def i2v_tag_download(): """Download a pretrained i2v network. Returns ------- TYPE Description """ model = download('https://s3.amazonaws.com/cadl/models/illust2vec_tag.tfmodel') tags = download('https://s3.amazonaws.com/cadl/models/tag_list.json') return model, tags
def test_melody_rnn_generation(): primer_midi = download('https://s3.amazonaws.com/cadl/share/21150_Harry-Potter-and-the-Philosophers-Stone.mid') download('https://s3.amazonaws.com/cadl/models/basic_rnn.mag') magenta_utils.synthesize(primer_midi) fname = 'primer.mid' assert(os.path.exists('primer.mid')) generated_primer = midi_io.midi_file_to_sequence_proto(fname) assert(len(generated_primer.notes) == 14) fname = 'synthesis.mid' assert(os.path.exists('synthesis.mid')) generated_synthesis = midi_io.midi_file_to_sequence_proto(fname) assert(len(generated_synthesis.notes) == 243)
def celeb_vaegan_download(): """Download a pretrained celeb vae/gan network. Returns ------- TYPE Description """ # Load the model and labels model = download( 'https://s3.amazonaws.com/cadl/models/celeb.vaegan.tfmodel') labels = download( 'https://s3.amazonaws.com/cadl/celeb-align/list_attr_celeba.txt') return model, labels
def test_alice(max_iter=5): """Summary Parameters ---------- max_iter : int, optional Description Returns ------- TYPE Description """ utils.download('https://s3.amazonaws.com/cadl/models/alice.txt.gz') with gzip.open('alice.txt.gz', 'rb') as fp: txt = fp.read().decode('utf-8') return train(txt, n_layers=2, n_cells=20, max_iter=max_iter)
def i2v_download(): """Download a pretrained i2v network. Returns ------- TYPE Description """ model = download('https://s3.amazonaws.com/cadl/models/illust2vec.tfmodel') return model
def test_generation(): download('https://s3.amazonaws.com/cadl/models/model.ckpt-200000.data-00000-of-00001') download('https://s3.amazonaws.com/cadl/models/model.ckpt-200000.index') download('https://s3.amazonaws.com/cadl/models/model.ckpt-200000.meta') wav_file = download('https://s3.amazonaws.com/cadl/share/trumpet.wav') res = nsynth.synthesize(wav_file, synth_length=100) max_idx = np.max(np.where(res)) assert(max_idx > 90 and max_idx < 100) assert(np.max(res) > 0.0)
def test_generation(): download( 'https://s3.amazonaws.com/cadl/models/model.ckpt-200000.data-00000-of-00001' ) download('https://s3.amazonaws.com/cadl/models/model.ckpt-200000.index') download('https://s3.amazonaws.com/cadl/models/model.ckpt-200000.meta') wav_file = download('https://s3.amazonaws.com/cadl/share/trumpet.wav') res = nsynth.synthesize(wav_file, synth_length=100) max_idx = np.max(np.where(res)) assert (max_idx > 90 and max_idx < 100) assert (np.max(res) > 0.0)
def test_trump(max_iter=100): """Summary Parameters ---------- max_iter : int, optional Description """ utils.download( 'https://s3.amazonaws.com/cadl/models/trump.data-00000-of-00001') utils.download('https://s3.amazonaws.com/cadl/models/trump.meta') utils.download('https://s3.amazonaws.com/cadl/models/trump.index') utils.download('https://s3.amazonaws.com/cadl/models/trump.txt') with open('trump.txt', 'r') as fp: txt = fp.read() #train(txt, ckpt_name='trump', max_iter=max_iter) print(infer(txt, ckpt_name='./trump', n_iterations=max_iter))
def get_model(): """Summary Returns ------- TYPE Description """ # Download the glove model and open a zip file file = utils.download('http://nlp.stanford.edu/data/wordvecs/glove.6B.zip') zf = zipfile.ZipFile(file) # Collect the words and their vectors words = [] vectors = [] for l in zf.open("glove.6B.300d.txt"): t = l.strip().split() words.append(t[0].decode()) vectors.append(list(map(np.double, t[1:]))) # Store as a lookup table wordvecs = np.asarray(vectors, dtype=np.double) word2id = {word: i for i, word in enumerate(words)} return wordvecs, word2id, words
def test_convert_to_monophonic(): primer_midi = download('https://s3.amazonaws.com/cadl/share/21150_Harry-Potter-and-the-Philosophers-Stone.mid') primer_sequence = midi_io.midi_file_to_sequence_proto(primer_midi) magenta_utils.convert_to_monophonic(primer_sequence) assert(len(primer_sequence.notes) == 254)
def test_harry_potter(): primer_midi = download('https://s3.amazonaws.com/cadl/share/21150_Harry-Potter-and-the-Philosophers-Stone.mid') primer_sequence = midi_io.midi_file_to_sequence_proto(primer_midi) assert(len(primer_sequence.notes) == 282) assert(len(primer_sequence.time_signatures) == 1)