.shape[0]))
    for k in range(K):
        pi0 += ml.kron(theta * D[k + 1], ba[k] / mu[k])
    pi0 = -pi0 * T

    iT = (-T).I
    oa = ml.ones((N, 1))

    # step 2. calculate performance measures
    # ======================================
    Ret = []
    for k in classes:
        argIx = 0
        clo = iT * ml.kron(oa, sv[k])
        while argIx < len(argv):
            if argIx in eaten:
                argIx += 1
                continue
            elif type(argv[argIx]) is str and argv[argIx] == "stMoms":
                numOfSTMoms = argv[argIx + 1]
                rtMoms = []
                for m in range(1, numOfSTMoms + 1):
                    rtMoms.append(
                        math.factorial(m) * np.sum(pi0 * iT**m * clo /
                                                   (pi0 * clo)))
                Ret.append(rtMoms)
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx] == "stDistr":
                stCdfPoints = argv[argIx + 1]
                cdf = []
                for t in stCdfPoints:
                    pr = 1 - np.sum(pi0 * la.expm(T * t) * clo / (pi0 * clo))
                    cdf.append(pr)
                Ret.append(np.array(cdf))
                argIx += 1
            elif type(argv[argIx]) is str and argv[argIx] == "stDistrME":
                Bm = SimilarityMatrixForVectors(clo / (pi0 * clo),
                                                ml.ones((N * Ns, 1)))
                Bmi = Bm.I
                A = Bm * T * Bmi
                alpha = pi0 * Bmi
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx] == "stDistrPH":
                vv = pi0 * iT
                ix = np.arange(N * Ns)
                nz = ix[vv.flat > precision]
                delta = Diag(vv[:, nz])
                cl = -T * clo / (pi0 * clo)
                alpha = cl[nz, :].T * delta
                A = delta.I * T[nz, :][:, nz].T * delta
                Ret.append(alpha)
                Ret.append(A)
            elif type(argv[argIx]) is str and argv[argIx] == "ncDistr":
                numOfQLProbs = argv[argIx + 1]
                argIx += 1
                values = np.empty(numOfQLProbs)
                jm = ml.zeros((Ns, 1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1
                jmc = ml.ones((Ns, 1))
                jmc[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 0
                LmCurr = la.solve_sylvester(T, ml.kron(D0 + Da - D[k + 1], Is),
                                            -ml.eye(N * Ns))
                values[0] = 1 - ro + np.sum(pi0 * LmCurr * ml.kron(oa, jmc))
                for i in range(1, numOfQLProbs):
                    LmPrev = LmCurr
                    LmCurr = la.solve_sylvester(
                        T, ml.kron(D0 + Da - D[k + 1], Is),
                        -LmPrev * ml.kron(D[k + 1], Is))
                    values[i] = np.sum(pi0 * LmCurr * ml.kron(oa, jmc) +
                                       pi0 * LmPrev * ml.kron(oa, jm))
                Ret.append(values)
            elif type(argv[argIx]) is str and argv[argIx] == "ncMoms":
                numOfQLMoms = argv[argIx + 1]
                argIx += 1
                jm = ml.zeros((Ns, 1))
                jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1
                ELn = [
                    la.solve_sylvester(T, ml.kron(D0 + Da, Is),
                                       -ml.eye(N * Ns))
                ]
                qlMoms = []
                for n in range(1, numOfQLMoms + 1):
                    bino = 1
                    Btag = ml.zeros((N * Ns, N * Ns))
                    for i in range(n):
                        Btag += bino * ELn[i]
                        bino *= (n - i) / (i + 1)
                    ELn.append(
                        la.solve_sylvester(T, ml.kron(D0 + Da, Is),
                                           -Btag * ml.kron(D[k + 1], Is)))
                    qlMoms.append(
                        np.sum(pi0 * ELn[n]) +
                        np.sum(pi0 * Btag * ml.kron(oa, jm)))
                Ret.append(qlMoms)
            else:
                raise Exception("MMAPPH1FCFS: Unknown parameter " +
                                str(argv[argIx]))
            argIx += 1

    if len(Ret) == 1:
        return Ret[0]
    else:
        return Ret
예제 #6
0
def MMAPPH1PRPR(D, sigma, S, *argv):
    """
    Returns various performane measures of a MMAP[K]/PH[K]/1 
    preemptive resume priority queue, see [1]_.
    
    Parameters
    ----------
    D : list of matrices of shape (N,N), length (K+1)
        The D0...DK matrices of the arrival process.
        D1 corresponds to the lowest, DK to the highest priority.
    sigma : list of row vectors, length (K)
        The list containing the initial probability vectors of the service
        time distributions of the various customer types. The length of the
       vectors does not have to be the same.
    S : list of square matrices, length (K)
        The transient generators of the phase type distributions representing
        the service time of the jobs belonging to various types.
    further parameters : 
        The rest of the function parameters specify the options
        and the performance measures to be computed.
    
        The supported performance measures and options in this 
        function are:
    
        +----------------+--------------------+----------------------------------------+
        | Parameter name | Input parameters   | Output                                 |
        +================+====================+========================================+
        | "ncMoms"       | Number of moments  | The moments of the number of customers |
        +----------------+--------------------+----------------------------------------+
        | "ncDistr"      | Upper limit K      | The distribution of the number of      |
        |                |                    | customers from level 0 to level K-1    |
        +----------------+--------------------+----------------------------------------+
        | "stMoms"       | Number of moments  | The sojourn time moments               |
        +----------------+--------------------+----------------------------------------+
        | "stDistr"      | A vector of points | The sojourn time distribution at the   |
        |                |                    | requested points (cummulative, cdf)    |
        +----------------+--------------------+----------------------------------------+
        | "prec"         | The precision      | Numerical precision used as a stopping |
        |                |                    | condition when solving the Riccati and |
        |                |                    | the matrix-quadratic equations         |
        +----------------+--------------------+----------------------------------------+
        | "erlMaxOrder"  | Integer number     | The maximal Erlang order used in the   |
        |                |                    | erlangization procedure. The default   |
        |                |                    | value is 200.                          |
        +----------------+--------------------+----------------------------------------+
        | "classes"      | Vector of integers | Only the performance measures          |
        |                |                    | belonging to these classes are         |
        |                |                    | returned. If not given, all classes    |
        |                |                    | are analyzed.                          |
        +----------------+--------------------+----------------------------------------+
        
        (The quantities related to the number of customers in 
        the system include the customer in the server, and the 
        sojourn time related quantities include the service 
        times as well)
    
    Returns
    -------
    Ret : list of the performance measures
        Each entry of the list corresponds to a performance 
        measure requested. Each entry is a matrix, where the
        columns belong to the various job types.
        If there is just a single item, 
        then it is not put into a list.
    
    References
    ----------
    .. [1] G. Horvath, "Efficient analysis of the MMAP[K]/PH[K]/1
           priority queue", European Journal of Operational 
           Research, 246(1), 128-139, 2015.
    """

    K = len(D) - 1

    # parse options
    eaten = []
    erlMaxOrder = 200
    precision = 1e-14
    classes = np.arange(0, K)
    for i in range(len(argv)):
        if argv[i] == "prec":
            precision = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "erlMaxOrder":
            erlMaxOrder = argv[i + 1]
            eaten.append(i)
            eaten.append(i + 1)
        elif argv[i] == "classes":
            classes = np.array(argv[i + 1]) - 1
            eaten.append(i)
            eaten.append(i + 1)

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            'MMAPPH1PRPR: The arrival process is not a valid MMAP representation!'
        )

    if butools.checkInput:
        for k in range(K):
            if not CheckPHRepresentation(sigma[k], S[k]):
                raise Exception(
                    'MMAPPH1PRPR: the vector and matrix describing the service times is not a valid PH representation!'
                )

    # some preparation
    D0 = D[0]
    N = D0.shape[0]
    I = ml.eye(N)
    sD = ml.zeros((N, N))
    for Di in D:
        sD += Di

    s = []
    M = np.empty(K)
    for i in range(K):
        s.append(np.sum(-S[i], 1))
        M[i] = sigma[i].size

    Ret = []
    for k in classes:

        # step 1. solution of the workload process of the system
        # ======================================================
        sM = np.sum(M[k:K])
        Qwmm = ml.matrix(D0)
        for i in range(k):
            Qwmm += D[i + 1]

        Qwpm = ml.zeros((N * sM, N))
        Qwmp = ml.zeros((N, N * sM))
        Qwpp = ml.zeros((N * sM, N * sM))
        kix = 0
        for i in range(k, K):
            Qwmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i])
            Qwpm[kix:kix + N * M[i], :] = np.kron(I, s[i])
            Qwpp[kix:kix + N * M[i], :][:,
                                        kix:kix + N * M[i]] = np.kron(I, S[i])
            kix += N * M[i]

        # calculate fundamental matrices
        Psiw, Kw, Uw = FluidFundamentalMatrices(Qwpp, Qwpm, Qwmp, Qwmm, 'PKU',
                                                precision)

        # calculate boundary vector
        Ua = ml.ones((N, 1)) + 2 * np.sum(Qwmp * (-Kw).I, 1)
        pm = Linsolve(
            ml.hstack((Uw, Ua)).T,
            ml.hstack((ml.zeros((1, N)), ml.ones((1, 1)))).T).T

        Bw = ml.zeros((N * sM, N))
        Bw[0:N * M[k], :] = np.kron(I, s[k])
        kappa = pm * Qwmp / np.sum(pm * Qwmp * (-Kw).I * Bw)

        if k < K - 1:
            # step 2. construct fluid model for the remaining sojourn time process
            # ====================================================================
            # (for each class except the highest priority)
            Qsmm = ml.matrix(D0)
            for i in range(k + 1):
                Qsmm += D[i + 1]

            Np = Kw.shape[0]
            Qspm = ml.zeros((Np + N * np.sum(M[k + 1:]), N))
            Qsmp = ml.zeros((N, Np + N * np.sum(M[k + 1:])))
            Qspp = ml.zeros(
                (Np + N * np.sum(M[k + 1:]), Np + N * np.sum(M[k + 1:])))
            Qspp[:Np, :Np] = Kw
            Qspm[:Np, :N] = Bw
            kix = Np
            for i in range(k + 1, K):
                Qsmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i])
                Qspm[kix:kix + N * M[i], :] = np.kron(I, s[i])
                Qspp[kix:kix + N * M[i], kix:kix + N * M[i]] = np.kron(I, S[i])
                kix += N * M[i]

            inis = ml.hstack((kappa, ml.zeros((1, N * np.sum(M[k + 1:])))))
            Psis = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, Qsmm, 'P',
                                            precision)

            # step 3. calculate the performance measures
            # ==========================================
            argIx = 0
            while argIx < len(argv):
                if argIx in eaten:
                    argIx += 1
                    continue
                elif type(argv[argIx]) is str and argv[argIx] == "stMoms":
                    # MOMENTS OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    numOfSTMoms = argv[argIx + 1]
                    Pn = [Psis]
                    rtMoms = []
                    for n in range(1, numOfSTMoms + 1):
                        A = Qspp + Psis * Qsmp
                        B = Qsmm + Qsmp * Psis
                        C = -2 * n * Pn[n - 1]
                        bino = 1
                        for i in range(1, n):
                            bino = bino * (n - i + 1) / i
                            C += bino * Pn[i] * Qsmp * Pn[n - i]
                        P = la.solve_sylvester(A, B, -C)
                        Pn.append(P)
                        rtMoms.append(np.sum(inis * P * (-1)**n) / 2**n)
                    Ret.append(rtMoms)
                    argIx += 1
                elif type(argv[argIx]) is str and argv[argIx] == "stDistr":
                    # DISTRIBUTION OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    stCdfPoints = argv[argIx + 1]
                    res = []
                    for t in stCdfPoints:
                        L = erlMaxOrder
                        lambd = L / t / 2
                        Psie = FluidFundamentalMatrices(
                            Qspp - lambd * ml.eye(Qspp.shape[0]), Qspm, Qsmp,
                            Qsmm - lambd * ml.eye(Qsmm.shape[0]), 'P',
                            precision)
                        Pn = [Psie]
                        pr = np.sum(inis * Psie)
                        for n in range(1, L):
                            A = Qspp + Psie * Qsmp - lambd * ml.eye(
                                Qspp.shape[0])
                            B = Qsmm + Qsmp * Psie - lambd * ml.eye(
                                Qsmm.shape[0])
                            C = 2 * lambd * Pn[n - 1]
                            for i in range(1, n):
                                C += Pn[i] * Qsmp * Pn[n - i]
                            P = la.solve_sylvester(A, B, -C)
                            Pn.append(P)
                            pr += np.sum(inis * P)
                        res.append(pr)
                    Ret.append(np.array(res))
                    argIx += 1
                elif type(argv[argIx]) is str and argv[argIx] == "ncMoms":
                    # MOMENTS OF THE NUMBER OF JOBS
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    numOfQLMoms = argv[argIx + 1]
                    # first calculate it at departure instants
                    QLDPn = [Psis]
                    dqlMoms = []
                    for n in range(1, numOfQLMoms + 1):
                        A = Qspp + Psis * Qsmp
                        B = Qsmm + Qsmp * Psis
                        C = n * QLDPn[n - 1] * D[k + 1]
                        bino = 1
                        for i in range(1, n):
                            bino = bino * (n - i + 1) / i
                            C = C + bino * QLDPn[i] * Qsmp * QLDPn[n - i]
                        P = la.solve_sylvester(A, B, -C)
                        QLDPn.append(P)
                        dqlMoms.append(np.sum(inis * P))
                    dqlMoms = MomsFromFactorialMoms(dqlMoms)
                    # now calculate it at random time instance
                    pi = CTMCSolve(sD)
                    lambdak = np.sum(pi * D[k + 1])
                    QLPn = [pi]
                    qlMoms = []
                    iTerm = (ml.ones((N, 1)) * pi - sD).I
                    for n in range(1, numOfQLMoms + 1):
                        sumP = np.sum(inis * QLDPn[n]) + n * (
                            inis * QLDPn[n - 1] - QLPn[n - 1] * D[k + 1] /
                            lambdak) * iTerm * np.sum(D[k + 1], 1)
                        P = sumP * pi + n * (QLPn[n - 1] * D[k + 1] - inis *
                                             QLDPn[n - 1] * lambdak) * iTerm
                        QLPn.append(P)
                        qlMoms.append(np.sum(P))
                    qlMoms = MomsFromFactorialMoms(qlMoms)
                    Ret.append(qlMoms)
                    argIx += 1
                elif type(argv[argIx]) is str and argv[argIx] == "ncDistr":
                    # DISTRIBUTION OF THE NUMBER OF JOBS
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    numOfQLProbs = argv[argIx + 1]
                    sDk = ml.matrix(D0)
                    for i in range(k):
                        sDk += D[i + 1]
                    # first calculate it at departure instants
                    Psid = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, sDk, 'P',
                                                    precision)
                    Pn = [Psid]
                    dqlProbs = inis * Psid
                    for n in range(1, numOfQLProbs):
                        A = Qspp + Psid * Qsmp
                        B = sDk + Qsmp * Psid
                        C = Pn[n - 1] * D[k + 1]
                        for i in range(1, n):
                            C += Pn[i] * Qsmp * Pn[n - i]
                        P = la.solve_sylvester(A, B, -C)
                        Pn.append(P)
                        dqlProbs = ml.vstack((dqlProbs, inis * P))
                    # now calculate it at random time instance
                    pi = CTMCSolve(sD)
                    lambdak = np.sum(pi * D[k + 1])
                    iTerm = -(sD - D[k + 1]).I
                    qlProbs = lambdak * dqlProbs[0, :] * iTerm
                    for n in range(1, numOfQLProbs):
                        P = (qlProbs[n - 1, :] * D[k + 1] + lambdak *
                             (dqlProbs[n, :] - dqlProbs[n - 1, :])) * iTerm
                        qlProbs = ml.vstack((qlProbs, P))
                    qlProbs = np.sum(qlProbs, 1).A.flatten()
                    Ret.append(qlProbs)
                    argIx += 1
                else:
                    raise Exception("MMAPPH1PRPR: Unknown parameter " +
                                    str(argv[argIx]))
                argIx += 1
        elif k == K - 1:
            # step 3. calculate the performance measures
            # ==========================================
            argIx = 0
            while argIx < len(argv):
                if argIx in eaten:
                    argIx += 1
                    continue
                elif type(argv[argIx]) is str and argv[argIx] == "stMoms":
                    # MOMENTS OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    numOfSTMoms = argv[argIx + 1]
                    rtMoms = []
                    for i in range(1, numOfSTMoms + 1):
                        rtMoms.append(
                            np.sum(
                                math.factorial(i) * kappa * (-Kw).I**(i + 1) *
                                Bw))
                    Ret.append(rtMoms)
                    argIx += 1
                elif type(argv[argIx]) is str and argv[argIx] == "stDistr":
                    # DISTRIBUTION OF THE SOJOURN TIME
                    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                    stCdfPoints = argv[argIx + 1]
                    rtDistr = []
                    for t in stCdfPoints:
                        rtDistr.append(
                            np.sum(kappa * (-Kw).I *
                                   (ml.eye(Kw.shape[0]) - la.expm(Kw * t)) *
                                   Bw))
                    Ret.append(np.array(rtDistr))
                    argIx += 1
                elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or
                                                   argv[argIx] == "ncDistr"):
                    L = np.kron(sD - D[k + 1], ml.eye(M[k])) + np.kron(
                        ml.eye(N), S[k])
                    B = np.kron(ml.eye(N), s[k] * sigma[k])
                    F = np.kron(D[k + 1], ml.eye(M[k]))
                    L0 = np.kron(sD - D[k + 1], ml.eye(M[k]))
                    R = QBDFundamentalMatrices(B, L, F, 'R', precision)
                    p0 = CTMCSolve(L0 + R * B)
                    p0 = p0 / np.sum(p0 * (ml.eye(R.shape[0]) - R).I)
                    if argv[argIx] == "ncMoms":
                        # MOMENTS OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLMoms = argv[argIx + 1]
                        qlMoms = []
                        for i in range(1, numOfQLMoms + 1):
                            qlMoms.append(
                                np.sum(
                                    math.factorial(i) * p0 * R**i *
                                    (ml.eye(R.shape[0]) - R).I**(i + 1)))
                        Ret.append(MomsFromFactorialMoms(qlMoms))
                    elif argv[argIx] == "ncDistr":
                        # DISTRIBUTION OF THE NUMBER OF JOBS
                        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                        numOfQLProbs = argv[argIx + 1]
                        qlProbs = [np.sum(p0)]
                        for i in range(1, numOfQLProbs):
                            qlProbs.append(np.sum(p0 * R**i))
                        Ret.append(np.array(qlProbs))
                    argIx += 1
                else:
                    raise Exception("MMAPPH1PRPR: Unknown parameter " +
                                    str(argv[argIx]))
                argIx += 1

    if len(Ret) == 1:
        return Ret[0]
    else:
        return Ret
예제 #7
0
def SamplesFromMMAP(D, k, initial=None, prec=1e-14):
    """
    Generates random samples from a marked Markovian 
    arrival process.
    
    Parameters
    ----------
    D : list of matrices of shape(M,M), length(N)
        The D0...DN matrices of the MMAP
    K : integer
        The number of samples to generate.
    prec : double, optional
        Numerical precision to check if the input MMAP is
        valid. The default value is 1e-14.
    
    Returns
    -------
    x : matrix, shape(K,2)
        The random samples. Each row consists of two 
        columns: the inter-arrival time and the type of the
        arrival.        
    """

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            "SamplesFromMMAP: Input is not a valid MMAP representation!")

    N = D[0].shape[0]

    if initial == None:
        # draw initial state according to the stationary distribution
        stst = CTMCSolve(SumMatrixList(D)).A.flatten()
        cummInitial = np.cumsum(stst)
        r = rand()
        state = 0
        while cummInitial[state] <= r:
            state += 1
    else:
        state = initial

    # auxilary variables
    sojourn = -1.0 / np.diag(D[0])
    nextpr = ml.matrix(np.diag(sojourn)) * D[0]
    nextpr = nextpr - ml.matrix(np.diag(np.diag(nextpr)))
    for i in range(1, len(D)):
        nextpr = np.hstack((nextpr, np.diag(sojourn) * D[i]))
    nextpr = np.cumsum(nextpr, 1)

    if len(D) > 2:
        x = np.empty((k, 2))
    else:
        x = np.empty(k)

    for n in range(k):
        time = 0

        # play state transitions
        while state < N:
            time -= np.log(rand()) * sojourn[state]
            r = rand()
            nstate = 0
            while nextpr[state, nstate] <= r:
                nstate += 1
            state = nstate
        if len(D) > 2:
            x[n, 0] = time
            x[n, 1] = state // N
        else:
            x[n] = time
        state = state % N

    return x
예제 #8
0
def ImageFromMMAP(D, outFileName="display", prec=1e-13):
    """
    Depicts the given marked Markovian arrival process, and
    either displays it or saves it to file.
    
    Parameters
    ----------
    D : list of matrices of shape(M,M), length(N)
        The D0...DN matrices of the MMAP
    outFileName : string, optional
        If it is not provided, or equals to 'display', the
        image is displayed on the screen, otherwise it is 
        written to the file. The file format is deduced 
        from the file name.
    prec : double, optional
        Transition rates less then prec are considered to
        be zero and are left out from the image. The 
        default value is 1e-13.
    
    Notes
    -----
    The 'graphviz' software must be installed and available
    in the path to use this feature.
    """

    if butools.checkInput and not CheckMMAPRepresentation(D):
        raise Exception(
            "ImageFromMMAP: Input is not a valid MMAP representation!")

    if outFileName == "display":
        outputFile = ".result.png"
        displ = True
    else:
        outputFile = outFileName
        displ = False

    inputFile = "_temp.dot"

    f = open(inputFile, "w")
    f.write("digraph G {\n")
    f.write("\trankdir=LR;\n")
    f.write('\tnode [shape=circle,width=0.3,height=0.3,label=""];\n')

    N = D[0].shape[0]

    # transitions without arrivals
    Dx = D[0]
    for i in range(N):
        for j in range(N):
            if i != j and abs(Dx[i, j]) > prec:
                f.write('\tn{0} -> n{1} [label="{2}"];\n'.format(
                    i, j, Dx[i, j]))

    # transitions with arrivals
    for k in range(1, len(D)):
        Dx = D[k]
        for i in range(N):
            for j in range(N):
                if abs(Dx[i, j]) > prec:
                    if len(D) == 2:
                        f.write(
                            '\tn{0} -> n{1} [style="dashed",label="{2}"];\n'.
                            format(i, j, Dx[i, j]))
                    else:
                        f.write(
                            '\tn{0} -> n{1} [style="solid",fontcolor="/dark28/{2}",color="/dark28/{3}",label="{4}"];\n'
                            .format(i, j, min(k - 1, 8), min(k - 1, 8), Dx[i,
                                                                           j]))

    f.write('}\n')
    f.close()

    ext = os.path.splitext(outputFile)[1]
    call(['dot', '-T' + ext[1:], "_temp.dot", '-o', outputFile])
    os.remove(inputFile)

    if displ:
        from IPython.display import Image
        i = Image(filename=outputFile)
        os.remove(outputFile)
        return i