def stop(self): audio.say("Stopping Calibration") logger.info("Stopping Calibration") self.notify_all({'subject':'calibration.stopped'}) self.active = False if self.button: self.button.status_text = '' pupil_list = self.pupil_list ref_list = self.ref_list hmd_video_frame_size = self.hmd_video_frame_size g_pool = self.g_pool pupil0 = [p for p in pupil_list if p['id']==0] pupil1 = [p for p in pupil_list if p['id']==1] ref0 = [r for r in ref_list if r['id']==0] ref1 = [r for r in ref_list if r['id']==1] matched_pupil0_data = calibrate.closest_matches_monocular(ref0,pupil0) matched_pupil1_data = calibrate.closest_matches_monocular(ref1,pupil1) if matched_pupil0_data: cal_pt_cloud = calibrate.preprocess_2d_data_monocular(matched_pupil0_data) map_fn0,inliers0,params0 = calibrate.calibrate_2d_polynomial(cal_pt_cloud,hmd_video_frame_size,binocular=False) if not inliers0.any(): self.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg}) return else: logger.warning('No matched ref<->pupil data collected for id0') params0 = None if matched_pupil1_data: cal_pt_cloud = calibrate.preprocess_2d_data_monocular(matched_pupil1_data) map_fn1,inliers1,params1 = calibrate.calibrate_2d_polynomial(cal_pt_cloud,hmd_video_frame_size,binocular=False) if not inliers1.any(): self.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg}) return else: logger.warning('No matched ref<->pupil data collected for id1') params1 = None if params0 and params1: g_pool.plugins.add(Dual_Monocular_Gaze_Mapper,args={'params0':params0,'params1':params1}) method = 'dual monocular polynomial regression' elif params0: g_pool.plugins.add(Monocular_Gaze_Mapper,args={'params':params0}) method = 'monocular polynomial regression' elif params1: g_pool.plugins.add(Monocular_Gaze_Mapper,args={'params':params1}) method = 'monocular polynomial regression' else: logger.error('Calibration failed for both eyes. No data found') self.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg}) return self.notify_all({'subject':'calibration.successful','method':method})
def get_mappings(calib_sessions): all_mappings = [] for session in calib_sessions: eyes = get_matched_filtered(session) mappings = [] for eye in eyes: mapper, inliers, params = calibrate.calibrate_2d_polynomial( eye, screen_size=screen_size, threshold=threshold) mappings.append(mapper) all_mappings.append((session['timestamp'], mappings)) return all_mappings
def finish_calibration(g_pool, pupil_list, ref_list): if pupil_list and ref_list: pass else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return camera_intrinsics = load_camera_calibration(g_pool) # match eye data and check if biocular and or monocular pupil0 = [p for p in pupil_list if p['id'] == 0] pupil1 = [p for p in pupil_list if p['id'] == 1] #TODO unify this and don't do both matched_binocular_data = calibrate.closest_matches_binocular( ref_list, pupil_list) matched_pupil0_data = calibrate.closest_matches_monocular(ref_list, pupil0) matched_pupil1_data = calibrate.closest_matches_monocular(ref_list, pupil1) if len(matched_pupil0_data) > len(matched_pupil1_data): matched_monocular_data = matched_pupil0_data else: matched_monocular_data = matched_pupil1_data logger.info('Collected %s monocular calibration data.' % len(matched_monocular_data)) logger.info('Collected %s binocular calibration data.' % len(matched_binocular_data)) mode = g_pool.detection_mapping_mode if mode == '3d' and not camera_intrinsics: mode = '2d' logger.warning( "Please calibrate your world camera using 'camera intrinsics estimation' for 3d gaze mapping." ) if mode == '3d': hardcoded_translation0 = np.array([20, 15, -20]) hardcoded_translation1 = np.array([-40, 15, -20]) if matched_binocular_data: method = 'binocular 3d model' #TODO model the world as cv2 pinhole camera with distorion and focal in ceres. # right now we solve using a few permutations of K smallest_residual = 1000 scales = list(np.linspace(0.7, 1.4, 20)) K = camera_intrinsics["camera_matrix"] for s in scales: scale = np.ones(K.shape) scale[0, 0] *= s scale[1, 1] *= s camera_intrinsics["camera_matrix"] = K * scale ref_dir, gaze0_dir, gaze1_dir = calibrate.preprocess_3d_data( matched_binocular_data, camera_intrinsics=camera_intrinsics) if len(ref_dir) < 1 or len(gaze0_dir) < 1 or len( gaze1_dir) < 1: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return sphere_pos0 = pupil0[-1]['sphere']['center'] sphere_pos1 = pupil1[-1]['sphere']['center'] initial_R0, initial_t0 = find_rigid_transform( np.array(gaze0_dir) * 500, np.array(ref_dir) * 500) initial_rotation0 = math_helper.quaternion_from_rotation_matrix( initial_R0) initial_translation0 = np.array(initial_t0).reshape(3) initial_R1, initial_t1 = find_rigid_transform( np.array(gaze1_dir) * 500, np.array(ref_dir) * 500) initial_rotation1 = math_helper.quaternion_from_rotation_matrix( initial_R1) initial_translation1 = np.array(initial_t1).reshape(3) eye0 = { "observations": gaze0_dir, "translation": hardcoded_translation0, "rotation": initial_rotation0, 'fix': ['translation'] } eye1 = { "observations": gaze1_dir, "translation": hardcoded_translation1, "rotation": initial_rotation1, 'fix': ['translation'] } world = { "observations": ref_dir, "translation": (0, 0, 0), "rotation": (1, 0, 0, 0), 'fix': ['translation', 'rotation'], 'fix': ['translation', 'rotation'] } initial_observers = [eye0, eye1, world] initial_points = np.array(ref_dir) * 500 success, residual, observers, points = bundle_adjust_calibration( initial_observers, initial_points, fix_points=False) if residual <= smallest_residual: smallest_residual = residual scales[-1] = s if not success: g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) logger.error("Calibration solver faild to converge.") return eye0, eye1, world = observers t_world0 = np.array(eye0['translation']) R_world0 = math_helper.quaternion_rotation_matrix( np.array(eye0['rotation'])) t_world1 = np.array(eye1['translation']) R_world1 = math_helper.quaternion_rotation_matrix( np.array(eye1['rotation'])) def toWorld0(p): return np.dot(R_world0, p) + t_world0 def toWorld1(p): return np.dot(R_world1, p) + t_world1 points_a = [] #world coords points_b = [] #eye0 coords points_c = [] #eye1 coords for a, b, c, point in zip(world['observations'], eye0['observations'], eye1['observations'], points): line_a = np.array([0, 0, 0]), np.array(a) #observation as line line_b = toWorld0(np.array([0, 0, 0])), toWorld0( b) #eye0 observation line in world coords line_c = toWorld1(np.array([0, 0, 0])), toWorld1( c) #eye1 observation line in world coords close_point_a, _ = math_helper.nearest_linepoint_to_point( point, line_a) close_point_b, _ = math_helper.nearest_linepoint_to_point( point, line_b) close_point_c, _ = math_helper.nearest_linepoint_to_point( point, line_c) points_a.append(close_point_a) points_b.append(close_point_b) points_c.append(close_point_c) # we need to take the sphere position into account # orientation and translation are referring to the sphere center. # but we want to have it referring to the camera center # since the actual translation is in world coordinates, the sphere translation needs to be calculated in world coordinates sphere_translation = np.array(sphere_pos0) sphere_translation_world = np.dot(R_world0, sphere_translation) camera_translation = t_world0 - sphere_translation_world eye_camera_to_world_matrix0 = np.eye(4) eye_camera_to_world_matrix0[:3, :3] = R_world0 eye_camera_to_world_matrix0[:3, 3:4] = np.reshape( camera_translation, (3, 1)) sphere_translation = np.array(sphere_pos1) sphere_translation_world = np.dot(R_world1, sphere_translation) camera_translation = t_world1 - sphere_translation_world eye_camera_to_world_matrix1 = np.eye(4) eye_camera_to_world_matrix1[:3, :3] = R_world1 eye_camera_to_world_matrix1[:3, 3:4] = np.reshape( camera_translation, (3, 1)) g_pool.plugins.add(Binocular_Vector_Gaze_Mapper, args={ 'eye_camera_to_world_matrix0': eye_camera_to_world_matrix0, 'eye_camera_to_world_matrix1': eye_camera_to_world_matrix1, 'camera_intrinsics': camera_intrinsics, 'cal_points_3d': points, 'cal_ref_points_3d': points_a, 'cal_gaze_points0_3d': points_b, 'cal_gaze_points1_3d': points_c }) elif matched_monocular_data: method = 'monocular 3d model' #TODO model the world as cv2 pinhole camera with distorion and focal in ceres. # right now we solve using a few permutations of K smallest_residual = 1000 scales = list(np.linspace(0.7, 1.4, 20)) K = camera_intrinsics["camera_matrix"] for s in scales: scale = np.ones(K.shape) scale[0, 0] *= s scale[1, 1] *= s camera_intrinsics["camera_matrix"] = K * scale ref_dir, gaze_dir, _ = calibrate.preprocess_3d_data( matched_monocular_data, camera_intrinsics=camera_intrinsics) # save_object((ref_dir,gaze_dir),os.path.join(g_pool.user_dir, "testdata")) if len(ref_dir) < 1 or len(gaze_dir) < 1: g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) logger.error(not_enough_data_error_msg + " Using:" + method) return ### monocular calibration strategy: mimize the reprojection error by moving the world camera. # we fix the eye points and work in the eye coord system. initial_R, initial_t = find_rigid_transform( np.array(ref_dir) * 500, np.array(gaze_dir) * 500) initial_rotation = math_helper.quaternion_from_rotation_matrix( initial_R) initial_translation = np.array(initial_t).reshape(3) # this problem is scale invariant so we scale to some sensical value. if matched_monocular_data[0]['pupil']['id'] == 0: hardcoded_translation = hardcoded_translation0 else: hardcoded_translation = hardcoded_translation1 eye = { "observations": gaze_dir, "translation": (0, 0, 0), "rotation": (1, 0, 0, 0), 'fix': ['translation', 'rotation'] } world = { "observations": ref_dir, "translation": np.dot(initial_R, -hardcoded_translation), "rotation": initial_rotation, 'fix': ['translation'] } initial_observers = [eye, world] initial_points = np.array(gaze_dir) * 500 success, residual, observers, points_in_eye = bundle_adjust_calibration( initial_observers, initial_points, fix_points=True) if residual <= smallest_residual: smallest_residual = residual scales[-1] = s eye, world = observers if not success: logger.error("Calibration solver faild to converge.") g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return #pose of the world in eye coords. rotation = np.array(world['rotation']) t_world = np.array(world['translation']) R_world = math_helper.quaternion_rotation_matrix(rotation) # inverse is pose of eye in world coords R_eye = R_world.T t_eye = np.dot(R_eye, -t_world) def toWorld(p): return np.dot(R_eye, p) + np.array(t_eye) points_in_world = [toWorld(p) for p in points_in_eye] points_a = [] #world coords points_b = [] #cam2 coords for a, b, point in zip(world['observations'], eye['observations'], points_in_world): line_a = np.array([0, 0, 0]), np.array(a) #observation as line line_b = toWorld(np.array([0, 0, 0])), toWorld( b) #cam2 observation line in cam1 coords close_point_a, _ = math_helper.nearest_linepoint_to_point( point, line_a) close_point_b, _ = math_helper.nearest_linepoint_to_point( point, line_b) # print np.linalg.norm(point-close_point_a),np.linalg.norm(point-close_point_b) points_a.append(close_point_a) points_b.append(close_point_b) # we need to take the sphere position into account # orientation and translation are referring to the sphere center. # but we want to have it referring to the camera center # since the actual translation is in world coordinates, the sphere translation needs to be calculated in world coordinates sphere_translation = np.array( matched_monocular_data[-1]['pupil']['sphere']['center']) sphere_translation_world = np.dot(R_eye, sphere_translation) camera_translation = t_eye - sphere_translation_world eye_camera_to_world_matrix = np.eye(4) eye_camera_to_world_matrix[:3, :3] = R_eye eye_camera_to_world_matrix[:3, 3:4] = np.reshape( camera_translation, (3, 1)) g_pool.plugins.add(Vector_Gaze_Mapper, args={ 'eye_camera_to_world_matrix': eye_camera_to_world_matrix, 'camera_intrinsics': camera_intrinsics, 'cal_points_3d': points_in_world, 'cal_ref_points_3d': points_a, 'cal_gaze_points_3d': points_b, 'gaze_distance': 500 }) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return elif mode == '2d': if matched_binocular_data: method = 'binocular polynomial regression' cal_pt_cloud_binocular = calibrate.preprocess_2d_data_binocular( matched_binocular_data) cal_pt_cloud0 = calibrate.preprocess_2d_data_monocular( matched_pupil0_data) cal_pt_cloud1 = calibrate.preprocess_2d_data_monocular( matched_pupil1_data) map_fn, inliers, params = calibrate.calibrate_2d_polynomial( cal_pt_cloud_binocular, g_pool.capture.frame_size, binocular=True) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return map_fn, inliers, params_eye0 = calibrate.calibrate_2d_polynomial( cal_pt_cloud0, g_pool.capture.frame_size, binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return map_fn, inliers, params_eye1 = calibrate.calibrate_2d_polynomial( cal_pt_cloud1, g_pool.capture.frame_size, binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return g_pool.plugins.add(Binocular_Gaze_Mapper, args={ 'params': params, 'params_eye0': params_eye0, 'params_eye1': params_eye1 }) elif matched_monocular_data: method = 'monocular polynomial regression' cal_pt_cloud = calibrate.preprocess_2d_data_monocular( matched_monocular_data) map_fn, inliers, params = calibrate.calibrate_2d_polynomial( cal_pt_cloud, g_pool.capture.frame_size, binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': solver_failed_to_converge_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return g_pool.plugins.add(Monocular_Gaze_Mapper, args={'params': params}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.get_timestamp(), 'record': True }) return user_calibration_data = { 'pupil_list': pupil_list, 'ref_list': ref_list, 'calibration_method': method } save_object(user_calibration_data, os.path.join(g_pool.user_dir, "user_calibration_data")) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration.successful', 'method': method, 'timestamp': g_pool.get_timestamp(), 'record': True })
def finish_calibration(g_pool,pupil_list,ref_list): if pupil_list and ref_list: pass else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return camera_intrinsics = load_camera_calibration(g_pool) # match eye data and check if biocular and or monocular pupil0 = [p for p in pupil_list if p['id']==0] pupil1 = [p for p in pupil_list if p['id']==1] #TODO unify this and don't do both matched_binocular_data = calibrate.closest_matches_binocular(ref_list,pupil_list) matched_pupil0_data = calibrate.closest_matches_monocular(ref_list,pupil0) matched_pupil1_data = calibrate.closest_matches_monocular(ref_list,pupil1) if len(matched_pupil0_data)>len(matched_pupil1_data): matched_monocular_data = matched_pupil0_data else: matched_monocular_data = matched_pupil1_data logger.info('Collected %s monocular calibration data.'%len(matched_monocular_data)) logger.info('Collected %s binocular calibration data.'%len(matched_binocular_data)) mode = g_pool.detection_mapping_mode if mode == '3d' and not camera_intrinsics: mode = '2d' logger.warning("Please calibrate your world camera using 'camera intrinsics estimation' for 3d gaze mapping.") if mode == '3d': hardcoded_translation0 = np.array([20,15,-20]) hardcoded_translation1 = np.array([-40,15,-20]) if matched_binocular_data: method = 'binocular 3d model' #TODO model the world as cv2 pinhole camera with distorion and focal in ceres. # right now we solve using a few permutations of K smallest_residual = 1000 scales = list(np.linspace(0.7,1.4,20)) K = camera_intrinsics["camera_matrix"] for s in scales: scale = np.ones(K.shape) scale[0,0] *= s scale[1,1] *= s camera_intrinsics["camera_matrix"] = K*scale ref_dir, gaze0_dir, gaze1_dir = calibrate.preprocess_3d_data(matched_binocular_data, camera_intrinsics = camera_intrinsics ) if len(ref_dir) < 1 or len(gaze0_dir) < 1 or len(gaze1_dir) < 1: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return sphere_pos0 = pupil0[-1]['sphere']['center'] sphere_pos1 = pupil1[-1]['sphere']['center'] initial_R0,initial_t0 = find_rigid_transform(np.array(gaze0_dir)*500,np.array(ref_dir)*500) initial_rotation0 = math_helper.quaternion_from_rotation_matrix(initial_R0) initial_translation0 = np.array(initial_t0).reshape(3) initial_R1,initial_t1 = find_rigid_transform(np.array(gaze1_dir)*500,np.array(ref_dir)*500) initial_rotation1 = math_helper.quaternion_from_rotation_matrix(initial_R1) initial_translation1 = np.array(initial_t1).reshape(3) eye0 = { "observations" : gaze0_dir , "translation" : hardcoded_translation0 , "rotation" : initial_rotation0,'fix':['translation'] } eye1 = { "observations" : gaze1_dir , "translation" : hardcoded_translation1 , "rotation" : initial_rotation1,'fix':['translation'] } world = { "observations" : ref_dir , "translation" : (0,0,0) , "rotation" : (1,0,0,0),'fix':['translation','rotation'],'fix':['translation','rotation'] } initial_observers = [eye0,eye1,world] initial_points = np.array(ref_dir)*500 success,residual, observers, points = bundle_adjust_calibration(initial_observers , initial_points, fix_points=False ) if residual <= smallest_residual: smallest_residual = residual scales[-1] = s if not success: g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) logger.error("Calibration solver faild to converge.") return eye0,eye1,world = observers t_world0 = np.array(eye0['translation']) R_world0 = math_helper.quaternion_rotation_matrix(np.array(eye0['rotation'])) t_world1 = np.array(eye1['translation']) R_world1 = math_helper.quaternion_rotation_matrix(np.array(eye1['rotation'])) def toWorld0(p): return np.dot(R_world0, p)+t_world0 def toWorld1(p): return np.dot(R_world1, p)+t_world1 points_a = [] #world coords points_b = [] #eye0 coords points_c = [] #eye1 coords for a,b,c,point in zip(world['observations'] , eye0['observations'],eye1['observations'],points): line_a = np.array([0,0,0]) , np.array(a) #observation as line line_b = toWorld0(np.array([0,0,0])) , toWorld0(b) #eye0 observation line in world coords line_c = toWorld1(np.array([0,0,0])) , toWorld1(c) #eye1 observation line in world coords close_point_a,_ = math_helper.nearest_linepoint_to_point( point , line_a ) close_point_b,_ = math_helper.nearest_linepoint_to_point( point , line_b ) close_point_c,_ = math_helper.nearest_linepoint_to_point( point , line_c ) points_a.append(close_point_a) points_b.append(close_point_b) points_c.append(close_point_c) # we need to take the sphere position into account # orientation and translation are referring to the sphere center. # but we want to have it referring to the camera center # since the actual translation is in world coordinates, the sphere translation needs to be calculated in world coordinates sphere_translation = np.array( sphere_pos0 ) sphere_translation_world = np.dot( R_world0 , sphere_translation) camera_translation = t_world0 - sphere_translation_world eye_camera_to_world_matrix0 = np.eye(4) eye_camera_to_world_matrix0[:3,:3] = R_world0 eye_camera_to_world_matrix0[:3,3:4] = np.reshape(camera_translation, (3,1) ) sphere_translation = np.array( sphere_pos1 ) sphere_translation_world = np.dot( R_world1 , sphere_translation) camera_translation = t_world1 - sphere_translation_world eye_camera_to_world_matrix1 = np.eye(4) eye_camera_to_world_matrix1[:3,:3] = R_world1 eye_camera_to_world_matrix1[:3,3:4] = np.reshape(camera_translation, (3,1) ) g_pool.plugins.add(Binocular_Vector_Gaze_Mapper,args={ 'eye_camera_to_world_matrix0':eye_camera_to_world_matrix0, 'eye_camera_to_world_matrix1':eye_camera_to_world_matrix1 , 'camera_intrinsics': camera_intrinsics , 'cal_points_3d': points, 'cal_ref_points_3d': points_a, 'cal_gaze_points0_3d': points_b, 'cal_gaze_points1_3d': points_c}) elif matched_monocular_data: method = 'monocular 3d model' #TODO model the world as cv2 pinhole camera with distorion and focal in ceres. # right now we solve using a few permutations of K smallest_residual = 1000 scales = list(np.linspace(0.7,1.4,20)) K = camera_intrinsics["camera_matrix"] for s in scales: scale = np.ones(K.shape) scale[0,0] *= s scale[1,1] *= s camera_intrinsics["camera_matrix"] = K*scale ref_dir , gaze_dir, _ = calibrate.preprocess_3d_data(matched_monocular_data, camera_intrinsics = camera_intrinsics ) # save_object((ref_dir,gaze_dir),os.path.join(g_pool.user_dir, "testdata")) if len(ref_dir) < 1 or len(gaze_dir) < 1: g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) logger.error(not_enough_data_error_msg + " Using:" + method) return ### monocular calibration strategy: mimize the reprojection error by moving the world camera. # we fix the eye points and work in the eye coord system. initial_R,initial_t = find_rigid_transform(np.array(ref_dir)*500,np.array(gaze_dir)*500) initial_rotation = math_helper.quaternion_from_rotation_matrix(initial_R) initial_translation = np.array(initial_t).reshape(3) # this problem is scale invariant so we scale to some sensical value. if matched_monocular_data[0]['pupil']['id'] == 0: hardcoded_translation = hardcoded_translation0 else: hardcoded_translation = hardcoded_translation1 eye = { "observations" : gaze_dir , "translation" : (0,0,0) , "rotation" : (1,0,0,0),'fix':['translation','rotation'] } world = { "observations" : ref_dir , "translation" : np.dot(initial_R,-hardcoded_translation) , "rotation" : initial_rotation,'fix':['translation'] } initial_observers = [eye,world] initial_points = np.array(gaze_dir)*500 success,residual, observers, points_in_eye = bundle_adjust_calibration(initial_observers , initial_points, fix_points=True ) if residual <= smallest_residual: smallest_residual = residual scales[-1] = s eye, world = observers if not success: logger.error("Calibration solver faild to converge.") g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return #pose of the world in eye coords. rotation = np.array(world['rotation']) t_world = np.array(world['translation']) R_world = math_helper.quaternion_rotation_matrix(rotation) # inverse is pose of eye in world coords R_eye = R_world.T t_eye = np.dot(R_eye,-t_world) def toWorld(p): return np.dot(R_eye, p)+np.array(t_eye) points_in_world = [toWorld(p) for p in points_in_eye] points_a = [] #world coords points_b = [] #cam2 coords for a,b,point in zip(world['observations'] , eye['observations'],points_in_world): line_a = np.array([0,0,0]) , np.array(a) #observation as line line_b = toWorld(np.array([0,0,0])) , toWorld(b) #cam2 observation line in cam1 coords close_point_a,_ = math_helper.nearest_linepoint_to_point( point , line_a ) close_point_b,_ = math_helper.nearest_linepoint_to_point( point , line_b ) # print np.linalg.norm(point-close_point_a),np.linalg.norm(point-close_point_b) points_a.append(close_point_a) points_b.append(close_point_b) # we need to take the sphere position into account # orientation and translation are referring to the sphere center. # but we want to have it referring to the camera center # since the actual translation is in world coordinates, the sphere translation needs to be calculated in world coordinates sphere_translation = np.array( matched_monocular_data[-1]['pupil']['sphere']['center'] ) sphere_translation_world = np.dot( R_eye , sphere_translation) camera_translation = t_eye - sphere_translation_world eye_camera_to_world_matrix = np.eye(4) eye_camera_to_world_matrix[:3,:3] = R_eye eye_camera_to_world_matrix[:3,3:4] = np.reshape(camera_translation, (3,1) ) g_pool.plugins.add(Vector_Gaze_Mapper,args= {'eye_camera_to_world_matrix':eye_camera_to_world_matrix , 'camera_intrinsics': camera_intrinsics , 'cal_points_3d': points_in_world, 'cal_ref_points_3d': points_a, 'cal_gaze_points_3d': points_b, 'gaze_distance':500}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return elif mode == '2d': if matched_binocular_data: method = 'binocular polynomial regression' cal_pt_cloud_binocular = calibrate.preprocess_2d_data_binocular(matched_binocular_data) cal_pt_cloud0 = calibrate.preprocess_2d_data_monocular(matched_pupil0_data) cal_pt_cloud1 = calibrate.preprocess_2d_data_monocular(matched_pupil1_data) map_fn,inliers,params = calibrate.calibrate_2d_polynomial(cal_pt_cloud_binocular,g_pool.capture.frame_size,binocular=True) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return map_fn,inliers,params_eye0 = calibrate.calibrate_2d_polynomial(cal_pt_cloud0,g_pool.capture.frame_size,binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return map_fn,inliers,params_eye1 = calibrate.calibrate_2d_polynomial(cal_pt_cloud1,g_pool.capture.frame_size,binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return g_pool.plugins.add(Binocular_Gaze_Mapper,args={'params':params, 'params_eye0':params_eye0, 'params_eye1':params_eye1}) elif matched_monocular_data: method = 'monocular polynomial regression' cal_pt_cloud = calibrate.preprocess_2d_data_monocular(matched_monocular_data) map_fn,inliers,params = calibrate.calibrate_2d_polynomial(cal_pt_cloud,g_pool.capture.frame_size,binocular=False) if not inliers.any(): g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':solver_failed_to_converge_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return g_pool.plugins.add(Monocular_Gaze_Mapper,args={'params':params}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration.failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return user_calibration_data = {'pupil_list':pupil_list,'ref_list':ref_list,'calibration_method':method} save_object(user_calibration_data,os.path.join(g_pool.user_dir, "user_calibration_data")) g_pool.active_calibration_plugin.notify_all({'subject':'calibration.successful','method':method,'timestamp':g_pool.capture.get_timestamp(),'record':True})
def finish_calibration(g_pool,pupil_list,ref_list,calibration_distance_3d = 500, force=None): not_enough_data_error_msg = 'Did not collect enough data during calibration.' if pupil_list and ref_list: pass else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return camera_intrinsics = load_camera_calibration(g_pool) # match eye data and check if biocular and or monocular pupil0 = [p for p in pupil_list if p['id']==0] pupil1 = [p for p in pupil_list if p['id']==1] matched_binocular_data = calibrate.closest_matches_binocular(ref_list,pupil_list) matched_pupil0_data = calibrate.closest_matches_monocular(ref_list,pupil0) matched_pupil1_data = calibrate.closest_matches_monocular(ref_list,pupil1) if len(matched_pupil0_data)>len(matched_pupil1_data): matched_monocular_data = matched_pupil0_data else: matched_monocular_data = matched_pupil1_data logger.info('Collected %s monocular calibration data.'%len(matched_monocular_data)) logger.info('Collected %s binocular calibration data.'%len(matched_binocular_data)) if force: mode = force else: mode = g_pool.detection_mapping_mode if mode == '3d' and not camera_intrinsics: mode = '2d' logger.warning("Please calibrate your world camera using 'camera intrinsics estimation' for 3d gaze mapping.") if mode == '3d': if matched_binocular_data: method = 'binocular 3d model' cal_pt_cloud = calibrate.preprocess_3d_data_binocular(matched_binocular_data, camera_intrinsics = camera_intrinsics, calibration_distance=calibration_distance_3d ) cal_pt_cloud = np.array(cal_pt_cloud) try: gaze_pt0_3d = cal_pt_cloud[:,0] gaze_pt1_3d = cal_pt_cloud[:,1] ref_3d = cal_pt_cloud[:,2] except: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return best_distance = 1000 best_scale = 100 for scale_percent in range(50,150,10): R0,t0 = calibrate.rigid_transform_3D( np.matrix(gaze_pt0_3d) ,np.matrix(ref_3d*(scale_percent/100.)) ) R1,t1 = calibrate.rigid_transform_3D( np.matrix(gaze_pt1_3d) ,np.matrix(ref_3d*(scale_percent/100.)) ) eye_to_world_matrix0 = np.matrix(np.eye(4)) eye_to_world_matrix0[:3,:3] = R0 eye_to_world_matrix0[:3,3:4] = t0 eye_to_world_matrix1 = np.matrix(np.eye(4)) eye_to_world_matrix1[:3,:3] = R1 eye_to_world_matrix1[:3,3:4] = t1 avg_distance0, dist_var0 = calibrate.calculate_residual_3D_Points( ref_3d*(scale_percent/100.), gaze_pt0_3d, eye_to_world_matrix0 ) avg_distance1, dist_var1 = calibrate.calculate_residual_3D_Points( ref_3d*(scale_percent/100.), gaze_pt1_3d, eye_to_world_matrix1 ) avg_distance = (avg_distance0+avg_distance1)/2. if avg_distance < best_distance: best_distance = avg_distance best_scale = scale_percent ref_3d *= best_scale/100. R0,t0 = calibrate.rigid_transform_3D( np.matrix(gaze_pt0_3d) ,np.matrix(ref_3d) ) R1,t1 = calibrate.rigid_transform_3D( np.matrix(gaze_pt1_3d) ,np.matrix(ref_3d) ) sphere0 = pupil0[-1]['sphere']['center'] sphere1 = pupil1[-1]['sphere']['center'] eye_to_world_matrix0 = np.matrix(np.eye(4)) eye_to_world_matrix0[:3,:3] = R0 eye_to_world_matrix0[:3,3:4] = t0 # eye_to_world_matrix0[:3,3:4] = np.array((20,10,-20)).reshape(3,1) # eye_to_world_matrix0[:3,3:4] -= R0 * (np.array(sphere0)*(1,-1,1)).reshape(3,1) eye_to_world_matrix1 = np.matrix(np.eye(4)) eye_to_world_matrix1[:3,:3] = R1 eye_to_world_matrix1[:3,3:4] = t1 # eye_to_world_matrix1[:3,3:4] = np.array((-40,10,-20)).reshape(3,1) # eye_to_world_matrix1[:3,3:4] -= R1 * (np.array(sphere1)*(1,-1,1)).reshape(3,1) avg_distance0, dist_var0 = calibrate.calculate_residual_3D_Points( ref_3d, gaze_pt0_3d, eye_to_world_matrix0 ) avg_distance1, dist_var1 = calibrate.calculate_residual_3D_Points( ref_3d, gaze_pt1_3d, eye_to_world_matrix1 ) logger.info('calibration average distance eye0: %s'%avg_distance0) logger.info('calibration average distance eye1: %s'%avg_distance1) g_pool.plugins.add(Binocular_Vector_Gaze_Mapper,args={'eye_to_world_matrix0':eye_to_world_matrix0,'eye_to_world_matrix1':eye_to_world_matrix1 , 'camera_intrinsics': camera_intrinsics , 'cal_ref_points_3d': ref_3d.tolist(), 'cal_gaze_points0_3d': gaze_pt0_3d.tolist(), 'cal_gaze_points1_3d': gaze_pt1_3d.tolist() }) elif matched_monocular_data: method = 'monocular 3d model' cal_pt_cloud = calibrate.preprocess_3d_data_monocular(matched_monocular_data, camera_intrinsics = camera_intrinsics, calibration_distance=calibration_distance_3d ) cal_pt_cloud = np.array(cal_pt_cloud) try: gaze_3d = cal_pt_cloud[:,0] ref_3d = cal_pt_cloud[:,1] except: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return best_distance = 1000 best_scale = 100 for scale_percent in range(50,150,10): #calculate transformation form eye camera to world camera R,t = calibrate.rigid_transform_3D( np.matrix(gaze_3d), np.matrix(ref_3d*(scale_percent/100.)) ) eye_to_world_matrix = np.matrix(np.eye(4)) eye_to_world_matrix[:3,:3] = R eye_to_world_matrix[:3,3:4] = t avg_distance, dist_var = calibrate.calculate_residual_3D_Points( ref_3d*(scale_percent/100.), gaze_3d, eye_to_world_matrix ) if avg_distance < best_distance: best_distance = avg_distance best_scale = scale_percent ref_3d *= best_scale/100. #calculate transformation form eye camera to world camera R,t = calibrate.rigid_transform_3D( np.matrix(gaze_3d), np.matrix(ref_3d) ) eye_to_world_matrix = np.matrix(np.eye(4)) eye_to_world_matrix[:3,:3] = R eye_to_world_matrix[:3,3:4] = t avg_distance, dist_var = calibrate.calculate_residual_3D_Points( ref_3d, gaze_3d, eye_to_world_matrix ) print 'best calibration average distance: ' , avg_distance # print 'best calibration distance variance: ' , dist_var g_pool.plugins.add(Vector_Gaze_Mapper,args={'eye_to_world_matrix':eye_to_world_matrix , 'camera_intrinsics': camera_intrinsics , 'cal_ref_points_3d': cal_pt_cloud[:,1].tolist(), 'cal_gaze_points_3d': cal_pt_cloud[:,0].tolist()}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return elif mode == '2d': if matched_binocular_data: method = 'binocular polynomial regression' cal_pt_cloud_binocular = calibrate.preprocess_2d_data_binocular(matched_binocular_data) cal_pt_cloud0 = calibrate.preprocess_2d_data_monocular(matched_pupil0_data) cal_pt_cloud1 = calibrate.preprocess_2d_data_monocular(matched_pupil1_data) map_fn,inliers,params = calibrate.calibrate_2d_polynomial(cal_pt_cloud_binocular,g_pool.capture.frame_size,binocular=True) map_fn,inliers,params_eye0 = calibrate.calibrate_2d_polynomial(cal_pt_cloud0,g_pool.capture.frame_size,binocular=False) map_fn,inliers,params_eye1 = calibrate.calibrate_2d_polynomial(cal_pt_cloud1,g_pool.capture.frame_size,binocular=False) g_pool.plugins.add(Binocular_Gaze_Mapper,args={'params':params, 'params_eye0':params_eye0, 'params_eye1':params_eye1}) elif matched_monocular_data: method = 'monocular polynomial regression' cal_pt_cloud = calibrate.preprocess_2d_data_monocular(matched_monocular_data) map_fn,inliers,params = calibrate.calibrate_2d_polynomial(cal_pt_cloud,g_pool.capture.frame_size,binocular=False) g_pool.plugins.add(Simple_Gaze_Mapper,args={'params':params}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_failed','reason':not_enough_data_error_msg,'timestamp':g_pool.capture.get_timestamp(),'record':True}) return user_calibration_data = {'pupil_list':pupil_list,'ref_list':ref_list,'calibration_method':method} save_object(user_calibration_data,os.path.join(g_pool.user_dir, "user_calibration_data")) g_pool.active_calibration_plugin.notify_all({'subject':'calibration_successful','method':method,'timestamp':g_pool.capture.get_timestamp(),'record':True})
def finish_calibration(g_pool, pupil_list, ref_list, calibration_distance_3d=500, force=None): not_enough_data_error_msg = 'Did not collect enough data during calibration.' if pupil_list and ref_list: pass else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.capture.get_timestamp(), 'record': True }) return camera_intrinsics = load_camera_calibration(g_pool) # match eye data and check if biocular and or monocular pupil0 = [p for p in pupil_list if p['id'] == 0] pupil1 = [p for p in pupil_list if p['id'] == 1] matched_binocular_data = calibrate.closest_matches_binocular( ref_list, pupil_list) matched_pupil0_data = calibrate.closest_matches_monocular(ref_list, pupil0) matched_pupil1_data = calibrate.closest_matches_monocular(ref_list, pupil1) if len(matched_pupil0_data) > len(matched_pupil1_data): matched_monocular_data = matched_pupil0_data else: matched_monocular_data = matched_pupil1_data logger.info('Collected %s monocular calibration data.' % len(matched_monocular_data)) logger.info('Collected %s binocular calibration data.' % len(matched_binocular_data)) if force: mode = force else: mode = g_pool.detection_mapping_mode if mode == '3d' and not camera_intrinsics: mode = '2d' logger.warning( "Please calibrate your world camera using 'camera intrinsics estimation' for 3d gaze mapping." ) if mode == '3d': if matched_binocular_data: method = 'binocular 3d model' cal_pt_cloud = calibrate.preprocess_3d_data_binocular( matched_binocular_data, camera_intrinsics=camera_intrinsics, calibration_distance=calibration_distance_3d) cal_pt_cloud = np.array(cal_pt_cloud) try: gaze_pt0_3d = cal_pt_cloud[:, 0] gaze_pt1_3d = cal_pt_cloud[:, 1] ref_3d = cal_pt_cloud[:, 2] except: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.capture.get_timestamp(), 'record': True }) return best_distance = 1000 best_scale = 100 for scale_percent in range(50, 150, 10): R0, t0 = calibrate.rigid_transform_3D( np.matrix(gaze_pt0_3d), np.matrix(ref_3d * (scale_percent / 100.))) R1, t1 = calibrate.rigid_transform_3D( np.matrix(gaze_pt1_3d), np.matrix(ref_3d * (scale_percent / 100.))) eye_to_world_matrix0 = np.matrix(np.eye(4)) eye_to_world_matrix0[:3, :3] = R0 eye_to_world_matrix0[:3, 3:4] = t0 eye_to_world_matrix1 = np.matrix(np.eye(4)) eye_to_world_matrix1[:3, :3] = R1 eye_to_world_matrix1[:3, 3:4] = t1 avg_distance0, dist_var0 = calibrate.calculate_residual_3D_Points( ref_3d * (scale_percent / 100.), gaze_pt0_3d, eye_to_world_matrix0) avg_distance1, dist_var1 = calibrate.calculate_residual_3D_Points( ref_3d * (scale_percent / 100.), gaze_pt1_3d, eye_to_world_matrix1) avg_distance = (avg_distance0 + avg_distance1) / 2. if avg_distance < best_distance: best_distance = avg_distance best_scale = scale_percent ref_3d *= best_scale / 100. R0, t0 = calibrate.rigid_transform_3D(np.matrix(gaze_pt0_3d), np.matrix(ref_3d)) R1, t1 = calibrate.rigid_transform_3D(np.matrix(gaze_pt1_3d), np.matrix(ref_3d)) sphere0 = pupil0[-1]['sphere']['center'] sphere1 = pupil1[-1]['sphere']['center'] eye_to_world_matrix0 = np.matrix(np.eye(4)) eye_to_world_matrix0[:3, :3] = R0 eye_to_world_matrix0[:3, 3:4] = t0 # eye_to_world_matrix0[:3,3:4] = np.array((20,10,-20)).reshape(3,1) # eye_to_world_matrix0[:3,3:4] -= R0 * (np.array(sphere0)*(1,-1,1)).reshape(3,1) eye_to_world_matrix1 = np.matrix(np.eye(4)) eye_to_world_matrix1[:3, :3] = R1 eye_to_world_matrix1[:3, 3:4] = t1 # eye_to_world_matrix1[:3,3:4] = np.array((-40,10,-20)).reshape(3,1) # eye_to_world_matrix1[:3,3:4] -= R1 * (np.array(sphere1)*(1,-1,1)).reshape(3,1) avg_distance0, dist_var0 = calibrate.calculate_residual_3D_Points( ref_3d, gaze_pt0_3d, eye_to_world_matrix0) avg_distance1, dist_var1 = calibrate.calculate_residual_3D_Points( ref_3d, gaze_pt1_3d, eye_to_world_matrix1) logger.info('calibration average distance eye0: %s' % avg_distance0) logger.info('calibration average distance eye1: %s' % avg_distance1) g_pool.plugins.add(Binocular_Vector_Gaze_Mapper, args={ 'eye_to_world_matrix0': eye_to_world_matrix0, 'eye_to_world_matrix1': eye_to_world_matrix1, 'camera_intrinsics': camera_intrinsics, 'cal_ref_points_3d': ref_3d.tolist(), 'cal_gaze_points0_3d': gaze_pt0_3d.tolist(), 'cal_gaze_points1_3d': gaze_pt1_3d.tolist() }) elif matched_monocular_data: method = 'monocular 3d model' cal_pt_cloud = calibrate.preprocess_3d_data_monocular( matched_monocular_data, camera_intrinsics=camera_intrinsics, calibration_distance=calibration_distance_3d) cal_pt_cloud = np.array(cal_pt_cloud) try: gaze_3d = cal_pt_cloud[:, 0] ref_3d = cal_pt_cloud[:, 1] except: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.capture.get_timestamp(), 'record': True }) return best_distance = 1000 best_scale = 100 for scale_percent in range(50, 150, 10): #calculate transformation form eye camera to world camera R, t = calibrate.rigid_transform_3D( np.matrix(gaze_3d), np.matrix(ref_3d * (scale_percent / 100.))) eye_to_world_matrix = np.matrix(np.eye(4)) eye_to_world_matrix[:3, :3] = R eye_to_world_matrix[:3, 3:4] = t avg_distance, dist_var = calibrate.calculate_residual_3D_Points( ref_3d * (scale_percent / 100.), gaze_3d, eye_to_world_matrix) if avg_distance < best_distance: best_distance = avg_distance best_scale = scale_percent ref_3d *= best_scale / 100. #calculate transformation form eye camera to world camera R, t = calibrate.rigid_transform_3D(np.matrix(gaze_3d), np.matrix(ref_3d)) eye_to_world_matrix = np.matrix(np.eye(4)) eye_to_world_matrix[:3, :3] = R eye_to_world_matrix[:3, 3:4] = t avg_distance, dist_var = calibrate.calculate_residual_3D_Points( ref_3d, gaze_3d, eye_to_world_matrix) print 'best calibration average distance: ', avg_distance # print 'best calibration distance variance: ' , dist_var g_pool.plugins.add(Vector_Gaze_Mapper, args={ 'eye_to_world_matrix': eye_to_world_matrix, 'camera_intrinsics': camera_intrinsics, 'cal_ref_points_3d': cal_pt_cloud[:, 1].tolist(), 'cal_gaze_points_3d': cal_pt_cloud[:, 0].tolist() }) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.capture.get_timestamp(), 'record': True }) return elif mode == '2d': if matched_binocular_data: method = 'binocular polynomial regression' cal_pt_cloud_binocular = calibrate.preprocess_2d_data_binocular( matched_binocular_data) cal_pt_cloud0 = calibrate.preprocess_2d_data_monocular( matched_pupil0_data) cal_pt_cloud1 = calibrate.preprocess_2d_data_monocular( matched_pupil1_data) map_fn, inliers, params = calibrate.calibrate_2d_polynomial( cal_pt_cloud_binocular, g_pool.capture.frame_size, binocular=True) map_fn, inliers, params_eye0 = calibrate.calibrate_2d_polynomial( cal_pt_cloud0, g_pool.capture.frame_size, binocular=False) map_fn, inliers, params_eye1 = calibrate.calibrate_2d_polynomial( cal_pt_cloud1, g_pool.capture.frame_size, binocular=False) g_pool.plugins.add(Binocular_Gaze_Mapper, args={ 'params': params, 'params_eye0': params_eye0, 'params_eye1': params_eye1 }) elif matched_monocular_data: method = 'monocular polynomial regression' cal_pt_cloud = calibrate.preprocess_2d_data_monocular( matched_monocular_data) map_fn, inliers, params = calibrate.calibrate_2d_polynomial( cal_pt_cloud, g_pool.capture.frame_size, binocular=False) g_pool.plugins.add(Simple_Gaze_Mapper, args={'params': params}) else: logger.error(not_enough_data_error_msg) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_failed', 'reason': not_enough_data_error_msg, 'timestamp': g_pool.capture.get_timestamp(), 'record': True }) return user_calibration_data = { 'pupil_list': pupil_list, 'ref_list': ref_list, 'calibration_method': method } save_object(user_calibration_data, os.path.join(g_pool.user_dir, "user_calibration_data")) g_pool.active_calibration_plugin.notify_all({ 'subject': 'calibration_successful', 'method': method, 'timestamp': g_pool.capture.get_timestamp(), 'record': True })