def centroid(signal, x, height): """Find peak centroid for searched x-value measured at y-value. signal (numpy array) - signal data points x (float) - x-value height (float) - y-value for width determination """ # check signal type if not isinstance(signal, numpy.ndarray): raise TypeError("Signal must be NumPy array!") if signal.dtype.name != 'float64': raise TypeError("Signal data must be float64!") # check signal data if len(signal) == 0: raise ValueError("Signal contains no data!") # determine centroid return calculations.signal_centroid(signal, float(x), float(height))
def centroid(signal, x, height): """Find peak centroid for searched x-value measured at y-value. signal (numpy array) - signal data points x (float) - x-value height (float) - y-value for width determination """ # check signal type if not isinstance(signal, numpy.ndarray): raise TypeError, "Signal must be NumPy array!" if signal.dtype.name != 'float64': raise TypeError, "Signal data must be float64!" # check signal data if len(signal) == 0: raise ValueError, "Signal contains no data!" # determine centroid return calculations.signal_centroid(signal, float(x), float(height))
def checkpattern_fast(signal, pattern, pickingHeight=0.75): """Compare signal with given isotopic pattern. Return rms, basepeak intensity signal (numpy array) - signal data points pattern (list of [mz,intens]) - theoretical pattern to compare pickingHeight (float) - centroiding height """ peaklist = [] num_theo = 0 num_found = 0 for isotope in pattern: num_theo += 1 signal_intensity = calculations.signal_intensity(signal, isotope[0]) if signal_intensity == 0: peaklist.append(0.0) continue centroid = calculations.signal_centroid(signal, isotope[0], signal_intensity * pickingHeight) peaklist.append(calculations.signal_intensity(signal, centroid)) num_found += 1 basepeak = max(peaklist) if basepeak: peaklist = [p/basepeak for p in peaklist] else: return None # get rms rms = 0 for x, isotope in enumerate(pattern): rms += (isotope[1] - peaklist[x])**2 if len(pattern) > 1: rms = math.sqrt(rms / (len(pattern)-1)) return (CheckPatternResult(rms, basepeak, (num_found, num_theo)))