def test_d3_treemap_no_error(self): self.install_fixtures() lca = LCA({("a", "2"): 1}, ("method", )) lca.lci() lca.lcia() ra, rp, rb = lca.reverse_dict() CA().d3_treemap(lca.characterized_inventory, rb, ra)
def test_top_matrix_array(self): matrix = np.array([[0, 0, 1, 0], [2, 0, 4, 0], [3, 0, 1, 1], [0, 7, 0, 1]]) ca = CA() elements, rows, columns = ca.top_matrix(matrix, 2, 2) self.assertTrue(np.allclose((3, 1), rows)) self.assertTrue(np.allclose((1, 2), columns)) self.assertEqual([(3, 1, 0, 0, 7), (1, 2, 1, 1, 4)], elements)
def test_sort_array_errors(self): ca = CA() with self.assertRaises(ValueError): ca.sort_array([], limit_type="foo", total=1.0) with self.assertRaises(ValueError): ca.sort_array([], limit=0.0, limit_type="percent", total=1.0) with self.assertRaises(ValueError): ca.sort_array([], limit=1.01, limit_type="percent", total=1.0)
def test_sort_array_number(self): test_data = np.array((1.0, 2.0, 4.0, 3.0)) answer = np.array(( (4, 2), (3, 3), (2, 1), )) ca = CA() self.assertTrue(np.allclose(answer, ca.sort_array(test_data, limit=3)))
def test_sort_array_percentage(self): test_data = np.array((1.0, 2.0, 4.0, 3.0)) answer = np.array(( (4, 2), (3, 3), )) ca = CA() self.assertTrue( np.allclose( answer, ca.sort_array(test_data, limit=0.3, limit_type="percent")))
def test_top_matrix_matrix(self): matrix = sparse.lil_matrix((4, 4)) input_data = [[0, 0, 1, 0], [2, 0, 4, 0], [3, 0, 1, 1], [0, 7, 0, 1]] for row in range(4): for col in range(4): if input_data[row][col]: matrix[row, col] = input_data[row][col] matrix = matrix.tocsr() ca = CA() elements, rows, columns = ca.top_matrix(matrix, 2, 2) self.assertTrue(np.allclose((3, 1), rows)) self.assertTrue(np.allclose((1, 2), columns)) self.assertEqual([(3, 1, 0, 0, 7), (1, 2, 1, 1, 4)], elements)
def test_hinton_matrix_no_error(self): self.install_fixtures() lca = LCA({("a", "2"): 1}, ("method", )) lca.lci() lca.lcia() CA().hinton_matrix(lca, 2, 2)