def test__create_partitions(self, spark_session, spark_context):
        # arrange
        start = datetime.datetime(year=1970, month=1, day=1)
        end = datetime.datetime(year=2020, month=12, day=31)
        random_dates = [
            (
                lambda: start + datetime.
                timedelta(seconds=random.randint(  # noqa: S311
                    0, int(
                        (end - start).total_seconds()))))().date().isoformat()
            for _ in range(10000)
        ]
        data = [{"timestamp": date} for date in random_dates]
        input_df = spark_session.read.json(spark_context.parallelize(data, 1),
                                           schema="timestamp timestamp")

        writer = HistoricalFeatureStoreWriter()

        # act
        result_df = writer._create_partitions(input_df)

        # assert
        assert result_df.select("year", "month",
                                "day").distinct().count() == len(
                                    set(random_dates))
    def test_write(
        self,
        feature_set_dataframe,
        historical_feature_set_dataframe,
        mocker,
        feature_set,
    ):
        # given
        spark_client = mocker.stub("spark_client")
        spark_client.write_table = mocker.stub("write_table")
        writer = HistoricalFeatureStoreWriter()

        # when
        writer.write(
            feature_set=feature_set,
            dataframe=feature_set_dataframe,
            spark_client=spark_client,
        )
        result_df = spark_client.write_table.call_args[1]["dataframe"]

        # then
        assert_dataframe_equality(historical_feature_set_dataframe, result_df)

        assert (writer.db_config.format_ ==
                spark_client.write_table.call_args[1]["format_"])
        assert writer.db_config.mode == spark_client.write_table.call_args[1][
            "mode"]
        assert (writer.PARTITION_BY == spark_client.write_table.call_args[1]
                ["partition_by"])
        assert feature_set.name == spark_client.write_table.call_args[1][
            "table_name"]
    def test__repartition_df(self, spark_session, spark_context):
        # arrange
        start = datetime.datetime(year=1970, month=1, day=1)
        end = datetime.datetime(year=2020, month=12, day=31)
        random_dates = [
            (
                lambda: start + datetime.
                timedelta(seconds=random.randint(  # noqa: S311
                    0, int(
                        (end - start).total_seconds()))))().date().isoformat()
            for _ in range(10000)
        ]
        data = [{"timestamp": date} for date in random_dates]
        input_df = spark_session.read.json(spark_context.parallelize(data, 1),
                                           schema="timestamp timestamp")

        writer = HistoricalFeatureStoreWriter()

        # act
        result_df = writer._create_partitions(input_df)

        # assert
        # Only one partition id, meaning data is not partitioned
        assert input_df.select(spark_partition_id()).distinct().count() == 1
        # Desired number of partitions
        assert result_df.select(spark_partition_id()).distinct().count() == 200
    def test__assert_validation_count(self, written_count, dataframe_count,
                                      threshold):
        # arrange
        writer = (HistoricalFeatureStoreWriter(validation_threshold=threshold)
                  if threshold else HistoricalFeatureStoreWriter())

        # act and assert
        writer._assert_validation_count("table", written_count,
                                        dataframe_count)
    def test_validate(self, feature_set_dataframe, mocker, feature_set):
        # given
        spark_client = mocker.stub("spark_client")
        spark_client.read_table = mocker.stub("read_table")
        spark_client.read_table.return_value = feature_set_dataframe

        writer = HistoricalFeatureStoreWriter()

        # when
        writer.validate(feature_set, feature_set_dataframe, spark_client)

        # then
        spark_client.read_table.assert_called_once()
    def test_validate_false(self, feature_set_dataframe, mocker, feature_set):
        # given
        spark_client = mocker.stub("spark_client")
        spark_client.read_table = mocker.stub("read_table")

        # limiting df to 1 row, now the counts should'n be the same
        spark_client.read_table.return_value = feature_set_dataframe.limit(1)

        writer = HistoricalFeatureStoreWriter()

        # when
        with pytest.raises(AssertionError):
            _ = writer.validate(feature_set, feature_set_dataframe,
                                spark_client)
예제 #7
0
    def test_flush(self, feature_set_dataframe, mocker):
        # given
        spark_client = SparkClient()
        writer = [
            HistoricalFeatureStoreWriter(),
            OnlineFeatureStoreWriter(),
        ]

        for w in writer:
            w.write = mocker.stub("write")

        feature_set = mocker.stub("feature_set")
        feature_set.entity = "house"
        feature_set.name = "test"

        # when
        sink = Sink(writers=writer)
        sink.flush(
            dataframe=feature_set_dataframe,
            feature_set=feature_set,
            spark_client=spark_client,
        )

        # then
        for w in writer:
            w.write.assert_called_once()
예제 #8
0
 def test_sink_raise(self):
     with pytest.raises(ValueError, match="sink must be a Sink instance"):
         FeatureSetPipeline(
             spark_client=SparkClient(),
             source=Mock(
                 spec=Source,
                 readers=[
                     TableReader(id="source_a", database="db", table="table",),
                 ],
                 query="select * from source_a",
             ),
             feature_set=Mock(
                 spec=FeatureSet,
                 name="feature_set",
                 entity="entity",
                 description="description",
                 features=[
                     Feature(
                         name="user_id",
                         description="The user's Main ID or device ID",
                         dtype=DataType.FLOAT,
                     ),
                     Feature(
                         name="ts",
                         description="The timestamp feature",
                         dtype=DataType.TIMESTAMP,
                     ),
                 ],
                 key_columns=["user_id"],
                 timestamp_column="ts",
             ),
             sink=Mock(writers=[HistoricalFeatureStoreWriter(db_config=None)],),
         )
예제 #9
0
def test_sink(input_dataframe, feature_set):
    # arrange
    client = SparkClient()
    feature_set_df = feature_set.construct(input_dataframe, client)
    target_latest_df = OnlineFeatureStoreWriter.filter_latest(
        feature_set_df, id_columns=[key.name for key in feature_set.keys])
    columns_sort = feature_set_df.schema.fieldNames()

    # setup historical writer
    s3config = Mock()
    s3config.get_options = Mock(
        return_value={
            "mode": "overwrite",
            "format_": "parquet",
            "path": "test_folder/historical/entity/feature_set",
        })
    historical_writer = HistoricalFeatureStoreWriter(db_config=s3config)

    # setup online writer
    # TODO: Change for CassandraConfig when Cassandra for test is ready
    online_config = Mock()
    online_config.mode = "overwrite"
    online_config.format_ = "parquet"
    online_config.get_options = Mock(
        return_value={"path": "test_folder/online/entity/feature_set"})
    online_writer = OnlineFeatureStoreWriter(db_config=online_config)

    writers = [historical_writer, online_writer]
    sink = Sink(writers)

    # act
    client.sql("CREATE DATABASE IF NOT EXISTS {}".format(
        historical_writer.database))
    sink.flush(feature_set, feature_set_df, client)

    # get historical results
    historical_result_df = client.read_table(feature_set.name,
                                             historical_writer.database)

    # get online results
    online_result_df = client.read(online_config.format_,
                                   options=online_config.get_options(
                                       feature_set.name))

    # assert
    # assert historical results
    assert sorted(feature_set_df.select(*columns_sort).collect()) == sorted(
        historical_result_df.select(*columns_sort).collect())

    # assert online results
    assert sorted(target_latest_df.select(*columns_sort).collect()) == sorted(
        online_result_df.select(*columns_sort).collect())

    # tear down
    shutil.rmtree("test_folder")
예제 #10
0
    def test_run_with_repartition(self, spark_session):
        test_pipeline = FeatureSetPipeline(
            spark_client=SparkClient(),
            source=Mock(
                spec=Source,
                readers=[TableReader(id="source_a", database="db", table="table",)],
                query="select * from source_a",
            ),
            feature_set=Mock(
                spec=FeatureSet,
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=SparkFunctionTransform(
                            functions=[
                                Function(functions.avg, DataType.FLOAT),
                                Function(functions.stddev_pop, DataType.FLOAT),
                            ],
                        ).with_window(
                            partition_by="user_id",
                            order_by=TIMESTAMP_COLUMN,
                            window_definition=["7 days", "2 weeks"],
                            mode="fixed_windows",
                        ),
                    ),
                ],
            ),
            sink=Mock(
                spec=Sink, writers=[HistoricalFeatureStoreWriter(db_config=None)],
            ),
        )

        # feature_set need to return a real df for streaming validation
        sample_df = spark_session.createDataFrame([{"a": "x", "b": "y", "c": "3"}])
        test_pipeline.feature_set.construct.return_value = sample_df

        test_pipeline.run(partition_by=["id"])

        test_pipeline.source.construct.assert_called_once()
        test_pipeline.feature_set.construct.assert_called_once()
        test_pipeline.sink.flush.assert_called_once()
        test_pipeline.sink.validate.assert_called_once()
    def test_write_in_debug_mode(
        self,
        feature_set_dataframe,
        historical_feature_set_dataframe,
        feature_set,
        spark_session,
    ):
        # given
        spark_client = SparkClient()
        writer = HistoricalFeatureStoreWriter(debug_mode=True)

        # when
        writer.write(
            feature_set=feature_set,
            dataframe=feature_set_dataframe,
            spark_client=spark_client,
        )
        result_df = spark_session.table(
            f"historical_feature_store__{feature_set.name}")

        # then
        assert_dataframe_equality(historical_feature_set_dataframe, result_df)
예제 #12
0
 def test_feature_set_raise(self):
     with pytest.raises(
         ValueError, match="feature_set must be a FeatureSet instance"
     ):
         FeatureSetPipeline(
             spark_client=SparkClient(),
             source=Mock(
                 spec=Source,
                 readers=[
                     TableReader(id="source_a", database="db", table="table",),
                 ],
                 query="select * from source_a",
             ),
             feature_set=Mock(
                 name="feature_set",
                 entity="entity",
                 description="description",
                 keys=[
                     KeyFeature(
                         name="user_id",
                         description="The user's Main ID or device ID",
                         dtype=DataType.INTEGER,
                     )
                 ],
                 timestamp=TimestampFeature(from_column="ts"),
                 features=[
                     Feature(
                         name="listing_page_viewed__rent_per_month",
                         description="Average of something.",
                         transformation=SparkFunctionTransform(
                             functions=[
                                 Function(functions.avg, DataType.FLOAT),
                                 Function(functions.stddev_pop, DataType.FLOAT),
                             ],
                         ).with_window(
                             partition_by="user_id",
                             order_by=TIMESTAMP_COLUMN,
                             window_definition=["7 days", "2 weeks"],
                             mode="fixed_windows",
                         ),
                     ),
                 ],
             ),
             sink=Mock(
                 spec=Sink, writers=[HistoricalFeatureStoreWriter(db_config=None)],
             ),
         )
예제 #13
0
    def test_flush_with_invalid_df(self, not_feature_set_dataframe, mocker):
        # given
        spark_client = SparkClient()
        writer = [
            HistoricalFeatureStoreWriter(),
            OnlineFeatureStoreWriter(),
        ]
        feature_set = mocker.stub("feature_set")
        feature_set.entity = "house"
        feature_set.name = "test"

        # when
        sink = Sink(writers=writer)

        # then
        with pytest.raises(ValueError):
            sink.flush(
                dataframe=not_feature_set_dataframe,
                feature_set=feature_set,
                spark_client=spark_client,
            )
예제 #14
0
    def test_validate_false(self, feature_set_dataframe, mocker):
        # given
        spark_client = SparkClient()
        writer = [
            HistoricalFeatureStoreWriter(),
            OnlineFeatureStoreWriter(),
        ]

        for w in writer:
            w.validate = mocker.stub("validate")
            w.validate.side_effect = AssertionError("test")

        feature_set = mocker.stub("feature_set")

        # when
        sink = Sink(writers=writer)

        # then
        with pytest.raises(RuntimeError):
            sink.validate(
                dataframe=feature_set_dataframe,
                feature_set=feature_set,
                spark_client=spark_client,
            )
예제 #15
0
    def test_validate(self, feature_set_dataframe, mocker):
        # given
        spark_client = SparkClient()
        writer = [
            HistoricalFeatureStoreWriter(),
            OnlineFeatureStoreWriter(),
        ]

        for w in writer:
            w.validate = mocker.stub("validate")

        feature_set = mocker.stub("feature_set")

        # when
        sink = Sink(writers=writer)
        sink.validate(
            dataframe=feature_set_dataframe,
            feature_set=feature_set,
            spark_client=spark_client,
        )

        # then
        for w in writer:
            w.validate.assert_called_once()
예제 #16
0
    def test_feature_set_pipeline(self, mocked_df, spark_session,
                                  fixed_windows_output_feature_set_dataframe):
        # arrange
        table_reader_id = "a_source"
        table_reader_table = "table"
        table_reader_db = environment.get_variable(
            "FEATURE_STORE_HISTORICAL_DATABASE")
        create_temp_view(dataframe=mocked_df, name=table_reader_id)
        create_db_and_table(
            spark=spark_session,
            table_reader_id=table_reader_id,
            table_reader_db=table_reader_db,
            table_reader_table=table_reader_table,
        )
        dbconfig = Mock()
        dbconfig.get_options = Mock(
            return_value={
                "mode": "overwrite",
                "format_": "parquet",
                "path": "test_folder/historical/entity/feature_set",
            })

        # act
        test_pipeline = FeatureSetPipeline(
            source=Source(
                readers=[
                    TableReader(
                        id=table_reader_id,
                        database=table_reader_db,
                        table=table_reader_table,
                    ),
                ],
                query=f"select * from {table_reader_id} ",  # noqa
            ),
            feature_set=FeatureSet(
                name="feature_set",
                entity="entity",
                description="description",
                features=[
                    Feature(
                        name="feature1",
                        description="test",
                        transformation=SparkFunctionTransform(functions=[
                            Function(F.avg, DataType.FLOAT),
                            Function(F.stddev_pop, DataType.FLOAT),
                        ], ).with_window(
                            partition_by="id",
                            order_by=TIMESTAMP_COLUMN,
                            mode="fixed_windows",
                            window_definition=["2 minutes", "15 minutes"],
                        ),
                    ),
                    Feature(
                        name="divided_feature",
                        description="unit test",
                        dtype=DataType.FLOAT,
                        transformation=CustomTransform(
                            transformer=divide,
                            column1="feature1",
                            column2="feature2",
                        ),
                    ),
                ],
                keys=[
                    KeyFeature(
                        name="id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(),
            ),
            sink=Sink(
                writers=[HistoricalFeatureStoreWriter(db_config=dbconfig)], ),
        )
        test_pipeline.run()

        # assert
        path = dbconfig.get_options("historical/entity/feature_set").get(
            "path")
        df = spark_session.read.parquet(path).orderBy(TIMESTAMP_COLUMN)

        target_df = fixed_windows_output_feature_set_dataframe.orderBy(
            test_pipeline.feature_set.timestamp_column)

        # assert
        assert_dataframe_equality(df, target_df)

        # tear down
        shutil.rmtree("test_folder")
예제 #17
0
    def test_feature_set_args(self):
        # arrange and act
        out_columns = [
            "user_id",
            "timestamp",
            "listing_page_viewed__rent_per_month__avg_over_7_days_fixed_windows",
            "listing_page_viewed__rent_per_month__avg_over_2_weeks_fixed_windows",
            "listing_page_viewed__rent_per_month__stddev_pop_over_7_days_fixed_windows",
            "listing_page_viewed__rent_per_month__"
            "stddev_pop_over_2_weeks_fixed_windows",
            # noqa
        ]
        pipeline = FeatureSetPipeline(
            source=Source(
                readers=[
                    TableReader(id="source_a", database="db", table="table",),
                    FileReader(id="source_b", path="path", format="parquet",),
                ],
                query="select a.*, b.specific_feature "
                "from source_a left join source_b on a.id=b.id",
            ),
            feature_set=FeatureSet(
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=SparkFunctionTransform(
                            functions=[
                                Function(functions.avg, DataType.FLOAT),
                                Function(functions.stddev_pop, DataType.FLOAT),
                            ],
                        ).with_window(
                            partition_by="user_id",
                            order_by=TIMESTAMP_COLUMN,
                            window_definition=["7 days", "2 weeks"],
                            mode="fixed_windows",
                        ),
                    ),
                ],
            ),
            sink=Sink(
                writers=[
                    HistoricalFeatureStoreWriter(db_config=None),
                    OnlineFeatureStoreWriter(db_config=None),
                ],
            ),
        )

        assert isinstance(pipeline.spark_client, SparkClient)
        assert len(pipeline.source.readers) == 2
        assert all(isinstance(reader, Reader) for reader in pipeline.source.readers)
        assert isinstance(pipeline.source.query, str)
        assert pipeline.feature_set.name == "feature_set"
        assert pipeline.feature_set.entity == "entity"
        assert pipeline.feature_set.description == "description"
        assert isinstance(pipeline.feature_set.timestamp, TimestampFeature)
        assert len(pipeline.feature_set.keys) == 1
        assert all(isinstance(k, KeyFeature) for k in pipeline.feature_set.keys)
        assert len(pipeline.feature_set.features) == 1
        assert all(
            isinstance(feature, Feature) for feature in pipeline.feature_set.features
        )
        assert pipeline.feature_set.columns == out_columns
        assert len(pipeline.sink.writers) == 2
        assert all(isinstance(writer, Writer) for writer in pipeline.sink.writers)