import numpy as np import time import scipy.sparse as sprs import progressbar B = 10 L = 6 k = 6 xi = 0.3 N_meas = 10 k_nx, k_c = 0.0, 0.0 t_nx, t_c = 0.0, 0.0 seed = 1 print "measuring only creation" bar = progressbar.ProgressBar() for meas in bar(xrange(N_meas)): tic = time.time() G2 = cMHRN.fast_mhrn(B, L, k, xi, seed=seed) toc = time.time() t_c += (toc - tic) / N_meas k_c += len(G2) * 2. / B**L / N_meas #print "python: k = %4.2f, t = %fs" % (k_nx,t_nx) print "c++ : k = %4.2f, t = %fs" % (k_c, t_c) print
import numpy as np import networkx as nx import netwulf as nw import cMHRN # load edges from txt file and construct Graph object N, edges = cMHRN.fast_mhrn(8,3,7,0.18,True) G = nx.Graph() G.add_edges_from(edges) # visualize and save visualization network, config = nw.visualize(G) nw.save("MHRN.json",network,config)
B = 10 L = 3 k = 13 xi = 0.3 N_meas = 20 k_nx, k_c = 0.0, 0.0 t_nx, t_c = 0.0, 0.0 seed = 1 print("measuring only creation") bar = progressbar.ProgressBar() for meas in bar(range(N_meas)): tic = time.time() N, G2 = cMHRN.fast_mhrn(B, L, k, xi, seed=seed + 1, allow_probability_redistribution=True, use_giant_component=False) toc = time.time() t_c += (toc - tic) / N_meas k_c += len(G2) * 2. / B**L / N_meas #print "python: k = %4.2f, t = %fs" % (k_nx,t_nx) print("c++ : k = %4.2f, t = %fs" % (k_c, t_c))