예제 #1
0
    def play_all_movies(self):
        """
        Public function that plays the original data, rigid corrected and
        non-rigid data file side by side for comparison.
        """

        offset_orig = np.nanmin(self.data_orig[:1000])
        offset_rig = np.min(self.data_rig[:1000])
        offset_pwrig = np.nanmin(self.data_pwrig[:1000])

        cm.concatenate([
            self.data_orig.resize(0.6, 0.6, 0.2) - offset_orig,
            self.data_rig.resize(0.6, 0.6, 0.2) - offset_rig,
            self.data_pwrig.resize(0.6, 0.6, 0.2) - offset_pwrig
        ],
                       axis=2).play(gain=1.5,
                                    offset=0,
                                    bord_px=self._border_correction())
        return self
예제 #2
0
def motion_corr(fnames, dview, opts, disp_movie, is_3d=False):
    """Perform motion correction"""
    # Create a motion correction object with the parameters specified. Note
    # that the file is not loaded in memory
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))

    # Run piecewise-rigid motion correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # Determine maximum shift to be used for trimming against NaNs
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0

    # Compare with original movie
    if disp_movie and not is_3d:
        m_els = cm.load(mc.fname_tot_els)
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                       axis=2).play(fr=60, gain=15, magnification=2,
                                    offset=0)  # press q to exit
    return mc, border_to_0
예제 #3
0
파일: utils.py 프로젝트: ximion/CaImAn
def reconstructed_movie(estimates, fnames, idx, scope, flip_signal):
    """ Create reconstructed movie in VolPy. The movie has three panels: 
    motion corrected movie on the left panel, movie removed from the baseline
    on the mid panel and reconstructed movie on the right panel.
    Args: 
        estimates: dict
            estimates dictionary contain results of VolPy
            
        fnames: list
            motion corrected movie in F-order memory mapping format
            
        idx: list
            index of selected neurons
            
        scope: list
            scope of number of frames in reconstructed movie
            
        flip_signal: boolean
            if True the signal will be flipped (for voltron) 
    
    Return:
        mv_all: 3-D array
            motion corrected movie, movie removed from baseline, reconstructed movie
            concatenated into one matrix
    """
    # motion corrected movie and movie removed from baseline
    mv = cm.load(fnames, fr=400)[scope[0]:scope[1]]
    dims = (mv.shape[1], mv.shape[2])
    mv_bl = mv.computeDFF(secsWindow=0.1)[0]
    mv = (mv - mv.min()) / (mv.max() - mv.min())
    if flip_signal:
        mv_bl = -mv_bl
    mv_bl[mv_bl < np.percentile(mv_bl, 3)] = np.percentile(mv_bl, 3)
    mv_bl[mv_bl > np.percentile(mv_bl, 98)] = np.percentile(mv_bl, 98)
    mv_bl = (mv_bl - mv_bl.min()) / (mv_bl.max() - mv_bl.min())

    # reconstructed movie
    estimates['weights'][estimates['weights'] < 0] = 0
    A = estimates['weights'][idx].transpose([1, 2, 0]).reshape((-1, len(idx)))
    C = estimates['t_rec'][idx, scope[0]:scope[1]]
    mv_rec = np.dot(A, C).reshape(
        (dims[0], dims[1], scope[1] - scope[0])).transpose((2, 0, 1))
    mv_rec = cm.movie(mv_rec, fr=400)
    mv_rec = (mv_rec - mv_rec.min()) / (mv_rec.max() - mv_rec.min())
    mv_all = cm.concatenate((mv, mv_bl, mv_rec), axis=2)
    return mv_all
def run_alignmnet(selected_rows, parameters, dview):
    '''
    This is the main function for the alignment step. It applies methods
    from the CaImAn package used originally in motion correction
    to do alignment.

    Args:
        df: pd.DataFrame
            A dataframe containing the analysis states you want to have aligned.
        parameters: dict
            The alignment parameters.
        dview: object
            The dview object

    Returns:
        df: pd.DataFrame
            A dataframe containing the aligned analysis states.
    '''

    # Sort the dataframe correctly
    df = selected_rows.copy()
    df = df.sort_values(by=paths.multi_index_structure)

    # Determine the mouse and session of the dataset
    index = df.iloc[0].name
    mouse, session, *r = index
    # alignment_v = index[len(paths.data_structure) + step_index]
    alignment_v = len(df)
    alignment_index = (mouse, session, alignment_v)

    # Determine the output .mmap file name
    file_name = f'mouse_{mouse}_session_{session}_v{alignment_v}'
    output_mmap_file_path = os.environ['DATA_DIR'] + f'data/interim/alignment/main/{file_name}.mmap'

    try:
        df.reset_index()[['session','trial', 'is_rest']].set_index(['session','trial', 'is_rest'], verify_integrity=True)
    except ValueError:
        logging.error('You passed multiple of the same trial in the dataframe df')
        return df

    output = {
        'meta': {
            'analysis': {
                'analyst': os.environ['ANALYST'],
                'date': datetime.datetime.today().strftime("%m-%d-%Y"),
                'time': datetime.datetime.today().strftime("%H:%M:%S")
            },
            'duration': {}
        }
    }

    # Get necessary parameters
    motion_correction_parameters_list = []
    motion_correction_output_list = []
    input_mmap_file_list = []
    trial_index_list = []
    x_ = []
    _x = []
    y_ = []
    _y = []
    for idx, row in df.iterrows():
        motion_correction_parameters_list.append(eval(row.loc['motion_correction_parameters']))
        motion_correction_output = eval(row.loc['motion_correction_output'])
        motion_correction_output_list.append(motion_correction_output)
        input_mmap_file_list.append(motion_correction_output['main'])
        trial_index_list.append(db.get_trial_name(idx[2], idx[3]))
        [x1,x2,y1,y2] = motion_correction_output['meta']['cropping_points']
        x_.append(x1)
        _x.append(x2)
        y_.append(y1)
        _y.append(y2)

    new_x1 = max(x_)
    new_x2 = max(_x)
    new_y1 = max(y_)
    new_y2 = max(_y)
    m_list = []
    for i in range(len(input_mmap_file_list)):
        m = cm.load(input_mmap_file_list[i])
        motion_correction_output = eval(df.iloc[i].loc['motion_correction_output'])
        [x1,x2,y1,y2] = motion_correction_output['meta']['cropping_points']
        m = m.crop(new_x1 - x1, new_x2 - x2, new_y1 - y1, new_y2 - y2, 0, 0)
        m_list.append(m)

    # Concatenate them using the concat function
    m_concat = cm.concatenate(m_list, axis=0)
    data_dir = os.environ['DATA_DIR'] + 'data/interim/alignment/main/'
    file_name = db.create_file_name(step_index, index)
    fname= m_concat.save(data_dir + file_name + '.mmap', order='C')

    #meta_pkl_dict['pw_rigid']['cropping_points'] = [x_, _x, y_, _y]
    #output['meta']['cropping_points'] = [x_, _x, y_, _y]
    # Save the movie
    #fname_tot_els  = m_els.save(data_dir + 'main/' + file_name + '_els' + '.mmap',  order='C')
    #logging.info(f'{index} Cropped and saved rigid movie as {fname_tot_els}')

    # MOTION CORRECTING EACH INDIVIDUAL MOVIE WITH RESPECT TO A TEMPLATE MADE OF THE FIRST MOVIE
    logging.info(f'{alignment_index} Performing motion correction on all movies with respect to a template made of \
    the first movie.')
    t0 = datetime.datetime.today()

    # Create a template of the first movie
    template_index = trial_index_list.index(parameters['make_template_from_trial'])
    m0 = cm.load(input_mmap_file_list[template_index ])
    [x1, x2, y1, y2] = motion_correction_output_list[template_index]['meta']['cropping_points']
    m0 = m0.crop(new_x1 - x1, new_x2 - x2, new_y1 - y1, new_y2 - y2, 0, 0)
    m0_filt = cm.movie(
        np.array([high_pass_filter_space(m_, parameters['gSig_filt']) for m_ in m0]))
    template0 = cm.motion_correction.bin_median(
        m0_filt.motion_correct(5, 5, template=None)[0])  # may be improved in the future

    # Setting the parameters
    opts = params.CNMFParams(params_dict=parameters)

    # Create a motion correction object
    mc = MotionCorrect(fname, dview=dview, **opts.get_group('motion'))

    # Perform non-rigid motion correction
    mc.motion_correct(template=template0, save_movie=True)

    # Cropping borders
    x_ = math.ceil(abs(np.array(mc.shifts_rig)[:, 1].max()) if np.array(mc.shifts_rig)[:, 1].max() > 0 else 0)
    _x = math.ceil(abs(np.array(mc.shifts_rig)[:, 1].min()) if np.array(mc.shifts_rig)[:, 1].min() < 0 else 0)
    y_ = math.ceil(abs(np.array(mc.shifts_rig)[:, 0].max()) if np.array(mc.shifts_rig)[:, 0].max() > 0 else 0)
    _y = math.ceil(abs(np.array(mc.shifts_rig)[:, 0].min()) if np.array(mc.shifts_rig)[:, 0].min() < 0 else 0)

    # Load the motion corrected movie into memory
    movie= cm.load(mc.fname_tot_rig[0])
    # Crop all movies to those border pixels
    movie.crop(x_, _x, y_, _y, 0, 0)
    output['meta']['cropping_points'] = [x_, _x, y_, _y]

    #save motion corrected and cropped movie
    output_mmap_file_path_tot = movie.save(data_dir + file_name  + '.mmap', order='C')
    logging.info(f'{index} Cropped and saved rigid movie as {output_mmap_file_path_tot}')
    # Save the path in teh output dictionary
    output['main'] = output_mmap_file_path_tot
    # Remove the remaining non-cropped movie
    os.remove(mc.fname_tot_rig[0])

    # Create a timeline and store it
    timeline = [[trial_index_list[0], 0]]
    timepoints = [0]
    for i in range(1, len(m_list)):
        m = m_list[i]
        timeline.append([trial_index_list[i], timeline[i - 1][1] + m.shape[0]])
        timepoints.append(timepoints[i-1]+ m.shape[0])
        timeline_pkl_file_path = os.environ['DATA_DIR'] + f'data/interim/alignment/meta/timeline/{file_name}.pkl'
        with open(timeline_pkl_file_path,'wb') as f:
            pickle.dump(timeline,f)
    output['meta']['timeline'] = timeline_pkl_file_path
    timepoints.append(movie.shape[0])

    dt = int((datetime.datetime.today() - t0).seconds / 60)  # timedelta in minutes
    output['meta']['duration']['concatenation'] = dt
    logging.info(f'{alignment_index} Performed concatenation. dt = {dt} min.')

    for idx, row in df.iterrows():
        df.loc[idx, 'alignment_output'] = str(output)
        df.loc[idx, 'alignment_parameters'] = str(parameters)

    ## modify all motion correction file to the aligned version
    data_dir = os.environ['DATA_DIR'] + 'data/interim/motion_correction/main/'
    for i in range(len(input_mmap_file_list)):
        row = df.iloc[i].copy()
        motion_correction_output_list.append(motion_correction_output)
        aligned_movie = movie[timepoints[i]:timepoints[i+1]]
        file_name = db.create_file_name(2, selected_rows.iloc[i].name)
        motion_correction_output_aligned = aligned_movie.save(data_dir + file_name + '_els' + '.mmap',  order='C')
        new_output= {'main' : motion_correction_output_aligned }
        new_dict = eval(row['motion_correction_output'])
        new_dict.update(new_output)
        row['motion_correction_output'] = str(new_dict)
        df = db.append_to_or_merge_with_states_df(df, row)

    #    # Delete the motion corrected movies
    #    for fname in mc.fname_tot_rig:
    #        os.remove(fname)

    return df
예제 #5
0
                   splits_rig=splits_rig,
                   strides=strides, overlaps=overlaps, splits_els=splits_els,
                   upsample_factor_grid=upsample_factor_grid,
                   max_deviation_rigid=max_deviation_rigid,
                   shifts_opencv=True, nonneg_movie=True)
# note that the file is not loaded in memory

#%% Run piecewise-rigid motion correction using NoRMCorre
mc.motion_correct_pwrigid(save_movie=True)
m_els = cm.load(mc.fname_tot_els)
bord_px_els = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)),
                                 np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
# maximum shift to be used for trimming against NaNs
#%% compare with original movie
moviehandle = cm.concatenate([m_orig.resize(1, 1, downsample_ratio) + offset_mov,
                m_els.resize(1, 1, downsample_ratio)],
               axis=2)
display_images = False
if display_images:
    moviehandle.play(fr=60, q_max=99.5, magnification=2, offset=0)  # press q to exit

#%% MEMORY MAPPING
# memory map the file in order 'C'
fnames = mc.fname_tot_els   # name of the pw-rigidly corrected file.
border_to_0 = bord_px_els     # number of pixels to exclude
fname_new = cm.save_memmap(fnames, base_name='memmap_', order='C',
                           border_to_0=bord_px_els)  # exclude borders

# now load the file
Yr, dims, T = cm.load_memmap(fname_new)
d1, d2 = dims
예제 #6
0
def create_video(row, time_cropping, session_wise = False):

    '''
    This fuction creates a complete video with raw movie (motion corrected), source extracted cells and source extraction + background.
    :param row: pandas dataframe containing the desired processing information to create the video. It can use the session_wise or trial_wise video.
    :return:
    '''

    if session_wise:
        input_mmap_file_path = eval(row.loc['alignment_output'])['main']
    else:
        input_mmap_file_path = eval(row.loc['motion_correction_output'])['main']

    #load the mmap file
    Yr, dims, T = cm.load_memmap(input_mmap_file_path)
    logging.debug(f'{row.name} Loaded movie. dims = {dims}, T = {T}.')
    #create a caiman movie with the mmap file
    images = Yr.T.reshape((T,) + dims, order='F')
    images = cm.movie(images)

    #load source extraction result
    output = eval(row.loc['source_extraction_output'])
    cnm_file_path = output['main']
    cnm = load_CNMF(db.get_file(cnm_file_path))

    #estimate the background from the extraction
    W, b0 = cm.source_extraction.cnmf.initialization.compute_W(Yr, cnm.estimates.A.toarray(), cnm.estimates.C,
                                                               cnm.estimates.dims, 1.4 * 5, ssub=2)
    cnm.estimates.W = W
    cnm.estimates.b0 = b0
    # this part could be use with the lastest caiman version
    # movie_dir = '/home/sebastian/Documents/Melisa/calcium_imaging_analysis/data/processed/movies/'
    # file_name = db.create_file_name(5,row.name)
    # cnm.estimates.play_movie(cnm.estimates, images, movie_name= movie_dir + file_name + '.avi')

    frame_range = slice(None, None, None)
    # create a movie with the model : estimated A and C matrix
    Y_rec = cnm.estimates.A.dot(cnm.estimates.C[:, frame_range])
    Y_rec = Y_rec.reshape(dims + (-1,), order='F')
    Y_rec = Y_rec.transpose([2, 0, 1])
    # convert the variable to a caiman movie type
    Y_rec = cm.movie(Y_rec)

    ## this part of the function is a copy from a caiman version
    ssub_B = int(round(np.sqrt(np.prod(dims) / W.shape[0])))
    B = images[frame_range].reshape((-1, np.prod(dims)), order='F').T - \
        cnm.estimates.A.dot(cnm.estimates.C[:, frame_range])
    if ssub_B == 1:
        B = b0[:, None] + W.dot(B - b0[:, None])
    else:
        B = b0[:, None] + (np.repeat(np.repeat(W.dot(
            downscale(B.reshape(dims + (B.shape[-1],), order='F'),
                      (ssub_B, ssub_B, 1)).reshape((-1, B.shape[-1]), order='F') -
            downscale(b0.reshape(dims, order='F'),
                      (ssub_B, ssub_B)).reshape((-1, 1), order='F'))
            .reshape(
            ((dims[0] - 1) // ssub_B + 1, (dims[1] - 1) // ssub_B + 1, -1), order='F'),
            ssub_B, 0), ssub_B, 1)[:dims[0], :dims[1]].reshape(
            (-1, B.shape[-1]), order='F'))
    B = B.reshape(dims + (-1,), order='F').transpose([2, 0, 1])

    Y_rec_2 = Y_rec + B
    Y_res = images[frame_range] - Y_rec - B

    images_np = np.zeros((time_cropping[1]-time_cropping[0],images.shape[1],images.shape[2]))
    images_np = images[time_cropping[0]:time_cropping[1],:,:]
    images_np = images_np / np.max(images_np)
    images_np = cm.movie(images_np)

    Y_rec_np = np.zeros((time_cropping[1]-time_cropping[0],images.shape[1],images.shape[2]))
    Y_rec_np = Y_rec[time_cropping[0]:time_cropping[1],:,:]
    Y_rec_np = Y_rec_np / np.max(Y_rec_np)
    Y_rec_np = cm.movie(Y_rec_np)

    Y_res_np = np.zeros((time_cropping[1]-time_cropping[0],images.shape[1],images.shape[2]))
    Y_res_np = Y_res[time_cropping[0]:time_cropping[1],:,:]
    Y_res_np = Y_res_np / np.max(Y_res_np)
    Y_res_np = cm.movie(Y_res_np)

    B_np = np.zeros((time_cropping[1]-time_cropping[0],images.shape[1],images.shape[2]))
    B_np = B[time_cropping[0]:time_cropping[1],:,:]
    B_np = B_np / np.max(B_np)
    B_np = cm.movie(B_np)

    mov1 = cm.concatenate((images_np, Y_rec_np), axis=2)

    mov2 = cm.concatenate((B_np, Y_res_np), axis=2)

    mov = cm.concatenate((mov1, mov2), axis=1)

    figure_path = '/home/sebastian/Documents/Melisa/calcium_imaging_analysis/data/interim/movies/'
    figure_name = db.create_file_name(5,row.name)
    #mov.save(figure_path+figure_name+'.tif')
    mov.save(figure_path+figure_name+'_'+f'{time_cropping[0]}' + '_' + f'{time_cropping[1]}'+'.tif')

    return
예제 #7
0
    # use one every 200 frames
    temporal_stride = 200
    # use one every 8 patches (patches are 8x8 by default)
    spatial_stride = 8

    movie_train = movie[::temporal_stride]

    t = timeit.default_timer()
    estimation_res = est.estimate_vst_movie(movie_train, stride=spatial_stride)
    print('\tTime', timeit.default_timer() - t)

    alpha = estimation_res.alpha
    sigma_sq = estimation_res.sigma_sq

    movie_gat = compute_gat(movie, sigma_sq, alpha=alpha)
    # save movie_gat here
    movie_gat_inv = compute_inverse_gat(movie_gat,
                                        sigma_sq,
                                        alpha=alpha,
                                        method='asym')
    # save movie_gat_inv here
    return movie, movie_gat_inv


#%%
movie, movie_gat_inv = main()

#%%
cm.concatenate([movie, movie_gat_inv], axis=1).play(gain=10, magnification=4)
예제 #8
0
                   splits_rig=splits_rig,
                   strides=strides, overlaps=overlaps, splits_els=splits_els,
                   upsample_factor_grid=upsample_factor_grid,
                   max_deviation_rigid=max_deviation_rigid,
                   shifts_opencv=True, nonneg_movie=True)
# note that the file is not loaded in memory

#%% Run piecewise-rigid motion correction using NoRMCorre
mc.motion_correct_rigid(save_movie=True)
#%%
m_els = cm.load(mc.fname_tot_rig)
bord_px_els = np.max(np.ceil(np.abs(mc.shifts_rig))).astype(np.int)
# maximum shift to be used for trimming against NaNs
#%% compare with original movie
cm.concatenate([m_orig.resize(1, 1, downsample_ratio) + offset_mov,
                m_els.resize(1, 1, downsample_ratio)],
               axis=2).play(fr=60, gain=1, magnification=1, offset=0)  # press q to exit

#%% MEMORY MAPPING
# memory map the file in order 'C'
fnames = mc.fname_tot_rig   # name of the pw-rigidly corrected file.
border_to_0 = bord_px_els     # number of pixels to exclude
fname_new = cm.save_memmap(fnames, base_name='memmap_', order='C',
                           border_to_0=border_to_0)  # exclude borders

# now load the file
Yr, dims, T = cm.load_memmap(fname_new)
d1, d2 = dims
images = np.reshape(Yr.T, [T] + list(dims), order='F')
# load frames in python format (T x X x Y)
예제 #9
0
파일: graph.py 프로젝트: nel-lab/volpy
for i in ds_list:
    if 'mask' in i:
        m = np.load((dr + i), allow_pickle=True)['arr_0']
        print(i)
        """
        if 'IVQ' in i:
            print(len(m)/16)
            l.append(len(m)/16)
        else:
        """
        print(len(m))
        l.append(len(m))

#%% Video
m2 = m2 * 1.2
mm = cm.concatenate([m1, m2], axis=2)
mm = cm.concatenate([mm, lcm1], axis=2)

m = cm.load('/home/nel/Code/VolPy/Mask_RCNN/videos & imgs/neurons_mc/403106_3min_d1_128_d2_512_d3_1_order_C_frames_20000_.mmap')
lcm = cm.load('/home/nel/Code/VolPy/Paper/pic_paper/video/corr_video.tif')

m = m[:19871,:,:]
m.shape
lcm.shape
m = m.transpose([0,2,1])
lcm = lcm.transpose([0,2,1])
m.shape
lcm.shape
m.play()
lcm.play()
lcm.play(fr=30)
예제 #10
0
파일: estimates.py 프로젝트: mich11/CaImAn
    def play_movie(self,
                   imgs,
                   q_max=99.75,
                   q_min=2,
                   gain_res=1,
                   magnification=1,
                   include_bck=True,
                   frame_range=slice(None, None, None),
                   bpx=0,
                   thr=0.):
        """Displays a movie with three panels (original data (left panel),
        reconstructed data (middle panel), residual (right panel))

        Args:
            imgs: np.array (possibly memory mapped, t,x,y[,z])
                Imaging data

            q_max: float (values in [0, 100])
                percentile for maximum plotting value

            q_min: float (values in [0, 100])
                percentile for minimum plotting value

            gain_res: float
                amplification factor for residual movie

            magnification: float
                magnification factor for whole movie

            include_bck: bool
                flag for including background in original and reconstructed movie

            frame_rage: range or slice or list
                display only a subset of frames

            bpx: int
                number of pixels to exclude on each border

            thr: float (values in [0, 1[)
                threshold value for contours, no contours if thr=0

        Returns:
            self (to stop the movie press 'q')
        """
        dims = imgs.shape[1:]
        if 'movie' not in str(type(imgs)):
            imgs = caiman.movie(imgs)
        Y_rec = self.A.dot(self.C[:, frame_range])
        Y_rec = Y_rec.reshape(dims + (-1, ), order='F')
        Y_rec = Y_rec.transpose([2, 0, 1])
        if self.W is not None:
            ssub_B = int(round(np.sqrt(np.prod(dims) / self.W.shape[0])))
            B = imgs[frame_range].reshape((-1, np.prod(dims)), order='F').T - \
                self.A.dot(self.C[:, frame_range])
            if ssub_B == 1:
                B = self.b0[:, None] + self.W.dot(B - self.b0[:, None])
            else:
                B = self.b0[:, None] + (np.repeat(
                    np.repeat(
                        self.W.dot(
                            downscale(
                                B.reshape(dims + (B.shape[-1], ), order='F'),
                                (ssub_B, ssub_B, 1)).reshape(
                                    (-1, B.shape[-1]), order='F') -
                            downscale(self.b0.reshape(dims, order='F'),
                                      (ssub_B, ssub_B)).reshape(
                                          (-1, 1), order='F')).reshape(
                                              ((dims[0] - 1) // ssub_B + 1,
                                               (dims[1] - 1) // ssub_B + 1,
                                               -1),
                                              order='F'), ssub_B, 0), ssub_B,
                    1)[:dims[0], :dims[1]].reshape(
                        (-1, B.shape[-1]), order='F'))
            B = B.reshape(dims + (-1, ), order='F').transpose([2, 0, 1])
        elif self.b is not None and self.f is not None:
            B = self.b.dot(self.f[:, frame_range])
            if 'matrix' in str(type(B)):
                B = B.toarray()
            B = B.reshape(dims + (-1, ), order='F').transpose([2, 0, 1])
        else:
            B = np.zeros_like(Y_rec)
        if bpx > 0:
            B = B[:, bpx:-bpx, bpx:-bpx]
            Y_rec = Y_rec[:, bpx:-bpx, bpx:-bpx]
            imgs = imgs[:, bpx:-bpx, bpx:-bpx]

        Y_res = imgs[frame_range] - Y_rec - B

        mov = caiman.concatenate(
            (imgs[frame_range] -
             (not include_bck) * B, Y_rec + include_bck * B, Y_res * gain_res),
            axis=2)
        if thr > 0:
            import cv2
            contours = []
            for a in self.A.T.toarray():
                a = a.reshape(dims, order='F')
                if bpx > 0:
                    a = a[bpx:-bpx, bpx:-bpx]
                if magnification != 1:
                    a = cv2.resize(a,
                                   None,
                                   fx=magnification,
                                   fy=magnification,
                                   interpolation=cv2.INTER_LINEAR)
                ret, thresh = cv2.threshold(a, thr * np.max(a), 1., 0)
                im2, contour, hierarchy = cv2.findContours(
                    thresh.astype('uint8'), cv2.RETR_TREE,
                    cv2.CHAIN_APPROX_SIMPLE)
                contours.append(contour)
                contours.append(
                    list([c + np.array([[a.shape[1], 0]]) for c in contour]))
                contours.append(
                    list([
                        c + np.array([[2 * a.shape[1], 0]]) for c in contour
                    ]))

            maxmov = np.nanpercentile(mov[0:10],
                                      q_max) if q_max < 100 else np.nanmax(mov)
            minmov = np.nanpercentile(mov[0:10],
                                      q_min) if q_min > 0 else np.nanmin(mov)
            for frame in mov:
                if magnification != 1:
                    frame = cv2.resize(frame,
                                       None,
                                       fx=magnification,
                                       fy=magnification,
                                       interpolation=cv2.INTER_LINEAR)
                frame = np.clip((frame - minmov) * 255. / (maxmov - minmov), 0,
                                255)
                frame = np.repeat(frame[..., None], 3, 2)
                for contour in contours:
                    cv2.drawContours(frame, contour, -1, (0, 255, 255), 1)
                cv2.imshow('frame', frame.astype('uint8'))
                if cv2.waitKey(30) & 0xFF == ord('q'):
                    break
            cv2.destroyAllWindows()

        else:
            mov.play(q_min=q_min, q_max=q_max, magnification=magnification)

        return self
예제 #11
0
# %% inspect movie
downsample_ratio = params_display['downsample_ratio']
# TODO: todocument
offset_mov = -np.min(m_orig[:100])
m_rig.resize(1, 1, downsample_ratio).play(gain=10,
                                          offset=offset_mov * .25,
                                          fr=30,
                                          magnification=2,
                                          bord_px=bord_px_rig)

# %% visualize raw, rigid and pw-rigid motion correted moviews
downsample_factor = params_display['downsample_ratio']
# TODO : todocument
cm.concatenate([
    m_orig.resize(1, 1, downsample_factor) + offset_mov,
    m_rig.resize(1, 1, downsample_factor)
],
               axis=2).play(fr=60, gain=5, magnification=4, offset=0)
# TODO: show screenshot 8
# %% restart cluster to clean up memory
# TODO: todocument
c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                 n_processes=None,
                                                 single_thread=False)
# %% save each chunk in F format
t1 = time.time()
if not 'max_shifts' in params_movie:
    fnames = params_movie['fname']
    border_to_0 = 0
else:  # elif not params_movie.has_key('overlaps'):
    fnames = [mc.fname_tot_rig]
예제 #12
0
    int), max_deviation_rigid + 1)[::-1]
for num_splits_to_process in [28, None]:
    fname_tot_els, total_template_wls, templates_els, x_shifts_els, y_shifts_els, coord_shifts_els = cm.motion_correction.motion_correct_batch_pwrigid(fname, max_shifts_els, strides, overlaps, add_to_movie, newoverlaps=None,  newstrides=None,
                                                                                                                                                       dview=dview, upsample_factor_grid=upsample_factor_grid, max_deviation_rigid=max_deviation_rigid,
                                                                                                                                                       splits=splits, num_splits_to_process=num_splits_to_process, num_iter=num_iter,
                                                                                                                                                       template=new_templ, shifts_opencv=shifts_opencv, save_movie=save_movie)
    new_templ = total_template_wls
#%%
pl.subplot(2, 1, 1)
pl.plot(x_shifts_els)
pl.subplot(2, 1, 2)
pl.plot(y_shifts_els)

#%%
m_els = cm.load(fname_tot_els)
cm.concatenate([m_rig.resize(1, 1, .2), m_els.resize(1, 1, .2)], axis=1).play(
    fr=50, gain=20, magnification=2, offset=add_to_movie)
#%% compute metrics for the results
final_size = np.subtract(new_templ.shape, max_shifts_els)
winsize = 75
swap_dim = False
resize_fact_flow = .2
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname_tot_els, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname_tot_rig, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)

#%% plot the results of metrics
fls = [fname_tot_els[:-4] + '_metrics.npz', fname_tot_rig[:-4] +
       '_metrics.npz', fname[:-4] + '_metrics.npz']
예제 #13
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

#%% Select file(s) to be processed (download if not present)
    fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fnames = [download_demo(fnames[0])]

#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 30             # imaging rate in frames per second
    decay_time = 0.4    # length of a typical transient in seconds
    dxy = (2., 2.)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

# %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

# %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

# %% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie,
                                      m_els.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 2                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 15
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 4                    # number of components per patch
    gSig = [4, 4]            # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'p': p,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub}

    opts.change_params(params_dict=opts_dict);
# %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0). If you want to have
    # deconvolution within each patch change params.patch['p_patch'] to a
    # nonzero value

    #opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

# %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

# %% plot contours of found components
    Cns = local_correlations_movie_offline(mc.mmap_file[0],
                                           remove_baseline=True, window=1000, stride=1000,
                                           winSize_baseline=100, quantil_min_baseline=10,
                                           dview=dview)
    Cn = Cns.max(axis=0)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')
#%% save results
    cnm.estimates.Cn = Cn
    cnm.save(fname_new[:-5]+'_init.hdf5')

# %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1 # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest})
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)
    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)

    # %% VIEW TRACES (accepted and rejected)

    if display_images:
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components)
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components_bad)
    #%% update object with selected components
    cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces
    cnm2.estimates.view_components(img=Cn)
    #%%
    cnm2.estimates.Cn = Cn
    cnm2.save(cnm2.mmap_file[:-4] + 'hdf5')
    #%% reconstruct denoised movie (press q to exit)
    if display_images:
        cnm2.estimates.play_movie(images, q_max=99.9, gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
예제 #14
0
for counter, mm in enumerate(mc[:num_frames]):
    print(counter)
    t1 = time()
    new_img = cv2.remap(
        mm, mapX_res[counter], mapY_res[counter], cv2.INTER_CUBIC, None, cv2.BORDER_CONSTANT)
    new_ms[counter] = new_img
#    cv2.imshow('frame',(new_img-bl)*1./fact*5.)
#    if cv2.waitKey(1) & 0xFF == ord('q'):
#        break
    times.append(time() - t1)
# cv2.destroyAllWindows()
#%%
cm.movie(np.array(mc[:num_frames] - new_ms[:num_frames])
         ).play(gain=50., magnification=1)
#%%
cm.concatenate([cm.movie(np.array(new_ms[:num_frames]), fr=mc.fr), mc[:num_frames]],
               axis=2).resize(1, 1, .5).play(gain=2, magnification=3, fr=30, offset=-100)
#%%
pl.subplot(1, 3, 1)
pl.imshow(np.mean(m[:2000], 0), cmap='gray', vmax=200)
pl.subplot(1, 3, 2)
pl.imshow(np.mean(new_ms[:2000], 0), cmap='gray', vmax=200)
pl.subplot(1, 3, 3)
pl.imshow(np.mean(new_ms[:2000], 0) - np.mean(m[:2000], 0), cmap='gray')
#%%
cm.movie(np.array(m[:2000] - new_ms[:2000])).play()
#%%
from multiprocessing import Pool
pl = Pool(processes=5)


def my_fun(X):
예제 #15
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

#%% Select file(s) to be processed (download if not present)
    root = '/Users/hheiser/Desktop/testing data/chronic_M2N3/0d_baseline/channel1'
    fnames = [r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\1\file_00003.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\2\file_00004.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\3\file_00005.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\4\file_00006.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\5\file_00007.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\6\file_00008.tif']

    fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fnames = [download_demo(fnames[0])]

#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 30             # imaging rate in frames per second
    decay_time = 0.4    # length of a typical transient in seconds
    dxy = (2., 2.)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

#%% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=30, magnification=1, do_loop=False)

#%% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

#%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

#%% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

#%% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames[:3])
        m_els = cm.load(mmap_file[:3])
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie,
                                      m_els.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=15, q_max=99.5, magnification=2)  # press q to exit

#%% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    mmap_file = [r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\1\file_00001_els__d1_512_d2_512_d3_1_order_F_frames_1147_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\2\file_00002_els__d1_512_d2_512_d3_1_order_F_frames_2520_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\3\file_00003_els__d1_512_d2_512_d3_1_order_F_frames_3814_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\4\file_00004_els__d1_512_d2_512_d3_1_order_F_frames_5154_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\5\file_00005_els__d1_512_d2_512_d3_1_order_F_frames_2677_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\6\file_00006_els__d1_512_d2_512_d3_1_order_F_frames_3685_.mmap']

    fname_new = r'E:\PhD\Data\DG\M14_20191014\N1\memmap__d1_512_d2_512_d3_1_order_C_frames_34939_.mmap'

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C',
                               border_to_0=0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)


#%% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

#%%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 2                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 15
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 4                    # number of components per patch
    gSig = [4, 4]            # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub}

    opts.change_params(params_dict=opts_dict)
#%% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)

    #opts.change_params({'p': 1,'rf':None, 'only_init':False})
    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

#%% RUN CNMF SEEDED WITH MANUAL MASK

    # load mask
    mask = np.asarray(imageio.imread('/Users/hheiser/Desktop/testing data/file_00020_no_motion/avg_mask_fixed.png'), dtype=bool)

    # get component ROIs from the mask and plot them
    Ain, labels, mR = cm.base.rois.extract_binary_masks(mask)

    # plot original mask and extracted labels to check mask
    fig, ax = plt.subplots(1,2)
    ax[0].imshow(-mR,cmap='binary')
    ax[0].set_title('Original mask')
    ax[1].imshow(labels)
    ax[1].set_title('Extracted labelled ROIs')

    """"
    plt.figure()
    crd = cm.utils.visualization.plot_contours(
        Ain.astype('float32'), mR, thr=0.99, display_numbers=True) # todo check if this is important for the pipeline
    plt.title('Contour plots of detected ROIs in the structural channel')
    """

    opts.change_params({'rf': None, 'only_init': False})

    # run CNMF seeded with this mask
    cnm_corr = cnmf.CNMF(n_processes, params=opts, dview=dview, Ain=Ain)
    cnm_corr_seed = cnm_corr_seed.fit(images)
    #cnm_seed = cnm_seed.fit_file(motion_correct=False)

#%% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

#%% plot contours of found components
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')

#%% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)

#%% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest})
    cnm2.estimates.evaluate_components(images, params=cnm2.params, dview=dview)

#%% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)

#%% VIEW TRACES (accepted and rejected)

    if display_images:
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components)
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components_bad)
#%% update object with selected components
    #### -> will delete rejected components!
    cnm2.estimates.select_components(use_object=True)
#%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

#%% Show final traces
    cnm2.estimates.view_components(img=Cn)

#%% reconstruct denoised movie (press q to exit)
    if display_images:
        cnm2.estimates.play_movie(images, q_max=99.9, gain_res=2,
                                  magnification=1,
                                  bpx=border_to_0,
                                  include_bck=True)  # background not shown

#%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

#%% save results

    dirname = fnames[0][:-4] + "_results.hdf5"
    cnm2.estimates.Cn = Cn
    cnm2.save(dirname)

    #load results
    cnm2 = cnmf.load_CNMF(dirname)

    mov_name = fnames[0][:-4] + "_movie_restored_2_gain.tif"
    helper.save_movie(cnm2.estimates,images,mov_name,frame_range=range(200),include_bck=True)
예제 #16
0
import psutil
import sys
from ipyparallel import Client
from skimage.external.tifffile import TiffFile
import scipy
#%%
from caiman.motion_correction import tile_and_correct, motion_correction_piecewise
from caiman.source_extraction.cnmf import cnmf as cnmf
from caiman.components_evaluation import evaluate_components
from caiman.utils.visualization import plot_contours, view_patches_bar
from caiman.base.rois import extract_binary_masks_blob

#%%
m = cm.load('example_movies/demoMovie.tif')

cm.concatenate([m.resize(1, 1, .2), m.resize(1, 1, .2)],
               axis=1).play(fr=20, gain=3., magnification=3)
#%% set parameters and create template by RIGID MOTION CORRECTION
# params_movie = {'fname':'example_movies/Sue_2x_3000_40_-46.tif',
#                'max_shifts':(6,6), # maximum allow rigid shift
#                'splits_rig':56, # for parallelization split the movies in  num_splits chuncks across time
#                'num_splits_to_process_rig':None, # if none all the splits are processed and the movie is saved
#                'strides': (48,48), # intervals at which patches are laid out for motion correction
#                'overlaps': (24,24), # overlap between pathes (size of patch strides+overlaps)
#                'splits_els':56, # for parallelization split the movies in  num_splits chuncks across time
#                'num_splits_to_process_els':[28,None], # if none all the splits are processed and the movie is saved
#                'upsample_factor_grid':4, # upsample factor to avoid smearing when merging patches
#                'max_deviation_rigid':3, #maximum deviation allowed for patch with respect to rigid shift
#                'p': 1, # order of the autoregressive system
#                'merge_thresh' : 0.8,  # merging threshold, max correlation allowed
#                'rf' : 15,  # half-size of the patches in pixels. rf=25, patches are 50x50
#                'stride_cnmf' : 6,  # amounpl.it of overlap between the patches in pixels
#    
#    total_shifts.append(total_shift)
#    start_steps.append(start_step)
#    xy_grids.append(xy_grid)



#mc = cm.load('M_FLUO_4_d1_64_d2_128_d3_1_order_F_frames_4620_.mmap')
#mc = cm.load('M_FLUO_t_d1_64_d2_128_d3_1_order_F_frames_6764_.mmap')

#%%
mc.resize(1,1,.2).play(gain=30,fr = 30, offset = 300,magnification=1.)
#%%
m.resize(1,1,.2).play(gain=10,fr = 30, offset = 0,magnification=1.)
#%%
cm.concatenate([mr.resize(1,1,.5),mc.resize(1,1,.5)],axis=1).play(gain=10,fr = 100, offset = 300,magnification=1.)

#%%
import h5py
with  h5py.File('sueann_pw_rigid_movie.mat') as f:
    mef = np.array(f['M2'])

mef = cm.movie(mef.transpose([0,2,1]))    

#%%
cm.concatenate([mef.resize(1,1,.15),mc.resize(1,1,.15)],axis=1).play(gain=30,fr = 40, offset = 300,magnification=1.)
#%%
(mef-mc).resize(1,1,.1).play(gain=50,fr = 20, offset = 0,magnification=1.)
#%%
(mc-mef).resize(1,1,.1).play(gain=50,fr = 20, offset = 0,magnification=1.)
#%%
    int), max_deviation_rigid + 1)[::-1]
for num_splits_to_process in [28, None]:
    fname_tot_els, total_template_wls, templates_els, x_shifts_els, y_shifts_els, coord_shifts_els = cm.motion_correction.motion_correct_batch_pwrigid(fname, max_shifts_els, strides, overlaps, add_to_movie, newoverlaps=None,  newstrides=None,
                                                                                                                                                       dview=dview, upsample_factor_grid=upsample_factor_grid, max_deviation_rigid=max_deviation_rigid,
                                                                                                                                                       splits=splits, num_splits_to_process=num_splits_to_process, num_iter=num_iter,
                                                                                                                                                       template=new_templ, shifts_opencv=shifts_opencv, save_movie=save_movie)
    new_templ = total_template_wls
#%%
pl.subplot(2, 1, 1)
pl.plot(x_shifts_els)
pl.subplot(2, 1, 2)
pl.plot(y_shifts_els)

#%%
m_els = cm.load(fname_tot_els)
cm.concatenate([m_rig.resize(1, 1, .2), m_els.resize(1, 1, .2)], axis=1).play(
    fr=50, gain=20, magnification=2, offset=add_to_movie)
#%% compute metrics for the results
final_size = np.subtract(new_templ.shape, max_shifts_els)
winsize = 75
swap_dim = False
resize_fact_flow = .2
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname_tot_els, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname_tot_rig, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    fname, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False, resize_fact_flow=resize_fact_flow)

#%% plot the results of metrics
fls = [fname_tot_els[:-4] + '_metrics.npz', fname_tot_rig[:-4] +
       '_metrics.npz', fname[:-4] + '_metrics.npz']
예제 #19
0
#%%
pl.imshow(img,interpolation='none')
#%%
cc=scipy.sparse.csgraph.connected_components(img,directed=False)
#distanceMatrix=distanceMatrix/np.max(distanceMatrix)    
    #%%
m=load(fname,fr=30).resize(1,1,.2)
#%%
shifts_,xcorrs_,template_ = m.motion_correction_online(init_frames_template=100,max_shift_h=5,max_shift_w=5)
#%%
shifts,xcorrs,template = m.motion_correction_online(template=template_,min_count=len(m),max_shift_h=5,max_shift_w=5)
#%%
mov_path=m.apply_shifts_online(shifts,save_base_name='/tmp/test')   
#%%
m=load(mov_path,fr=30*.2)
m1=cm.concatenate([m.resize(1,1,1),mh.resize(1,1,1)],axis=1)

(m1-np.percentile(m1,8)).play(backend='opencv',fr=100,gain=3.,magnification=5)

#%%
#mc=m.motion_correct(5,5)
#%%
#m1=mc[0].resize(1,1,.2)
#%%
(m1-np.percentile(m1,8)).play(backend='opencv',fr=100,gain=10.,magnification=5)
#%%
final_frate=15
is_patches=True
is_dendrites=False

예제 #20
0
def run_alignment(mouse, sessions, motion_correction_v, cropping_v, dview):
    """
    This is the main function for the alignment step. It applies methods
    from the CaImAn package used originally in motion correction
    to do alignment.

    """
    for session in sessions:
        # Update the database

        file_name = f"mouse_{mouse}_session_{session}_alignment"
        sql1 = "UPDATE Analysis SET alignment_main=? WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val1 = [file_name, mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql1, val1)

        # Determine the output .mmap file name
        output_mmap_file_path = os.environ[
            'DATA_DIR_LOCAL'] + f'data/interim/alignment/main/{file_name}.mmap'
        sql = "SELECT motion_correction_main  FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        input_mmap_file_list = []
        inter = []
        for x in result:
            inter += x
        for y in inter:
            input_mmap_file_list.append(y)

        sql = "SELECT motion_correction_cropping_points_x1 FROM Analysis WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        x_ = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            x_.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_x2 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        _x = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            _x.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_y1 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        _y = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            _y.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_y2 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        y_ = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            y_.append(inter[j])

        new_x1 = max(x_)
        new_x2 = max(_x)
        new_y1 = max(y_)
        new_y2 = max(_y)
        m_list = []
        for i in range(len(input_mmap_file_list)):
            m = cm.load(input_mmap_file_list[i])
            m = m.crop(new_x1 - x_[i], new_x2 - _x[i], new_y1 - y_[i],
                       new_y2 - _y[i], 0, 0)
            m_list.append(m)

        # Concatenate them using the concat function
        m_concat = cm.concatenate(m_list, axis=0)
        fname = m_concat.save(output_mmap_file_path, order='C')

        # MOTION CORRECTING EACH INDIVIDUAL MOVIE WITH RESPECT TO A TEMPLATE MADE OF THE FIRST MOVIE
        logging.info(
            'Performing motion correction on all movies with respect to a template made of the first movie.'
        )
        t0 = datetime.datetime.today()
        # parameters alignment
        sql5 = "SELECT make_template_from_trial,gSig_filt,max_shifts,niter_rig,strides,overlaps,upsample_factor_grid,num_frames_split,max_deviation_rigid,shifts_opencv,use_conda,nonneg_movie, border_nan  FROM Analysis WHERE alignment_main=? "
        val5 = [
            file_name,
        ]
        cursor.execute(sql5, val5)
        myresult = cursor.fetchall()
        para = []
        aux = []
        for x in myresult:
            aux = x
        for y in aux:
            para.append(y)
        parameters = {
            'make_template_from_trial': para[0],
            'gSig_filt': (para[1], para[1]),
            'max_shifts': (para[2], para[2]),
            'niter_rig': para[3],
            'strides': (para[4], para[4]),
            'overlaps': (para[5], para[5]),
            'upsample_factor_grid': para[6],
            'num_frames_split': para[7],
            'max_deviation_rigid': para[8],
            'shifts_opencv': para[9],
            'use_cuda': para[10],
            'nonneg_movie': para[11],
            'border_nan': para[12]
        }
        # Create a template of the first movie
        template_index = parameters['make_template_from_trial']
        m0 = cm.load(input_mmap_file_list[1])
        [x1, x2, y1, y2] = [x_, _x, y_, _y]
        for i in range(len(input_mmap_file_list)):
            m0 = m0.crop(new_x1 - x_[i], new_x2 - _x[i], new_y1 - y_[i],
                         new_y2 - _y[i], 0, 0)
        m0_filt = cm.movie(
            np.array([
                high_pass_filter_space(m_, parameters['gSig_filt'])
                for m_ in m0
            ]))
        template0 = cm.motion_correction.bin_median(
            m0_filt.motion_correct(
                5, 5, template=None)[0])  # may be improved in the future

        # Setting the parameters
        opts = params.CNMFParams(params_dict=parameters)

        # Create a motion correction object
        mc = MotionCorrect(fname, dview=dview, **opts.get_group('motion'))

        # Perform non-rigid motion correction
        mc.motion_correct(template=template0, save_movie=True)

        # Cropping borders
        x_ = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 1].max()
                ) if np.array(mc.shifts_rig)[:, 1].max() > 0 else 0)
        _x = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 1].min()
                ) if np.array(mc.shifts_rig)[:, 1].min() < 0 else 0)
        y_ = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 0].max()
                ) if np.array(mc.shifts_rig)[:, 0].max() > 0 else 0)
        _y = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 0].min()
                ) if np.array(mc.shifts_rig)[:, 0].min() < 0 else 0)

        # Load the motion corrected movie into memory
        movie = cm.load(mc.fname_tot_rig[0])
        # Crop all movies to those border pixels
        movie.crop(x_, _x, y_, _y, 0, 0)
        sql1 = "UPDATE Analysis SET alignment_x1=?, alignment_x2 =?, alignment_y1=?, alignment_y2=? WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val1 = [
            x_, _x, y_, _y, mouse, session, motion_correction_v, cropping_v
        ]
        cursor.execute(sql1, val1)

        # save motion corrected and cropped movie
        output_mmap_file_path_tot = movie.save(
            os.environ['DATA_DIR_LOCAL'] +
            f'data/interim/alignment/main/{file_name}.mmap',
            order='C')
        logging.info(
            f' Cropped and saved rigid movie as {output_mmap_file_path_tot}')
        # Remove the remaining non-cropped movie
        os.remove(mc.fname_tot_rig[0])

        # Create a timeline and store it
        sql = "SELECT trial FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        trial_index_list = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            trial_index_list.append(inter[j])

        timeline = [[trial_index_list[0], 0]]
        timepoints = [0]
        for i in range(1, len(m_list)):
            m = m_list[i]
            timeline.append(
                [trial_index_list[i], timeline[i - 1][1] + m.shape[0]])
            timepoints.append(timepoints[i - 1] + m.shape[0])
            timeline_pkl_file_path = os.environ[
                'DATA_DIR'] + f'data/interim/alignment/meta/timeline/{file_name}.pkl'
            with open(timeline_pkl_file_path, 'wb') as f:
                pickle.dump(timeline, f)
        sql1 = "UPDATE Analysis SET alignment_timeline=? WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val1 = [
            timeline_pkl_file_path, mouse, session, motion_correction_v,
            cropping_v
        ]
        cursor.execute(sql1, val1)
        timepoints.append(movie.shape[0])

        dt = int((datetime.datetime.today() - t0).seconds /
                 60)  # timedelta in minutes
        sql1 = "UPDATE Analysis SET alignment_duration_concatenation=? WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val1 = [dt, mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql1, val1)
        logging.info(f' Performed concatenation. dt = {dt} min.')

        ## modify all motion correction file to the aligned version
        data_dir = os.environ[
            'DATA_DIR'] + 'data/interim/motion_correction/main/'
        for i in range(len(input_mmap_file_list)):
            aligned_movie = movie[timepoints[i]:timepoints[i + 1]]
            motion_correction_output_aligned = aligned_movie.save(
                data_dir + file_name + '_els' + '.mmap', order='C')
            sql1 = "UPDATE Analysis SET motion_correct_align=? WHERE motion_correction_meta=? AND motion_correction_v"
            val1 = [
                motion_correction_output_aligned, input_mmap_file_list[i],
                motion_correction_v
            ]
            cursor.execute(sql1, val1)

    database.commit()
    return
예제 #21
0
    # makes estimation numerically better:
    movie -= movie.mean()

    # use one every 200 frames
    temporal_stride = 200
    # use one every 8 patches (patches are 8x8 by default)
    spatial_stride = 8

    movie_train = movie[::temporal_stride]

    t = timeit.default_timer()
    estimation_res = est.estimate_vst_movie(movie_train, stride=spatial_stride)
    print('\tTime', timeit.default_timer() - t)

    alpha = estimation_res.alpha
    sigma_sq = estimation_res.sigma_sq

    movie_gat = compute_gat(movie, sigma_sq, alpha=alpha)
    # save movie_gat here
    movie_gat_inv = compute_inverse_gat(movie_gat, sigma_sq, alpha=alpha,
                                        method='asym')
    # save movie_gat_inv here
    return movie, movie_gat_inv

#%%
movie, movie_gat_inv = main()

#%%
cm.concatenate([movie,movie_gat_inv],axis=1).play(gain = 10, magnification=4)
    B = b0[:, None] + (np.repeat(
        np.repeat(
            W.dot(
                downscale(B.reshape(dims + (B.shape[-1], ), order='F'), (
                    ssub_B, ssub_B, 1)).reshape((-1, B.shape[-1]), order='F') -
                downscale(b0.reshape(dims, order='F'), (
                    ssub_B, ssub_B)).reshape((-1, 1), order='F')).reshape(
                        ((dims[0] - 1) // ssub_B + 1,
                         (dims[1] - 1) // ssub_B + 1, -1),
                        order='F'), ssub_B, 0), ssub_B,
        1)[:dims[0], :dims[1]].reshape((-1, B.shape[-1]), order='F'))
B = B.reshape(dims + (-1, ), order='F').transpose([2, 0, 1])

Y_res = images[frame_range] - Y_rec - B

mov = cm.concatenate((images, Y_rec), axis=2)

mov = cm.concatenate((images, images), axis=2)

#%% Select the row to be source extracted using current versions of cropping and motion correction

selected_rows = db.select(states_df,
                          'source_extraction',
                          mouse=mouse_number,
                          session=session,
                          is_rest=is_rest,
                          cropping_v=cropping_version,
                          motion_correction_v=motion_correction_version)

gSig = 5
gSiz = 4 * gSig + 1
예제 #23
0
#distanceMatrix=distanceMatrix/np.max(distanceMatrix)
#%%
m = load(fname, fr=30).resize(1, 1, .2)
#%%
shifts_, xcorrs_, template_ = m.motion_correction_online(
    init_frames_template=100, max_shift_h=5, max_shift_w=5)
#%%
shifts, xcorrs, template = m.motion_correction_online(template=template_,
                                                      min_count=len(m),
                                                      max_shift_h=5,
                                                      max_shift_w=5)
#%%
mov_path = m.apply_shifts_online(shifts, save_base_name='/tmp/test')
#%%
m = load(mov_path, fr=30 * .2)
m1 = cm.concatenate([m.resize(1, 1, 1), mh.resize(1, 1, 1)], axis=1)

(m1 - np.percentile(m1, 8)).play(backend='opencv',
                                 fr=100,
                                 gain=3.,
                                 magnification=5)

#%%
#mc=m.motion_correct(5,5)
#%%
#m1=mc[0].resize(1,1,.2)
#%%
(m1 - np.percentile(m1, 8)).play(backend='opencv',
                                 fr=100,
                                 gain=10.,
                                 magnification=5)
예제 #24
0
#m_denoised_now=(m_denoised_now- np.mean(m_denoised_now, axis=0))
#m_denoised_now =np.diff(m_denoised_now,axis = 0)
#m_denoised_now  = (m_denoised_now - np.mean(m_denoised_now, axis=(1,2))[:,np.newaxis,np.newaxis])
if baselinesubtract :
    m_denoised_baseline = voltage_imaging_utils.moving_average(m_denoised_now, n=baseline_window)
    m_denoised_now = m_denoised_now/m_denoised_baseline 
#%
m_mocorr_denoised_now = m_mocorr_denoised[startframe:startframe+framenum,:,:]#.copy()
#m_mocorr_denoised_now=(m_mocorr_denoised_now- np.mean(m_mocorr_denoised_now, axis=0))
#m_mocorr_denoised_now =np.diff(m_mocorr_denoised_now,axis = 0)
if baselinesubtract :
    m_mocorr_denoised_baseline = voltage_imaging_utils.moving_average(m_mocorr_denoised_now, n=baseline_window)
    m_mocorr_denoised_now = m_mocorr_denoised_now/m_mocorr_denoised_baseline 
#%

m_now =  cm.concatenate([m_orig_now,m_volpy_now, m_denoised_now,m_mocorr_denoised_now], axis=1)#
#%%
#%%
m_now =  cm.concatenate([m_orig_now,m_volpy_now], axis=1)#
#%%
m_now.play(fr=900, magnification=2,q_max=99.9, q_min=0.1,save_movie = True)
#m_orig = cm.load(allfnames[0:3])
#m_volpy_now.play(fr=400, magnification=1,q_max=99.5, q_min=0.5,save_movie = False)
#%% Szar van a palacsintaban
subject_ids,movie_names,frame_times,sessions,movie_numbers = (imaging.Movie*imaging.MovieFrameTimes()).fetch('subject_id','movie_name','frame_times','session','movie_number')
for subject_id,movie_name,frame_time,session,movie_number in zip(subject_ids,movie_names,frame_times,sessions,movie_numbers):
    frametimediff = np.diff(frame_time)
    if np.min(frametimediff)<.5*np.median(frametimediff):
        key = {'subject_id':subject_id,'movie_number':movie_number,'session':session}
        fig=plt.figure()
        ax = fig.add_axes([0,0,1,1])
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo('demo_voltage_imaging.hdf5', 'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo('demo_voltage_imaging_ROIs.hdf5', 'volpy')  # file path to ROIs file (will download if not present)

    # %% Setup some parameters for data and motion correction
    # dataset parameters
    fr = 400                                        # sample rate of the movie
    ROIs = None                                     # Region of interests
    index = None                                    # index of neurons
    weights = None                                  # reuse spatial weights by 
                                                    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False                                # flag for pw-rigid motion correction
    gSig_filt = (3, 3)                              # size of filter, in general gSig (see below),
                                                    # change this one if algorithm does not work
    max_shifts = (5, 5)                             # maximum allowed rigid shift
    strides = (48, 48)                              # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24)                             # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3                         # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    # %%% MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    mc.motion_correct(save_movie=True)
    dview.terminate()

    # %% motion correction compared with original movie
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
                                      m_rig.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

    # % movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        moviehandle1 = cm.concatenate([m_orig2.resize(1, 1, ds_ratio),
                                       m_rig2.resize(1, 1, ds_ratio)], axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2)

   # %% Memory Mapping
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    fname_new = cm.save_memmap_join(mc.mmap_file, base_name='memmap_',
                               add_to_mov=border_to_0, dview=dview, n_chunks=10)

    dview.terminate()

    # %% change fnames to the new motion corrected one
    opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION
    # Create mean and correlation image
    use_maskrcnn = True  # set to True to predict the ROIs using the mask R-CNN
    if not use_maskrcnn:                 # use manual annotations
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]  # load ROIs
        opts.change_params(params_dict={'ROIs': ROIs,
                                        'index': list(range(ROIs.shape[0])),
                                        'method': 'SpikePursuit'})
    else:
        m = cm.load(mc.mmap_file[0], subindices=slice(0, 20000))
        m.fr = fr
        img = m.mean(axis=0)
        img = (img-np.mean(img))/np.std(img)
        m1 = m.computeDFF(secsWindow=1, in_place=True)[0]
        m = m - m1
        Cn = m.local_correlations(swap_dim=False, eight_neighbours=True)
        img_corr = (Cn-np.mean(Cn))/np.std(Cn)
        summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)
        del m
        del m1

        # %%
        # Mask R-CNN
        config = neurons.NeuronsConfig()

        class InferenceConfig(config.__class__):
            # Run detection on one image at a time
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0.7
            IMAGE_RESIZE_MODE = "pad64"
            IMAGE_MAX_DIM = 512
            RPN_NMS_THRESHOLD = 0.7
            POST_NMS_ROIS_INFERENCE = 1000

        config = InferenceConfig()
        config.display()
        model_dir = os.path.join(caiman_datadir(), 'model')
        DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
        with tf.device(DEVICE):
            model = modellib.MaskRCNN(mode="inference", model_dir=model_dir,
                                      config=config)
        weights_path = download_model('mask_rcnn')
        model.load_weights(weights_path, by_name=True)
        results = model.detect([summary_image], verbose=1)
        r = results[0]
        ROIs_mrcnn = r['masks'].transpose([2, 0, 1])

    # %% visualize the result
        display_result = False

        if display_result:
            _, ax = plt.subplots(1,1, figsize=(16,16))
            visualize.display_instances(summary_image, r['rois'], r['masks'], r['class_ids'], 
                                    ['BG', 'neurons'], r['scores'], ax=ax,
                                    title="Predictions")

    # %% set rois
        opts.change_params(params_dict={'ROIs':ROIs_mrcnn,
                                        'index':list(range(ROIs_mrcnn.shape[0])),
                                        'method':'SpikePursuit'})

    # %% Trace Denoising and Spike Extraction
    c, dview, n_processes = cm.cluster.setup_cluster(
            backend='local', n_processes=None, single_thread=False, maxtasksperchild=1)
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    # %% some visualization
    print(np.where(vpy.estimates['passedLocalityTest'])[0])    # neurons that pass locality test
    n = 0
    
    # Processed signal and spikes of neurons
    plt.figure()
    plt.plot(vpy.estimates['trace'][n])
    plt.plot(vpy.estimates['spikeTimes'][n],
             np.max(vpy.estimates['trace'][n]) * np.ones(vpy.estimates['spikeTimes'][n].shape),
             color='g', marker='o', fillstyle='none', linestyle='none')
    plt.title('signal and spike times')
    plt.show()

    # Location of neurons by Mask R-CNN or manual annotation
    plt.figure()
    if use_maskrcnn:
        plt.imshow(ROIs_mrcnn[n])
    else:
        plt.imshow(ROIs[n])
    mv = cm.load(fname_new)
    plt.imshow(mv.mean(axis=0),alpha=0.5)
    
    # Spatial filter created by algorithm
    plt.figure()
    plt.imshow(vpy.estimates['spatialFilter'][n])
    plt.colorbar()
    plt.title('spatial filter')
    plt.show()
    
    

    # %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
예제 #26
0
    def play_movie(self,
                   imgs,
                   q_max=99.75,
                   q_min=2,
                   gain_res=1,
                   magnification=1,
                   include_bck=True,
                   frame_range=slice(None, None, None),
                   bpx=0):
        """Displays a movie with three panels (original data (left panel),
        reconstructed data (middle panel), residual (right panel))

        Args:
            imgs: np.array (possibly memory mapped, t,x,y[,z])
                Imaging data

            q_max: float (values in [0, 100])
                percentile for maximum plotting value

            q_min: float (values in [0, 100])
                percentile for minimum plotting value

            gain_res: float
                amplification factor for residual movie

            magnification: float
                magnification factor for whole movie

            include_bck: bool
                flag for including background in original and reconstructed movie

            frame_rage: range or slice or list
                display only a subset of frames

            bpx: int
                number of pixels to exclude on each border

        Returns:
            self (to stop the movie press 'q')
        """
        dims = imgs.shape[1:]
        if 'movie' not in str(type(imgs)):
            imgs = caiman.movie(imgs)
        Y_rec = self.A.dot(self.C[:, frame_range])
        Y_rec = Y_rec.reshape(dims + (-1, ), order='F')
        Y_rec = Y_rec.transpose([2, 0, 1])
        if self.b is not None and self.f is not None:
            B = self.b.dot(self.f[:, frame_range])
            if 'matrix' in str(type(B)):
                B = B.toarray()
            B = B.reshape(dims + (-1, ), order='F').transpose([2, 0, 1])
        elif self.W is not None:
            ssub_B = int(round(np.sqrt(np.prod(dims) / self.W.shape[0])))
            B = imgs[frame_range].reshape((-1, np.prod(dims)), order='F').T - \
                self.A.dot(self.C[:, frame_range])
            if ssub_B == 1:
                B = self.b0[:, None] + self.W.dot(B - self.b0[:, None])
            else:
                B = self.b0[:, None] + (np.repeat(
                    np.repeat(
                        self.W.dot(
                            downscale(
                                B.reshape(dims + (B.shape[-1], ), order='F'),
                                (ssub_B, ssub_B, 1)).reshape(
                                    (-1, B.shape[-1]), order='F') -
                            downscale(self.b0.reshape(dims, order='F'),
                                      (ssub_B, ssub_B)).reshape(
                                          (-1, 1), order='F')).reshape(
                                              ((dims[0] - 1) // ssub_B + 1,
                                               (dims[1] - 1) // ssub_B + 1,
                                               -1),
                                              order='F'), ssub_B, 0), ssub_B,
                    1)[:dims[0], :dims[1]].reshape(
                        (-1, B.shape[-1]), order='F'))
            B = B.reshape(dims + (-1, ), order='F').transpose([2, 0, 1])
        else:
            B = np.zeros_like(Y_rec)
        if bpx > 0:
            B = B[:, bpx:-bpx, bpx:-bpx]
            Y_rec = Y_rec[:, bpx:-bpx, bpx:-bpx]
            imgs = imgs[:, bpx:-bpx, bpx:-bpx]

        Y_res = imgs[frame_range] - Y_rec - B

        caiman.concatenate(
            (imgs[frame_range] -
             (not include_bck) * B, Y_rec + include_bck * B, Y_res * gain_res),
            axis=2).play(q_min=q_min, q_max=q_max, magnification=magnification)

        return self
예제 #27
0
def play_movie(estimates, imgs, q_max=99.75, q_min=2, gain_res=1,
                   magnification=1, include_bck=True,
                   frame_range=slice(None, None, None),
                   bpx=0, thr=0., save_movie=False,
                   movie_name='results_movie.avi'):

    dims = imgs.shape[1:]
    if 'movie' not in str(type(imgs)):
        imgs = cm.movie(imgs)
    Y_rec = estimates.A.dot(estimates.C[:, frame_range])
    Y_rec = Y_rec.reshape(dims + (-1,), order='F')
    Y_rec = Y_rec.transpose([2, 0, 1])

    if estimates.W is not None:
        ssub_B = int(round(np.sqrt(np.prod(dims) / estimates.W.shape[0])))
        B = imgs[frame_range].reshape((-1, np.prod(dims)), order='F').T - \
            estimates.A.dot(estimates.C[:, frame_range])
        if ssub_B == 1:
            B = estimates.b0[:, None] + estimates.W.dot(B - estimates.b0[:, None])
        else:
            B = estimates.b0[:, None] + (np.repeat(np.repeat(estimates.W.dot(
                downscale(B.reshape(dims + (B.shape[-1],), order='F'),
                          (ssub_B, ssub_B, 1)).reshape((-1, B.shape[-1]), order='F') -
                downscale(estimates.b0.reshape(dims, order='F'),
                          (ssub_B, ssub_B)).reshape((-1, 1), order='F'))
                    .reshape(((dims[0] - 1) // ssub_B + 1, (dims[1] - 1) // ssub_B + 1, -1), order='F'),
                    ssub_B, 0), ssub_B, 1)[:dims[0], :dims[1]].reshape((-1, B.shape[-1]), order='F'))
        B = B.reshape(dims + (-1,), order='F').transpose([2, 0, 1])
    elif estimates.b is not None and estimates.f is not None:
        B = estimates.b.dot(estimates.f[:, frame_range])
        if 'matrix' in str(type(B)):
            B = B.toarray()
        B = B.reshape(dims + (-1,), order='F').transpose([2, 0, 1])
    else:
        B = np.zeros_like(Y_rec)
    if bpx > 0:
        B = B[:, bpx:-bpx, bpx:-bpx]
        Y_rec = Y_rec[:, bpx:-bpx, bpx:-bpx]
        imgs = imgs[:, bpx:-bpx, bpx:-bpx]

    Y_res = imgs[frame_range] - Y_rec - B

    mov = cm.concatenate((imgs[frame_range] - (not include_bck) * B, Y_rec,
                            Y_rec + include_bck * B, Y_res * gain_res), axis=2)

    if thr > 0:
        if save_movie:
            import cv2
            #fourcc = cv2.VideoWriter_fourcc('8', 'B', 'P', 'S')
            #fourcc = cv2.VideoWriter_fourcc(*'XVID')
            fourcc = cv2.VideoWriter_fourcc(*'MP4V')
            out = cv2.VideoWriter(movie_name, fourcc, 30.0,
                                  tuple([int(magnification*s) for s in mov.shape[1:][::-1]]))
        contours = []
        for a in estimates.A.T.toarray():
            a = a.reshape(dims, order='F')
            if bpx > 0:
                a = a[bpx:-bpx, bpx:-bpx]
            if magnification != 1:
                a = cv2.resize(a, None, fx=magnification, fy=magnification,
                               interpolation=cv2.INTER_LINEAR)
            ret, thresh = cv2.threshold(a, thr * np.max(a), 1., 0)
            contour, hierarchy = cv2.findContours(
                thresh.astype('uint8'), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            contours.append(contour)
            contours.append(list([c + np.array([[a.shape[1], 0]]) for c in contour]))
            contours.append(list([c + np.array([[2 * a.shape[1], 0]]) for c in contour]))

        maxmov = np.nanpercentile(mov[0:10], q_max) if q_max < 100 else np.nanmax(mov)
        minmov = np.nanpercentile(mov[0:10], q_min) if q_min > 0 else np.nanmin(mov)
        for frame in mov:
            if magnification != 1:
                frame = cv2.resize(frame, None, fx=magnification, fy=magnification,
                                   interpolation=cv2.INTER_LINEAR)
            frame = np.clip((frame - minmov) * 255. / (maxmov - minmov), 0, 255)
            frame = np.repeat(frame[..., None], 3, 2)
            for contour in contours:
                cv2.drawContours(frame, contour, -1, (0, 255, 255), 1)
            cv2.imshow('frame', frame.astype('uint8'))
            if save_movie:
                out.write(frame.astype('uint8'))
            if cv2.waitKey(30) & 0xFF == ord('q'):
                break
        if save_movie:
            out.release()
        cv2.destroyAllWindows()
        cv2.destroyAllWindows()
    else:
        mov.play(q_min=q_min, q_max=q_max, magnification=magnification,
                     save_movie=save_movie, movie_name=movie_name)

    return
예제 #28
0
pl.plot(mc.shifts_rig)
pl.legend(['x shifts', 'y shifts'])
pl.xlabel('frames')
pl.ylabel('pixels')
# %% inspect movie
downsample_ratio = params_display['downsample_ratio']
# TODO: todocument
offset_mov = -np.min(m_orig[:100])
m_rig.resize(1, 1, downsample_ratio).play(
    gain=10, offset=offset_mov * .25, fr=30, magnification=2, bord_px=bord_px_rig)


# %% visualize raw, rigid and pw-rigid motion correted moviews
downsample_factor = params_display['downsample_ratio']
# TODO : todocument
cm.concatenate(
    [m_orig.resize(1, 1, downsample_factor) + offset_mov, m_rig.resize(1, 1, downsample_factor)], axis=2).play(fr=60, gain=5, magnification=4, offset=0)
# TODO: show screenshot 8
# %% restart cluster to clean up memory
# TODO: todocument
c, dview, n_processes = cm.cluster.setup_cluster(
    backend='local', n_processes=None, single_thread=False)
# %% save each chunk in F format
t1 = time.time()
if not 'max_shifts' in params_movie:
    fnames = params_movie['fname']
    border_to_0 = 0
else:  # elif not params_movie.has_key('overlaps'):
    fnames = [mc.fname_tot_rig]
    border_to_0 = bord_px_rig
    m_els = m_rig
# else:
예제 #29
0
                   max_deviation_rigid=max_deviation_rigid,
                   shifts_opencv=True,
                   nonneg_movie=True)
# note that the file is not loaded in memory

#%% Run piecewise-rigid motion correction using NoRMCorre
mc.motion_correct_pwrigid(save_movie=True)
m_els = cm.load(mc.fname_tot_els)
bord_px_els = np.ceil(
    np.maximum(np.max(np.abs(mc.x_shifts_els)),
               np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
# maximum shift to be used for trimming against NaNs
#%% compare with original movie
cm.concatenate([
    m_orig.resize(1, 1, downsample_ratio) + offset_mov,
    m_els.resize(1, 1, downsample_ratio)
],
               axis=2).play(fr=60, gain=15, magnification=2,
                            offset=0)  # press q to exit

#%% MEMORY MAPPING
# memory map the file in order 'C'
fnames = [mc.fname_tot_els]  # name of the pw-rigidly corrected file.
border_to_0 = bord_px_els  # number of pixels to exclude
fname_new = cm.save_memmap(fnames,
                           base_name='memmap_',
                           order='C',
                           border_to_0=bord_px_els)  # exclude borders

# now load the file
Yr, dims, T = cm.load_memmap(fname_new)
d1, d2 = dims
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% Select file(s) to be processed (download if not present)
    #    fnames = [os.path.join(caiman_datadir(), 'example_movies/sampled3dMovieRigid.nwb')]
    fnames = [
        os.path.join(caiman_datadir(), 'example_movies/sampled3dMovie2.nwb')
    ]
    # filename to be created or processed
    # dataset dependent parameters
    fr = 5  # imaging rate in frames per second
    decay_time = 0.4  # length of a typical transient in seconds

    starting_time = 0.
    #%% load the file and save it in the NWB format (if it doesn't exist already)
    if not os.path.exists(fnames[0]):
        #        fnames_orig = [os.path.join(caiman_datadir(), 'example_movies/sampled3dMovieRigid.h5')]  # filename to be processed
        fnames_orig = [
            os.path.join(caiman_datadir(), 'example_movies/sampled3dMovie2.h5')
        ]  # filename to be processed
        orig_movie = cm.load(fnames_orig, fr=fr, is3D=True)
        #       orig_movie = cm.load_movie_chain(fnames_orig,fr=fr,is3D=True)

        # save file in NWB format with various additional info
        orig_movie.save(fnames[0],
                        sess_desc='test',
                        identifier='demo 3d',
                        exp_desc='demo movie',
                        imaging_plane_description='multi plane',
                        emission_lambda=520.0,
                        indicator='none',
                        location='visual cortex',
                        starting_time=starting_time,
                        experimenter='NAOMi',
                        lab_name='Tank Lab',
                        institution='Princeton U',
                        experiment_description='Experiment Description',
                        session_id='Session 1',
                        var_name_hdf5='TwoPhotonSeries')
#%% First setup some parameters for data and motion correction

# motion correction parameters
    dxy = (1., 1., 5.)  # spatial resolution in x, y, and z in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (10., 10., 10.)  # maximum shift in um
    patch_motion_um = (50., 50., 30.
                       )  # patch size for non-rigid correction in um
    #    pw_rigid = False       # flag to select rigid vs pw_rigid motion correction
    niter_rig = 1
    pw_rigid = True  # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a / b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a / b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24, 4)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3
    is3D = True

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'niter_rig': niter_rig,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy',
        'var_name_hdf5': 'acquisition/TwoPhotonSeries',
        'is3D': is3D,
        'splits_els': 12,
        'splits_rig': 12
    }

    opts = params.CNMFParams(
        params_dict=mc_dict
    )  #NOTE: default adjustments of parameters are not set yet, manually setting them now

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True
    if display_images:
        m_orig = cm.load_movie_chain(fnames,
                                     var_name_hdf5=opts.data['var_name_hdf5'],
                                     is3D=True)
        T, h, w, z = m_orig.shape  # Time, plane, height, weight
        m_orig = np.reshape(np.transpose(m_orig, (3, 0, 1, 2)), (T * z, h, w))
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

# %% start a cluster for parallel processing
# NOTE: ignore dview right now for debugging purposes
#    c, dview, n_processes = cm.cluster.setup_cluster(
#        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
# first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames,
                       dview=None,
                       var_name_hdf5=opts.data['var_name_hdf5'],
                       **opts.get_group('motion'))
    #    mc = MotionCorrect(fnames, dview=dview, var_name_hdf5=opts.data['var_name_hdf5'], **opts.get_group('motion'))
    # note that the file is not loaded in memory

    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # %% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames,
                                     var_name_hdf5=opts.data['var_name_hdf5'],
                                     is3D=True)
        T, h, w, z = m_orig.shape  # Time, plane, height, weight
        m_orig = np.reshape(np.transpose(m_orig, (3, 0, 1, 2)), (T * z, h, w))

        m_els = cm.load(mc.mmap_file, is3D=True)
        m_els = np.reshape(np.transpose(m_els, (3, 0, 1, 2)), (T * z, h, w))

        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
예제 #31
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% First setup some parameters

    # dataset dependent parameters
    display_images = False  # Set this to true to show movies and plots
    fname = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    fr = 30  # imaging rate in frames per second
    decay_time = 0.4  # length of a typical transient in seconds

    # motion correction parameters
    niter_rig = 1  # number of iterations for rigid motion correction
    max_shifts = (6, 6)  # maximum allow rigid shift
    # for parallelization split the movies in  num_splits chuncks across time
    splits_rig = 56
    # start a new patch for pw-rigid motion correction every x pixels
    strides = (48, 48)
    # overlap between pathes (size of patch strides+overlaps)
    overlaps = (24, 24)
    # for parallelization split the movies in  num_splits chuncks across time
    splits_els = 56
    upsample_factor_grid = 4  # upsample factor to avoid smearing when merging patches
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    # parameters for source extraction and deconvolution
    p = 1  # order of the autoregressive system
    gnb = 2  # number of global background components
    merge_thresh = 0.8  # merging threshold, max correlation allowed
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    rf = 15
    stride_cnmf = 6  # amount of overlap between the patches in pixels
    K = 4  # number of components per patch
    gSig = [4, 4]  # expected half size of neurons
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    init_method = 'greedy_roi'
    is_dendrites = False  # flag for analyzing dendritic data
    # sparsity penalty for dendritic data analysis through sparse NMF
    alpha_snmf = None

    # parameters for component evaluation
    min_SNR = 2.5  # signal to noise ratio for accepting a component
    rval_thr = 0.8  # space correlation threshold for accepting a component
    cnn_thr = 0.8  # threshold for CNN based classifier

    #%% download the dataset if it's not present in your folder
    if fname[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fname = [download_demo(fname[0])]

#%% play the movie
# playing the movie using opencv. It requires loading the movie in memory. To
# close the video press q

    m_orig = cm.load_movie_chain(fname[:1])
    downsample_ratio = 0.2
    offset_mov = -np.min(m_orig[:100])
    moviehandle = m_orig.resize(1, 1, downsample_ratio)
    if display_images:
        moviehandle.play(gain=10, offset=offset_mov, fr=30, magnification=2)

#%% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    #%%% MOTION CORRECTION
    # first we create a motion correction object with the parameters specified
    min_mov = cm.load(fname[0], subindices=range(200)).min()
    # this will be subtracted from the movie to make it non-negative

    mc = MotionCorrect(fname[0],
                       min_mov,
                       dview=dview,
                       max_shifts=max_shifts,
                       niter_rig=niter_rig,
                       splits_rig=splits_rig,
                       strides=strides,
                       overlaps=overlaps,
                       splits_els=splits_els,
                       upsample_factor_grid=upsample_factor_grid,
                       max_deviation_rigid=max_deviation_rigid,
                       shifts_opencv=True,
                       nonneg_movie=True)
    # note that the file is not loaded in memory

    #%% Run piecewise-rigid motion correction using NoRMCorre
    mc.motion_correct_pwrigid(save_movie=True)
    m_els = cm.load(mc.fname_tot_els)
    bord_px_els = np.ceil(
        np.maximum(np.max(np.abs(mc.x_shifts_els)),
                   np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
    # maximum shift to be used for trimming against NaNs
    #%% compare with original movie
    moviehandle = cm.concatenate([
        m_orig.resize(1, 1, downsample_ratio) + offset_mov,
        m_els.resize(1, 1, downsample_ratio)
    ],
                                 axis=2)
    display_images = False
    if display_images:
        moviehandle.play(fr=60, q_max=99.5, magnification=2,
                         offset=0)  # press q to exit

#%% MEMORY MAPPING
# memory map the file in order 'C'
    fnames = mc.fname_tot_els  # name of the pw-rigidly corrected file.
    border_to_0 = bord_px_els  # number of pixels to exclude
    fname_new = cm.save_memmap(fnames,
                               base_name='memmap_',
                               order='C',
                               border_to_0=bord_px_els)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    d1, d2 = dims
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

    #%% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    #%% RUN CNMF ON PATCHES

    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)
    t1 = time.time()

    cnm = cnmf.CNMF(n_processes=1,
                    k=K,
                    gSig=gSig,
                    merge_thresh=merge_thresh,
                    p=0,
                    dview=dview,
                    rf=rf,
                    stride=stride_cnmf,
                    memory_fact=1,
                    method_init=init_method,
                    alpha_snmf=alpha_snmf,
                    only_init_patch=False,
                    gnb=gnb,
                    border_pix=bord_px_els)
    cnm = cnm.fit(images)

    #%% plot contours of found components
    Cn = cm.local_correlations(images.transpose(1, 2, 0))
    Cn[np.isnan(Cn)] = 0
    plt.figure()
    crd = plot_contours(cnm.A, Cn, thr=0.9)
    plt.title('Contour plots of found components')

    #%% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier

    idx_components, idx_components_bad, SNR_comp, r_values, cnn_preds = \
        estimate_components_quality_auto(images, cnm.A, cnm.C, cnm.b, cnm.f,
                                         cnm.YrA, fr, decay_time, gSig, dims,
                                         dview=dview, min_SNR=min_SNR,
                                         r_values_min=rval_thr, use_cnn=False,
                                         thresh_cnn_min=cnn_thr)

    #%% PLOT COMPONENTS

    if display_images:
        plt.figure()
        plt.subplot(121)
        crd_good = cm.utils.visualization.plot_contours(cnm.A[:,
                                                              idx_components],
                                                        Cn,
                                                        thr=.8,
                                                        vmax=0.75)
        plt.title('Contour plots of accepted components')
        plt.subplot(122)
        crd_bad = cm.utils.visualization.plot_contours(
            cnm.A[:, idx_components_bad], Cn, thr=.8, vmax=0.75)
        plt.title('Contour plots of rejected components')

#%% VIEW TRACES (accepted and rejected)

    if display_images:
        view_patches_bar(Yr,
                         cnm.A.tocsc()[:, idx_components],
                         cnm.C[idx_components],
                         cnm.b,
                         cnm.f,
                         dims[0],
                         dims[1],
                         YrA=cnm.YrA[idx_components],
                         img=Cn)

        view_patches_bar(Yr,
                         cnm.A.tocsc()[:, idx_components_bad],
                         cnm.C[idx_components_bad],
                         cnm.b,
                         cnm.f,
                         dims[0],
                         dims[1],
                         YrA=cnm.YrA[idx_components_bad],
                         img=Cn)

#%% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    A_in, C_in, b_in, f_in = cnm.A[:, idx_components], cnm.C[
        idx_components], cnm.b, cnm.f
    cnm2 = cnmf.CNMF(n_processes=1,
                     k=A_in.shape[-1],
                     gSig=gSig,
                     p=p,
                     dview=dview,
                     merge_thresh=merge_thresh,
                     Ain=A_in,
                     Cin=C_in,
                     b_in=b_in,
                     f_in=f_in,
                     rf=None,
                     stride=None,
                     gnb=gnb,
                     method_deconvolution='oasis',
                     check_nan=True)

    cnm2 = cnm2.fit(images)

    #%% Extract DF/F values

    F_dff = detrend_df_f(cnm2.A,
                         cnm2.b,
                         cnm2.C,
                         cnm2.f,
                         YrA=cnm2.YrA,
                         quantileMin=8,
                         frames_window=250)

    #%% Show final traces
    cnm2.view_patches(Yr, dims=dims, img=Cn)

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

#%% reconstruct denoised movie
    denoised = cm.movie(cnm2.A.dot(cnm2.C) + cnm2.b.dot(cnm2.f)).reshape(
        dims + (-1, ), order='F').transpose([2, 0, 1])

    #%% play along side original data
    moviehandle = cm.concatenate([
        m_els.resize(1, 1, downsample_ratio),
        denoised.resize(1, 1, downsample_ratio)
    ],
                                 axis=2)
    if display_images:
        moviehandle.play(fr=60, gain=15, magnification=2,
                         offset=0)  # press q to exit
예제 #32
0
def run_caiman_pipeline(movie, fr, fnames, savedir, usematlabroi):
    #%%

    cpu_num = 7
    cpu_num_spikepursuit = 2
    #gsig_filt_micron = (4, 4)
    #max_shifts_micron = (6,6)
    #strides_micron = (60,60)
    #overlaps_micron = (30, 30)

    gsig_filt_micron = (4, 4)
    max_shifts_micron = (6, 6)
    strides_micron = (30, 30)
    overlaps_micron = (15, 15)

    max_deviation_rigid_micron = 4

    pixel_size = movie['movie_pixel_size']

    ROIs = None  # Region of interests
    index = None  # index of neurons
    weights = None  # reuse spatial weights by
    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = tuple(
        np.asarray(np.round(np.asarray(gsig_filt_micron) / float(pixel_size)),
                   int))  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = tuple(
        np.asarray(np.round(np.asarray(max_shifts_micron) / float(pixel_size)),
                   int))
    strides = tuple(
        np.asarray(np.round(np.asarray(strides_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = tuple(
        np.asarray(np.round(np.asarray(overlaps_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = int(
        round(max_deviation_rigid_micron / pixel_size)
    )  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }
    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing

    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)

    # % MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mcrig = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    #%
    mcrig.motion_correct(save_movie=True)
    dview.terminate()

    # % MOTION CORRECTION2
    opts.change_params({'pw_rigid': True})
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)
    # Create a motion correction object with the specified parameters
    mc = MotionCorrect(mcrig.mmap_file,
                       dview=dview,
                       **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    mc.motion_correct(save_movie=True)
    dview.terminate()

    # %% motion correction compared with original movie
    display_images = False
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mcrig.mmap_file)
        m_pwrig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_rig.resize(1, 1, ds_ratio),
            m_pwrig.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
        # % movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        m_pwrig2 = (m_pwrig - np.mean(m_pwrig, axis=0))
        moviehandle1 = cm.concatenate([
            m_orig2.resize(1, 1, ds_ratio),
            m_rig2.resize(1, 1, ds_ratio),
            m_pwrig2.resize(1, 1, ds_ratio)
        ],
                                      axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2)

    # %% Memory Mapping
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview,
                                    n_chunks=10)
    dview.terminate()

    # %% change fnames to the new motion corrected one
    opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION

    roidir = savedir[:savedir.find('VolPy')] + 'Spikepursuit' + savedir[
        savedir.find('VolPy') + len('Volpy'):]
    try:
        files = os.listdir(roidir)
    except:
        files = []
    if usematlabroi and 'ROIs.mat' in files:
        ROIs = loadmat(os.path.join(roidir, 'ROIs.mat'))['ROIs']
        if len(np.shape(ROIs)) == 3:
            ROIs = np.moveaxis(np.asarray(ROIs, bool), 2, 0)
        else:
            ROIs = np.asarray([ROIs])
        all_rois = ROIs
        opts.change_params(
            params_dict={
                'ROIs': ROIs,
                'index': list(range(ROIs.shape[0])),
                'method': 'SpikePursuit'
            })

    else:
        #%
        print('WTF')
        # Create mean and correlation image
        use_maskrcnn = True  # set to True to predict the ROIs using the mask R-CNN
        if not use_maskrcnn:  # use manual annotations
            with h5py.File(path_ROIs, 'r') as fl:
                ROIs = fl['mov'][()]  # load ROIs
            opts.change_params(
                params_dict={
                    'ROIs': ROIs,
                    'index': list(range(ROIs.shape[0])),
                    'method': 'SpikePursuit'
                })
        else:
            try:
                m = cm.load(mc.mmap_file[0], subindices=slice(0, 20000))
            except:
                m = cm.load(
                    '/home/rozmar/Data/Voltage_imaging/Voltage_rig_1P/rozsam/20200120/40x_1xtube_10A_7_000_rig__d1_128_d2_512_d3_1_order_F_frames_2273_._els__d1_128_d2_512_d3_1_order_F_frames_2273_.mmap',
                    subindices=slice(0, 20000))
            m.fr = fr
            img = m.mean(axis=0)
            img = (img - np.mean(img)) / np.std(img)
            m1 = m.computeDFF(secsWindow=1, in_place=True)[0]
            m = m - m1
            Cn = m.local_correlations(swap_dim=False, eight_neighbours=True)
            img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
            summary_image = np.stack([img, img, img_corr],
                                     axis=2).astype(np.float32)
            del m
            del m1

            # %
            # Mask R-CNN
            config = neurons.NeuronsConfig()

            class InferenceConfig(config.__class__):
                # Run detection on one image at a time
                GPU_COUNT = 1
                IMAGES_PER_GPU = 1
                DETECTION_MIN_CONFIDENCE = 0.7
                IMAGE_RESIZE_MODE = "pad64"
                IMAGE_MAX_DIM = 512
                RPN_NMS_THRESHOLD = 0.7
                POST_NMS_ROIS_INFERENCE = 1000

            config = InferenceConfig()
            config.display()
            model_dir = os.path.join(caiman_datadir(), 'model')
            DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
            with tf.device(DEVICE):
                model = modellib.MaskRCNN(mode="inference",
                                          model_dir=model_dir,
                                          config=config)
            weights_path = download_model('mask_rcnn')
            model.load_weights(weights_path, by_name=True)
            results = model.detect([summary_image], verbose=1)
            r = results[0]
            ROIs_mrcnn = r['masks'].transpose([2, 0, 1])

            # %% visualize the result
            display_result = False
            if display_result:
                _, ax = plt.subplots(1, 1, figsize=(16, 16))
                visualize.display_instances(summary_image,
                                            r['rois'],
                                            r['masks'],
                                            r['class_ids'], ['BG', 'neurons'],
                                            r['scores'],
                                            ax=ax,
                                            title="Predictions")
        # %% set rois
            opts.change_params(
                params_dict={
                    'ROIs': ROIs_mrcnn,
                    'index': list(range(ROIs_mrcnn.shape[0])),
                    'method': 'SpikePursuit'
                })
            #all_rois = ROIs_mrcnn

    # %% Trace Denoising and Spike Extraction

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local',
        n_processes=cpu_num_spikepursuit,
        single_thread=False,
        maxtasksperchild=1)
    #dview=None
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%%
    print('saving parameters')
    parameters = dict()
    parameters['motion'] = opts.motion
    parameters['data'] = opts.data
    parameters['volspike'] = opts.volspike
    with open(os.path.join(savedir, 'parameters.pickle'), 'wb') as outfile:
        pickle.dump(parameters, outfile)
    #%%
    volspikedata = dict()
    volspikedata['estimates'] = vpy.estimates
    volspikedata['params'] = vpy.params.data
    with open(os.path.join(savedir, 'spikepursuit.pickle'), 'wb') as outfile:
        pickle.dump(volspikedata, outfile)
    #%%

    for mcidx, mc_now in enumerate([mcrig, mc]):
        motioncorr = dict()
        motioncorr['fname'] = mc_now.fname
        motioncorr['fname_tot_rig'] = mc_now.fname_tot_rig
        motioncorr['mmap_file'] = mc_now.mmap_file
        motioncorr['min_mov'] = mc_now.min_mov
        motioncorr['shifts_rig'] = mc_now.shifts_rig
        motioncorr['shifts_opencv'] = mc_now.shifts_opencv
        motioncorr['niter_rig'] = mc_now.niter_rig
        motioncorr['min_mov'] = mc_now.min_mov
        motioncorr['templates_rig'] = mc_now.templates_rig
        motioncorr['total_template_rig'] = mc_now.total_template_rig
        try:
            motioncorr['x_shifts_els'] = mc_now.x_shifts_els
            motioncorr['y_shifts_els'] = mc_now.y_shifts_els
        except:
            pass
        with open(
                os.path.join(savedir, 'motion_corr_' + str(mcidx) + '.pickle'),
                'wb') as outfile:
            pickle.dump(motioncorr, outfile)
    #%% saving stuff
    print('moving files')
    for mmap_file in mcrig.mmap_file:
        fname = pathlib.Path(mmap_file).name
        os.remove(mmap_file)
        #shutil.move(mmap_file, os.path.join(savedir,fname))
    for mmap_file in mc.mmap_file:
        fname = pathlib.Path(mmap_file).name
        os.remove(mmap_file)
        #shutil.move(mmap_file, os.path.join(savedir,fname))

    fname = pathlib.Path(fname_new).name
    shutil.move(fname_new, os.path.join(savedir, fname))
    #print('waiting')
    #time.sleep(1000)
    # %% some visualization
    plotstuff = False
    if plotstuff:
        print(np.where(vpy.estimates['passedLocalityTest'])
              [0])  # neurons that pass locality test
        n = 0

        # Processed signal and spikes of neurons
        plt.figure()
        plt.plot(vpy.estimates['trace'][n])
        plt.plot(vpy.estimates['spikeTimes'][n],
                 np.max(vpy.estimates['trace'][n]) *
                 np.ones(vpy.estimates['spikeTimes'][n].shape),
                 color='g',
                 marker='o',
                 fillstyle='none',
                 linestyle='none')
        plt.title('signal and spike times')
        plt.show()
        # Location of neurons by Mask R-CNN or manual annotation
        plt.figure()
        if use_maskrcnn:
            plt.imshow(ROIs_mrcnn[n])
        else:
            plt.imshow(ROIs[n])
        mv = cm.load(fname_new)
        plt.imshow(mv.mean(axis=0), alpha=0.5)

        # Spatial filter created by algorithm
        plt.figure()
        plt.imshow(vpy.estimates['spatialFilter'][n])
        plt.colorbar()
        plt.title('spatial filter')
        plt.show()

    # %% STOP CLUSTER and clean up log files

    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%%
    """
    General parameters
    """
    play_movie = 1
    plot_extras = 1
    plot_extras_cell = 1
    compute_mc_metrics = 1

    #%% Select file(s) to be processed (download if not present)
    """
    Load file
    """

    #fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    #if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
    #    fnames = [download_demo(fnames[0])]

    #fnames = ['/home/yuriy/Desktop/Data/rest1_5_9_19_cut.tif']

    #f_dir = 'C:\\Users\\rylab_dataPC\\Desktop\\Yuriy\\caiman_data\\short\\'
    f_dir = 'G:\\analysis\\190828-calcium_voltage\\soma_dendrites\\pCAG_jREGECO1a_ASAP3_anesth_001\\'
    f_name = 'Ch1'
    f_ext = 'tif'
    fnames = [f_dir + f_name + '.' + f_ext]

    #fnames = ['C:/Users/rylab_dataPC/Desktop/Yuriy/caiman_data/rest1_5_9_19_2_cut_ca.hdf5']

    #%% First setup some parameters for data and motion correction
    """
    Parameters
    """

    # dataset dependent parameters
    fr = 30  # imaging rate in frames per second
    decay_time = 1
    #0.4    # length of a typical transient in seconds
    dxy = (2., 2.)  # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)  # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True  # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    #max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    max_shifts = [6, 6]
    # start a new patch for pw-rigid motion correction every x pixels
    #strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    strides = [48, 48]
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q

    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # type "mc."and press TAB to see all interesting associated variables and self. outputs
    # interesting outputs
    # saved file is mc.fname_tot_els / mc.fname_tot_rig
    # mc.x_shifts_els / mc.y_shifts_els: shifts in x/y per frame per patch
    # mc.coord_shifts_els: coordinates associated to patches with shifts
    # mc.total_template_els: updated template for pw
    # mc.total_template_rig: updated template for rigid
    # mc.templates_rig: templates for each iteration in rig

    #%% # compute metrics for the results (TAKES TIME!!)
    if compute_mc_metrics:
        # not finished
        bord_px_els = np.ceil(
            np.maximum(np.max(np.abs(mc.x_shifts_els)),
                       np.max(np.abs(mc.y_shifts_els)))).astype(np.int)

        final_size = np.subtract(
            mc.total_template_els.shape,
            2 * bord_px_els)  # remove pixels in the boundaries
        winsize = 100
        swap_dim = False
        resize_fact_flow = .2  # downsample for computing ROF

        tmpl_rig, correlations_orig, flows_orig, norms_orig, crispness_orig = cm.motion_correction.compute_metrics_motion_correction(
            fnames[0],
            final_size[0],
            final_size[1],
            swap_dim,
            winsize=winsize,
            play_flow=False,
            resize_fact_flow=resize_fact_flow)

        plt.figure()
        plt.plot(correlations_orig)

    # %% compare with original movie
    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
        del m_orig
        del m_els

    if plot_extras:
        # plot total template
        plt.figure()
        plt.imshow(mc.total_template_els)
        plt.title('Template after iteration')
        # plot x and y corrections
        plt.figure()
        plt.plot(mc.shifts_rig)
        plt.title('Rigid motion correction xy movement')
        plt.legend(['x shift', 'y shift'])
        plt.xlabel('frames')

    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%  parameters for source extraction and deconvolution

    p = 2  # order of the autoregressive system
    gnb = 2  # number of global background components
    merge_thr = 0.85  # merging threshold, max correlation allowed
    rf = 15  # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6  # amount of overlap between the patches in pixels
    K = 2  # number of components per patch
    gSig = [15, 15]  # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 1  # spatial subsampling during initialization
    tsub = 1  # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'nb': gnb,
        'rf': rf,
        'K': K,
        'gSig': gSig,
        'stride': stride_cnmf,
        'method_init': method_init,
        'rolling_sum': True,
        'merge_thr': merge_thr,
        'n_processes': n_processes,
        'only_init': True,
        'ssub': ssub,
        'tsub': tsub
    }

    opts.change_params(params_dict=opts_dict)
    # %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)

    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

    if plot_extras_cell:
        num_cell_plot = 51
        plt.figure()
        plt.plot(cnm.estimates.C[num_cell_plot, :])
        plt.title('Temporal component')
        plt.legend(['Cell ' + str(num_cell_plot)])
        # plot component sptial profile A
        # first convert back to dense components
        plot_spat_A = cnm.estimates.A[:, num_cell_plot].toarray().reshape(
            list(dims))
        plt.figure()
        plt.imshow(plot_spat_A)
        plt.title('Spatial component cell ' + str(num_cell_plot))

    # %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

    # %% plot contours of found components
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')

    if plot_extras:
        plt.figure()
        plt.imshow(Cn)
        plt.title('Local correlations')

    # %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.90  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set(
        'quality', {
            'decay_time': decay_time,
            'min_SNR': min_SNR,
            'rval_thr': rval_thr,
            'use_cnn': True,
            'min_cnn_thr': cnn_thr,
            'cnn_lowest': cnn_lowest
        })
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)
    plt.suptitle('Component selection: min_SNR=' + str(min_SNR) +
                 '; rval_thr=' + str(rval_thr) + '; cnn prob range=[' +
                 str(cnn_lowest) + ' ' + str(cnn_thr) + ']')

    # %% VIEW TRACES (accepted and rejected)

    if plot_extras:
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components)
        plt.suptitle('Accepted')
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components_bad)
        plt.suptitle('Rejected')

    #plt.figure();
    #plt.plot(cnm2.estimates.YrA[0,:]+cnm2.estimates.C[0,:])
    #
    #
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.R[0,:]-cnm2.estimates.YrA[0,:]);
    #plt.plot();
    #plt.show();
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.detrend_df_f[1,:])

    # these store the good and bad components, and next step sorts them
    # cnm2.estimates.idx_components
    # cnm2.estimates.idx_components_bad

    #%% update object with selected components
    #cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces

    cnm2.estimates.view_components(img=Cn)
    plt.suptitle("Final results")

    #%% Save the mc data as in cmn struct as well

    ##
    #mc_out = dict(
    #            pw_rigid            = mc.pw_rigid,
    #            fname               = mc.fname,
    #            mmap_file           = mc.mmap_file,
    #            total_template_els  = mc.total_template_els,
    #            total_template_rig  = mc.total_template_rig,
    #            border_nan          = mc.border_nan,
    #            border_to_0         = mc.border_to_0,
    #            x_shifts_els        = mc.x_shifts_els,
    #            y_shifts_els        = mc.y_shifts_els,
    #            Cn                  = Cn
    #            )
    #
    #
    #deepdish.io.save(fnames[0] + '_mc_data.hdf5', mc_out)

    #%% reconstruct denoised movie (press q to exit)
    if play_movie:
        cnm2.estimates.play_movie(images,
                                  q_max=99.9,
                                  gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    save_results = True
    if save_results:
        cnm2.save(fnames[0][:-4] + '_results.hdf5')
예제 #34
0
    total_template_rig, 5), vmax=np.percentile(total_template_rig, 95))
#%%
pl.close()
pl.plot(shifts_rig)
#%%
m_rig = cm.load(fname_tot_rig)
#%%
add_to_movie = - np.min(total_template_rig) + 1
print(add_to_movie)
#%% visualize movies

m_rig.resize(1, 1, .2).play(
    fr=20, gain=5, magnification=1, offset=add_to_movie)
#%%
downs = .2
cm.concatenate([m_rig.resize(1, 1, downs), m_orig.resize(1, 1, downs)], axis=1).play(
    fr=30, gain=2, magnification=1, offset=add_to_movie)

#%% visualize templates
cm.movie(np.array(templates_rig)).play(
    fr=10, gain=2, magnification=1, offset=add_to_movie)
#%% PIECEWISE RIGID MOTION CORRECTION
t1 = time.time()
new_templ = total_template_rig.copy()
strides = params_movie['strides']
overlaps = params_movie['overlaps']
shifts_opencv = False
save_movie = True
splits = params_movie['splits_els']
num_splits_to_process_list = params_movie['num_splits_to_process_els']
upsample_factor_grid = params_movie['upsample_factor_grid']
max_deviation_rigid = params_movie['max_deviation_rigid']
예제 #35
0
#                newstrides = newstrides, upsample_factor_grid=upsample_factor_grid,\
#                upsample_factor_fft=10,show_movie=False,max_deviation_rigid=2,add_to_movie=add_to_movie)
#
#    total_shifts.append(total_shift)
#    start_steps.append(start_step)
#    xy_grids.append(xy_grid)

#mc = cm.load('M_FLUO_4_d1_64_d2_128_d3_1_order_F_frames_4620_.mmap')
#mc = cm.load('M_FLUO_t_d1_64_d2_128_d3_1_order_F_frames_6764_.mmap')

#%%
mc.resize(1, 1, .1).play(gain=10., fr=30, offset=100, magnification=1.)
#%%
m.resize(1, 1, .2).play(gain=10, fr=30, offset=0, magnification=1.)
#%%
cm.concatenate([mr.resize(1, 1, .5), mc.resize(1, 1, .5)],
               axis=1).play(gain=10, fr=100, offset=300, magnification=1.)

#%%
import h5py
with h5py.File('sueann_pw_rigid_movie.mat') as f:
    mef = np.array(f['M2'])

mef = cm.movie(mef.transpose([0, 2, 1]))

#%%
cm.concatenate(
    [mef.resize(1, 1, .15), mc.resize(1, 1, .15)],
    axis=1).play(gain=30, fr=40, offset=300, magnification=1.)
#%%
(mef - mc).resize(1, 1, .1).play(gain=50, fr=20, offset=0, magnification=1.)
#%%
예제 #36
0
        plt.subplot(len(fls), 3, 1 + 3 * cnt)
        plt.ylabel(metr)
        try:
            mean_img = np.mean(movie, 0)[12:-12, 12:-12]
        except:
            try:
                mean_img = np.mean(movie, 0)[12:-12, 12:-12]
            except:
                mean_img = np.mean(cm.load(fl[:-12] + 'hdf5'), 0)[12:-12,
                                                                  12:-12]

        lq, hq = np.nanpercentile(mean_img, [.5, 99.5])
        plt.imshow(mean_img, vmin=lq, vmax=hq)
        plt.title('Mean')
        plt.subplot(len(fls), 3, 3 * cnt + 2)
        plt.imshow(ld['img_corr'], vmin=0, vmax=.35)
        plt.title('Corr image')
        plt.subplot(len(fls), 3, 3 * cnt + 3)
        # plt.plot(ld['norms'])
        # plt.xlabel('frame')
        # plt.ylabel('norm opt flow')
        # plt.subplot(len(fls), 3, 3 * cnt + 3)
        flows = ld['flows']
        mean_flow_img = np.mean(
            np.sqrt(flows[:, :, :, 0]**2 + flows[:, :, :, 1]**2), 0)
        plt.imshow(mean_flow_img, vmin=0, vmax=0.1)
        plt.colorbar()
        plt.title('Mean optical flow')

C = cm.concatenate([m_orig, m_rig, m_els], axis=2)
#C.play(fr=60)
예제 #37
0
pl.ylabel('y_shifts (pixels)')
pl.xlabel('frames')
# TODO: show screenshot 6
# %% play corrected and downsampled movie
downsample_ratio = 0.2
m_els.resize(1, 1, downsample_ratio).play(
    gain=3, offset=0, fr=100, magnification=1, bord_px=bord_px_els)
# %% local correlation
_Cn = m_els.local_correlations(eight_neighbours=True, swap_dim=False)
pl.imshow(_Cn)
# TODO: show screenshot 7
# %% visualize raw, rigid and pw-rigid motion correted moviews
downsample_factor = params_display['downsample_ratio']
# TODO : todocument
cm.concatenate(
    [m_orig.resize(1, 1, downsample_factor) + offset_mov, m_rig.resize(1, 1, downsample_factor), m_els.resize(
        1, 1, downsample_factor)], axis=2)[700:1000].play(fr=60, gain=3, magnification=1, offset=0)
# TODO: show screenshot 8
# %% compute metrics for the results, just to check that motion correction worked properly
final_size = np.subtract(mc.total_template_els.shape, 2 * bord_px_els)
winsize = 100
swap_dim = False
resize_fact_flow = params_display['downsample_ratio']
# computationnaly intensive
# TODO: todocument
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    mc.fname_tot_els, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False,
    resize_fact_flow=resize_fact_flow)
tmpl, correlations, flows_orig, norms, smoothness = cm.motion_correction.compute_metrics_motion_correction(
    mc.fname_tot_rig, final_size[0], final_size[1], swap_dim, winsize=winsize, play_flow=False,
    resize_fact_flow=resize_fact_flow)
예제 #38
0
import psutil
import sys
from ipyparallel import Client
from skimage.external.tifffile import TiffFile
import scipy
#%%
from caiman.motion_correction import tile_and_correct, motion_correction_piecewise
from caiman.source_extraction.cnmf import cnmf as cnmf
from caiman.components_evaluation import evaluate_components
from caiman.utils.visualization import plot_contours, view_patches_bar
from caiman.base.rois import extract_binary_masks_blob

#%%
m = cm.load('example_movies/demoMovie.tif')

cm.concatenate([m.resize(1, 1, .2), m.resize(1, 1, .2)],
               axis=1).play(fr=20, gain=3., magnification=3)
#%% set parameters and create template by RIGID MOTION CORRECTION
# params_movie = {'fname':'example_movies/Sue_2x_3000_40_-46.tif',
#                'max_shifts':(6,6), # maximum allow rigid shift
#                'splits_rig':56, # for parallelization split the movies in  num_splits chuncks across time
#                'num_splits_to_process_rig':None, # if none all the splits are processed and the movie is saved
#                'strides': (48,48), # intervals at which patches are laid out for motion correction
#                'overlaps': (24,24), # overlap between pathes (size of patch strides+overlaps)
#                'splits_els':56, # for parallelization split the movies in  num_splits chuncks across time
#                'num_splits_to_process_els':[28,None], # if none all the splits are processed and the movie is saved
#                'upsample_factor_grid':4, # upsample factor to avoid smearing when merging patches
#                'max_deviation_rigid':3, #maximum deviation allowed for patch with respect to rigid shift
#                'p': 1, # order of the autoregressive system
#                'merge_thresh' : 0.8,  # merging threshold, max correlation allowed
#                'rf' : 15,  # half-size of the patches in pixels. rf=25, patches are 50x50
#                'stride_cnmf' : 6,  # amounpl.it of overlap between the patches in pixels