def create_param(device_id_, image_list_, image_pair_list_, model_infos_): model_param_config = [] for elem in model_infos_: if (elem.has_key('mean_value')): each_param = caffe_pb_feature.ModelInitParameter( image_root_path=elem['image_root_path'], deploy_path=elem['deploy_path'], model_path=elem['model_path'], output_path=elem['output_path'], data_transform=caffe_pb_feature.TransformationParameter( mean_value=elem['mean_value'], scale=elem['scale'])) else: each_param = caffe_pb_feature.ModelInitParameter( image_root_path=elem['image_root_path'], deploy_path=elem['deploy_path'], model_path=elem['model_path'], output_path=elem['output_path']) model_param_config.append(each_param) feature = caffe_pb_feature.ExtractFeatureParameter( run_mode=caffe_pb_feature.ExtractFeatureParameter.RunMode.Value('GPU'), device_id=device_id_, image_list=image_list_, image_pair_list=image_pair_list_, model_config=model_param_config) return feature
def createParamFile(self, batch_model_info, output_result_path, mean_value=None, scale=1.0): model_param_config = [] for elem in batch_model_info: deploy_path = elem[0] model_lists = elem[1] for model_name_path in model_lists: model_name = model_name_path.split('/')[-1] patch_info = utility.crop_patch_info_model_name(model_name) if mean_value != None: each_param = caffe_pb_feature.ModelInitParameter( image_root_path='{}/{}'.format( ConfigPath.test_data_set[self.test_set] ['imgs_folder'], patch_info), deploy_path=deploy_path, model_path=model_name_path, output_path=output_result_path, data_transform=caffe_pb_feature. TransformationParameter(mean_value=mean_value, scale=scale)) else: if model_name_path.find('Means') >= 0: each_param = caffe_pb_feature.ModelInitParameter( image_root_path='{}/{}'.format( ConfigPath.test_data_set[self.test_set] ['imgs_folder'], patch_info), deploy_path=deploy_path, model_path=model_name_path, output_path=output_result_path, data_transform=caffe_pb_feature. TransformationParameter( mean_value=[127.5, 127.5, 127.5], scale=0.0078125)) else: each_param = caffe_pb_feature.ModelInitParameter( image_root_path='{}/{}'.format( ConfigPath.test_data_set[self.test_set] ['imgs_folder'], patch_info), deploy_path=deploy_path, model_path=model_name_path, output_path=output_result_path, ) model_param_config.append(each_param) feature = caffe_pb_feature.ExtractFeatureParameter( run_mode=caffe_pb_feature.ExtractFeatureParameter.RunMode.Value( 'GPU'), device_id=0, image_list=ConfigPath.test_data_set[self.test_set]['image_list'], image_pair_list=ConfigPath.test_data_set[ self.test_set]['pairs_file'], model_config=model_param_config) return feature