def test_sdf_generation03(self): depth_image = np.zeros((3, 3)) image_pixel_row = 1 offset = np.array([-1, -1, -1]) field_size = 3 narrow_band_width_voxels = 1 intrinsic_matrix = np.array( [ [1, 0, 1], # FX = 1 CX = 1 [0, 1, 1], # FY = 1 CY = 1 [0, 0, 1] ], dtype=np.float32) depth_camera = DepthCamera(intrinsics=DepthCamera.Intrinsics( resolution=(3, 3), intrinsic_matrix=intrinsic_matrix), depth_unit_ratio=1) expected_field = np.full((3, 3), -999) field = tsdf_gen.generate_2d_tsdf_field_from_depth_image( depth_image, depth_camera, image_pixel_row, field_size=field_size, default_value=-999, voxel_size=1, array_offset=offset, narrow_band_width_voxels=narrow_band_width_voxels, ) self.assertTrue(np.allclose(expected_field, field))
def test_sdf_generation10(self): depth_image = np.ones((3, 3)) image_pixel_row = 1 offset = np.array([-1, -1, 1]) field_size = 3 narrow_band_width_voxels = 1 twist3d = np.zeros((6, 1)) twist3d[2] = -1 twist_matrix3d = twist_vector_to_matrix3d(twist3d) intrinsic_matrix = np.array( [ [1, 0, 1], # FX = 1 CX = 1 [0, 1, 1], # FY = 1 CY = 1 [0, 0, 1] ], dtype=np.float32) depth_camera = DepthCamera(intrinsics=DepthCamera.Intrinsics( resolution=(3, 3), intrinsic_matrix=intrinsic_matrix), depth_unit_ratio=1) expected_field = np.array([[-999, -999, -999], [0, 0, 0], [-1, -1, -1]]) field = tsdf_gen.generate_2d_tsdf_field_from_depth_image( depth_image, depth_camera, image_pixel_row, camera_extrinsic_matrix=twist_matrix3d, field_size=field_size, default_value=-999, voxel_size=1, array_offset=offset, narrow_band_width_voxels=narrow_band_width_voxels) self.assertTrue(np.allclose(expected_field, field))
def test_sdf_2_sdf_optimizer01(self): canonical_frame_path = "tests/testdata/depth_000000.exr" live_frame_path = "tests/testdata/depth_000003.exr" if not os.path.exists(canonical_frame_path) or not os.path.exists( live_frame_path): canonical_frame_path = "testdata/depth_000000.exr" live_frame_path = "testdata/depth_000003.exr" image_pixel_row = 240 intrinsic_matrix = np.array( [ [570.3999633789062, 0, 320 ], # FX = 570.3999633789062 CX = 320.0 [0, 570.3999633789062, 240 ], # FY = 570.3999633789062 CY = 240.0 [0, 0, 1] ], dtype=np.float32) camera = DepthCamera(intrinsics=DepthCamera.Intrinsics( resolution=(480, 640), intrinsic_matrix=intrinsic_matrix)) field_size = 32 offset = np.array([-16, -16, 93.4375]) data_to_use = ImageBasedSingleFrameDataset( canonical_frame_path, # dataset from original sdf2sdf paper, reference frame live_frame_path, # dataset from original sdf2sdf paper, current frame image_pixel_row, field_size, offset, camera) # depth_interpolation_method = tsdf.DepthInterpolationMethod.NONE out_path = "output/test_rigid_out" sampling.set_focus_coordinates(0, 0) narrow_band_width_voxels = 2. iteration = 40 optimizer = sdf2sdfo.Sdf2SdfOptimizer2d( verbosity_parameters=sdf2sdfo.Sdf2SdfOptimizer2d. VerbosityParameters(print_max_warp_update=False, print_iteration_energy=False), visualization_parameters=sdf2sdfv.Sdf2SdfVisualizer.Parameters( out_path=out_path, save_initial_fields=False, save_final_fields=False, save_live_progression=True)) optimizer.optimize(data_to_use, narrow_band_width_voxels=narrow_band_width_voxels, iteration=iteration) expected_twist = np.array([[-0.079572], [0.006052], [0.159114]]) twist = optimizer.optimize( data_to_use, narrow_band_width_voxels=narrow_band_width_voxels, iteration=iteration) self.assertTrue(np.allclose(expected_twist, twist, atol=10e-6))
def main(): canonical_frame_path = "../Data/Synthetic_Kenny_Circle/depth_000000.exr" live_frame_path = "../Data/Synthetic_Kenny_Circle/depth_000003.exr" image_pixel_row = 240 intrinsic_matrix = np.array( [ [570.3999633789062, 0, 320], # FX = 570.3999633789062 CX = 320.0 [0, 570.3999633789062, 240], # FY = 570.3999633789062 CY = 240.0 [0, 0, 1] ], dtype=np.float32) camera = DepthCamera(intrinsics=DepthCamera.Intrinsics( resolution=(480, 640), intrinsic_matrix=intrinsic_matrix)) field_size = 32 # offset = np.array([-16, -16, 102.875]) offset = np.array([-16, -16, 93.4375]) data_to_use = ImageBasedSingleFrameDataset( canonical_frame_path, # dataset from original sdf2sdf paper, reference frame live_frame_path, # dataset from original sdf2sdf paper, current frame image_pixel_row, field_size, offset, camera) # depth_interpolation_method = tsdf.DepthInterpolationMethod.NONE out_path = "output/sdf_2_sdf" sampling.set_focus_coordinates(0, 0) narrow_band_width_voxels = 2. iteration = 40 optimizer = sdf2sdfo.Sdf2SdfOptimizer2d( verbosity_parameters=sdf2sdfo.Sdf2SdfOptimizer2d.VerbosityParameters( print_max_warp_update=True, print_iteration_energy=True), visualization_parameters=sdf2sdfv.Sdf2SdfVisualizer.Parameters( out_path=out_path, save_initial_fields=True, save_final_fields=True, save_live_progression=True)) optimizer.optimize(data_to_use, narrow_band_width_voxels=narrow_band_width_voxels, iteration=iteration) return EXIT_CODE_SUCCESS
def test_sdf_generation11(self): filename = "zigzag2_depth_00108.png" depth_image = self.image_load_helper(filename) image_pixel_row = 200 offset = np.array([-8, -8, 144], dtype=np.int32) field_size = 16 narrow_band_width_voxels = 20 camera_intrinsic_matrix = np.array( [[700., 0., 320.], [0., 700., 240.], [0., 0., 1.]], dtype=np.float32) camera_extrinsic_matrix = np.eye(4, dtype=np.float32) depth_camera = DepthCamera(intrinsics=DepthCamera.Intrinsics( (640, 480), intrinsic_matrix=camera_intrinsic_matrix), depth_unit_ratio=0.001) field = tsdf_gen.generate_2d_tsdf_field_from_depth_image( depth_image, depth_camera, image_pixel_row, camera_extrinsic_matrix=camera_extrinsic_matrix, field_size=field_size, default_value=-999, voxel_size=0.004, array_offset=offset, narrow_band_width_voxels=narrow_band_width_voxels) self.assertTrue(np.allclose(field, data.out_sdf_field01)) parameters = cpp_module.tsdf.Parameters2d() parameters.interpolation_method = cpp_module.tsdf.FilteringMethod.NONE parameters.projection_matrix = camera_intrinsic_matrix parameters.array_offset = cpp_module.Vector2i(int(offset[0]), int(offset[2])) parameters.field_shape = cpp_module.Vector2i(field_size, field_size) generator = cpp_module.tsdf.Generator2d(parameters) field2 = generator.generate(depth_image, np.identity(4, dtype=np.float32), 1) self.assertTrue(np.allclose(field, field2, atol=1e-6))
def test_operation_same_cpp_to_py(self): canonical_frame_path = "tests/test_data/depth_000000.exr" live_frame_path = "tests/test_data/depth_000003.exr" if not os.path.exists(canonical_frame_path) or not os.path.exists(live_frame_path): canonical_frame_path = "test_data/depth_000000.exr" live_frame_path = "test_data/depth_000003.exr" image_pixel_row = 240 intrinsic_matrix = np.array([[570.3999633789062, 0, 320], # FX = 570.3999633789062 CX = 320.0 [0, 570.3999633789062, 240], # FY = 570.3999633789062 CY = 240.0 [0, 0, 1]], dtype=np.float32) camera = DepthCamera(intrinsics=DepthCamera.Intrinsics(resolution=(480, 640), intrinsic_matrix=intrinsic_matrix)) voxel_size = 0.004 narrow_band_width_voxels = 2 field_size = 32 offset = np.array([[-16], [-16], [93]], dtype=np.int32) eta = 0.01 # thickness, used to calculate sdf weight. camera_pose = np.eye(4, dtype=np.float32) shared_parameters = build_opt.Sdf2SdfOptimizer2dSharedParameters() shared_parameters.rate = 0.5 shared_parameters.maximum_iteration_count = 8 # For verbose output from py version: verbosity_parameters_py = sdf2sdfo_py.Sdf2SdfOptimizer2d.VerbosityParameters(True, True) verbosity_parameters_cpp = sdf2sdfo_cpp.Sdf2SdfOptimizer2d.VerbosityParameters(True, True) visualization_parameters_py = sdf2sdfv.Sdf2SdfVisualizer.Parameters() visualization_parameters_py.out_path = "out" # For C++ TSDF generator tsdf_generation_parameters = sdf2sdfo_cpp.tsdf.Parameters2d( depth_unit_ratio=0.001, # mm to meter projection_matrix=intrinsic_matrix, near_clipping_distance=0.05, array_offset=sdf2sdfo_cpp.Vector2i(int(offset[0, 0]), int(offset[2, 0])), field_shape=sdf2sdfo_cpp.Vector2i(field_size, field_size), voxel_size=voxel_size, narrow_band_width_voxels=narrow_band_width_voxels, interpolation_method=sdf2sdfo_cpp.tsdf.FilteringMethod.NONE ) # Read image for c++ optimizer, identical to python, which is done inside ImageBasedSingleFrameDataset class. canonical_depth_image = cv2.imread(canonical_frame_path, cv2.IMREAD_UNCHANGED) canonical_depth_image = canonical_depth_image.astype(np.uint16) # mm canonical_depth_image = cv2.cvtColor(canonical_depth_image, cv2.COLOR_BGR2GRAY) canonical_depth_image[canonical_depth_image == 0] = np.iinfo(np.uint16).max live_depth_image = cv2.imread(live_frame_path, cv2.IMREAD_UNCHANGED) live_depth_image = live_depth_image.astype(np.uint16) # mm live_depth_image = cv2.cvtColor(live_depth_image, cv2.COLOR_BGR2GRAY) live_depth_image[live_depth_image == 0] = np.iinfo(np.uint16).max canonical_field = \ tsdf_gen.generate_2d_tsdf_field_from_depth_image(canonical_depth_image, camera, image_pixel_row, field_size=field_size, array_offset=offset, narrow_band_width_voxels=narrow_band_width_voxels, interpolation_method=sdf2sdfo_cpp.tsdf.FilteringMethod.NONE) optimizer_cpp = build_opt.make_sdf_2_sdf_optimizer2d( implementation_language=build_opt.ImplementationLanguage.CPP, shared_parameters=shared_parameters, verbosity_parameters_cpp=verbosity_parameters_cpp, verbosity_parameters_py=verbosity_parameters_py, visualization_parameters_py=visualization_parameters_py, tsdf_generation_parameters_cpp=tsdf_generation_parameters) twist_cpp = optimizer_cpp.optimize(image_y_coordinate=image_pixel_row, canonical_field=canonical_field, live_depth_image=live_depth_image, eta=eta, initial_camera_pose=camera_pose) # For python optimizer data_to_use = ImageBasedSingleFrameDataset( # for python canonical_frame_path, # dataset from original sdf2sdf paper, reference frame live_frame_path, # dataset from original sdf2sdf paper, current frame image_pixel_row, field_size, offset, camera ) optimizer_py = build_opt.make_sdf_2_sdf_optimizer2d( implementation_language=build_opt.ImplementationLanguage.PYTHON, shared_parameters=shared_parameters, verbosity_parameters_cpp=verbosity_parameters_cpp, verbosity_parameters_py=verbosity_parameters_py, visualization_parameters_py=visualization_parameters_py, tsdf_generation_parameters_cpp=tsdf_generation_parameters) twist_py = optimizer_py.optimize(data_to_use, voxel_size=0.004, narrow_band_width_voxels=narrow_band_width_voxels, iteration=shared_parameters.maximum_iteration_count, eta=eta) self.assertTrue(np.allclose(twist_cpp, transformation.twist_vector_to_matrix2d(twist_py), atol=1e-4))