def _job_submit(args: dict, cluster: Cluster) -> None: """submits job(s) to cluster Args: args: argument dictionary cluster: cluster instance """ script_args = conf.extract_script_args(args) job_mode = cli.resolve_job_mode(args) docker_args = cli.generate_docker_args(job_mode, args) docker_run_args = args.get('docker_run_args', []) or [] dry_run = args['dry_run'] package = args['module'] job_name = _generate_job_name(args.get('name')) gpu_spec = args.get('gpu_spec') preemptible = not args['nonpreemptible'] min_cpu = args.get('min_cpu') min_mem = args.get('min_mem') experiment_config = args.get('experiment_config') or [{}] xgroup = args.get('xgroup') image_tag = args.get('image_tag') export = args.get('export', None) labels = args.get('label') if labels is not None: labels = dict(u.sanitize_labels(args.get('label'))) # Arguments to internally build the image required to submit to Cloud. docker_m = {'job_mode': job_mode, 'package': package, **docker_args} # -------------------------------------------------------------------------- # validatate gpu spec if job_mode == conf.JobMode.GPU and gpu_spec is None: gpu_spec = k.DEFAULT_GPU_SPEC if not cluster.validate_gpu_spec(gpu_spec): return # -------------------------------------------------------------------------- # validate tpu spec and driver tpu_spec = args.get('tpu_spec') preemptible_tpu = not args.get('nonpreemptible_tpu') tpu_driver = args.get('tpu_driver') if tpu_spec is not None: available_tpu = cluster.get_tpu_types() if available_tpu is None: logging.error('error getting valid tpu types for cluster') return if tpu_spec not in available_tpu: logging.error('invalid tpu spec, cluster supports:') for t in available_tpu: logging.info('{}x{}'.format(t.count, t.tpu.name)) return if not cluster.validate_tpu_driver(tpu_driver): logging.error( 'error: unsupported tpu driver {}'.format(tpu_driver)) logging.info('supported tpu drivers for this cluster:') for d in cluster.get_tpu_drivers(): logging.info(' {}'.format(d)) return if tpu_spec is None and gpu_spec is None: # cpu-only job min_cpu = min_cpu or k.DEFAULT_MIN_CPU_CPU min_mem = min_mem or k.DEFAULT_MIN_MEM_CPU else: # gpu/tpu-accelerated job min_cpu = min_cpu or k.DEFAULT_MIN_CPU_ACCEL min_mem = min_mem or k.DEFAULT_MIN_MEM_ACCEL # convert accelerator spec accel_spec = Cluster.convert_accel_spec(gpu_spec, tpu_spec) if accel_spec is None: return accel, accel_count = accel_spec # -------------------------------------------------------------------------- engine = get_mem_engine() if dry_run else get_sql_engine() with session_scope(engine) as session: container_spec = generate_container_spec(session, docker_m, image_tag) if image_tag is None: image_tag = generate_image_tag(cluster.project_id, docker_m, dry_run) experiments = create_experiments( session=session, container_spec=container_spec, script_args=script_args, experiment_config=experiment_config, xgroup=xgroup, ) specs = list( cluster.create_simple_experiment_job_specs( name=utils.sanitize_job_name(job_name), image=image_tag, min_cpu=min_cpu, min_mem=min_mem, experiments=experiments, args=script_args, accelerator=accel, accelerator_count=accel_count, preemptible=preemptible, preemptible_tpu=preemptible_tpu, tpu_driver=tpu_driver)) # just a dry run if dry_run: logging.info('jobs that would be submitted:') for s in specs: logging.info(f'\n{json.dumps(s.spec, indent=2)}') return # export jobs to file if export is not None: if not _export_jobs( export, cluster.create_v1jobs(specs, job_name, labels), ): print('error exporting jobs to {}'.format(export)) return for s in specs: try: cluster.submit_job(job_spec=s, name=job_name, labels=labels) except Exception as e: logging.error(f'exception: {e}') session.commit() # commit here, otherwise will be rolled back return # -------------------------------------------------------------------------- logging.info(f'jobs submitted, visit {cluster.dashboard_url()} to monitor') return
def submit_ml_job(job_mode: conf.JobMode, docker_args: Dict[str, Any], region: ct.Region, project_id: str, credentials_path: Optional[str] = None, dry_run: bool = False, job_name: Optional[str] = None, machine_type: Optional[ct.MachineType] = None, gpu_spec: Optional[ct.GPUSpec] = None, tpu_spec: Optional[ct.TPUSpec] = None, image_tag: Optional[str] = None, labels: Optional[Dict[str, str]] = None, experiment_config: Optional[conf.ExpConf] = None, script_args: Optional[List[str]] = None, request_retries: Optional[int] = None, xgroup: Optional[str] = None) -> None: """Top level function in the module. This function: - builds an image using the supplied docker_args, in either CPU or GPU mode - pushes that image to the Cloud Container Repository of the supplied project_id - generates a sequence of 'JobSpec' instances, one for every combination in the supplied experiment_config, and - batch-submits all jobs to AI Platform Keyword args: - job_mode: caliban.config.JobMode. - docker_args: these arguments are passed through to caliban.docker.build_image. - region: the region to use for AI Platform job submission. Different regions support different GPUs. - project_id: GCloud project ID for container storage and job submission. - credentials_path: explicit path to a service account JSON file, if it exists. - dry_run: if True, no actual jobs will be submitted and docker won't actually build; logging side effects will show the user what will happen without dry_run=True. - job_name: optional custom name. This is applied as a label to every job, and used as a prefix for all jobIds submitted to Cloud. - machine_type: the machine type to allocate for each job. Must be one supported by Cloud. - gpu_spec: if None and job_mode is GPU, defaults to a standard single GPU. Else, configures the count and type of GPUs to attach to the machine that runs each job. - tpu_spec: if None, defaults to no TPU attached. Else, configures the count and type of TPUs to attach to the machine that runs each job. - image_tag: optional explicit tag of a Container-Registry-available Docker container. If supplied, submit_ml_job will skip the docker build and push phases and use this image_tag directly. - labels: dictionary of KV pairs to apply to each job. User args will also be applied as labels, plus a few default labels supplied by Caliban. - experiment_config: dict of string to list, boolean, string or int. Any lists will trigger a cartesian product out with the rest of the config. A job will be submitted for every combination of parameters in the experiment config. - script_args: these are extra arguments that will be passed to every job executed, in addition to the arguments created by expanding out the experiment config. - request_retries: the number of times to retry each request if it fails for a timeout or a rate limiting request. - xgroup: experiment group for this submission, if None a new group will be created """ if script_args is None: script_args = [] if job_name is None: job_name = "caliban_{}".format(u.current_user()) if job_mode == conf.JobMode.GPU and gpu_spec is None: gpu_spec = ct.GPUSpec(ct.GPU.P100, 1) if machine_type is None: machine_type = conf.DEFAULT_MACHINE_TYPE[job_mode] if experiment_config is None: experiment_config = {} if labels is None: labels = {} if request_retries is None: request_retries = 10 engine = get_mem_engine() if dry_run else get_sql_engine() with session_scope(engine) as session: container_spec = generate_container_spec(session, docker_args, image_tag) if image_tag is None: image_tag = generate_image_tag(project_id, docker_args, dry_run=dry_run) experiments = create_experiments( session=session, container_spec=container_spec, script_args=script_args, experiment_config=experiment_config, xgroup=xgroup, ) specs = build_job_specs( job_name=job_name, image_tag=image_tag, region=region, machine_type=machine_type, experiments=experiments, user_labels=labels, gpu_spec=gpu_spec, tpu_spec=tpu_spec, ) if dry_run: return execute_dry_run(specs) try: submit_job_specs( specs=specs, project_id=project_id, credentials_path=credentials_path, num_specs=len(experiments), request_retries=request_retries, ) except Exception as e: logging.error(f'exception: {e}') session.commit() # commit here, otherwise will be rolled back logging.info("") logging.info( t.green("Visit {} to see the status of all jobs.".format( job_url(project_id, '')))) logging.info("")
def run_experiments(job_mode: c.JobMode, run_args: Optional[List[str]] = None, script_args: Optional[List[str]] = None, image_id: Optional[str] = None, dry_run: bool = False, experiment_config: Optional[c.ExpConf] = None, xgroup: Optional[str] = None, **build_image_kwargs) -> None: """Builds an image using the supplied **build_image_kwargs and calls `docker run` on the resulting image using sensible defaults. Keyword args: - job_mode: c.JobMode. - run_args: extra arguments to supply to `docker run` after our defaults. - script_args: extra arguments to supply to the entrypoint. (You can - override the default container entrypoint by supplying a new one inside run_args.) - image_id: ID of the image to run. Supplying this will skip an image build. - experiment_config: dict of string to list, boolean, string or int. Any lists will trigger a cartesian product out with the rest of the config. A job will be executed for every combination of parameters in the experiment config. - dry_run: if True, no actual jobs will be executed and docker won't actually build; logging side effects will show the user what will happen without dry_run=True. any extra kwargs supplied are passed through to build_image. """ if run_args is None: run_args = [] if script_args is None: script_args = [] if experiment_config is None: experiment_config = {} docker_args = {k: v for k, v in build_image_kwargs.items()} docker_args['job_mode'] = job_mode engine = get_mem_engine() if dry_run else get_sql_engine() with session_scope(engine) as session: container_spec = generate_container_spec(session, docker_args, image_id) if image_id is None: if dry_run: logging.info("Dry run - skipping actual 'docker build'.") image_id = 'dry_run_tag' else: image_id = build_image(**docker_args) experiments = create_experiments( session=session, container_spec=container_spec, script_args=script_args, experiment_config=experiment_config, xgroup=xgroup, ) job_specs = [ JobSpec.get_or_create( experiment=x, spec=_create_job_spec_dict( experiment=x, job_mode=job_mode, run_args=run_args, image_id=image_id, ), platform=Platform.LOCAL, ) for x in experiments ] try: execute_jobs(job_specs=job_specs, dry_run=dry_run) except Exception as e: logging.error(f'exception: {e}') session.commit() # commit here, otherwise will be rolled back