def debiased_estimator(p, l): data = list(zip(p, l)) binned_data = cal.bin(data, bins) if lp == 2: return cal.unbiased_l2_ce(binned_data) else: return cal.normal_debiased_ce(binned_data, power=lp)
def evaluate_l2ce(f, calibrator, z_dist, n): """Returns the calibration error of the calibrator on z_dist, f using n samples.""" zs = z_dist(size=n) ps = f(zs) phats = calibrator.calibrate(zs) bins = cal.get_discrete_bins(phats) data = list(zip(phats, ps)) binned_data = cal.bin(data, bins) return cal.plugin_ce(binned_data) ** 2
def eval_marginal_calibration(probs, probs, labels, plugin=True): ces = [] # Compute the calibration error per class, then take the average. k = probs.shape[1] labels_one_hot = cal.get_labels_one_hot(np.array(labels), k) for c in range(k): probs_c = probs[:, c] labels_c = labels_one_hot[:, c] data_c = list(zip(probs_c, labels_c)) bins_c = cal.get_discrete_bins(probs_c) binned_data_c = cal.bin(data_c, bins_c) if plugin: ce_c = cal.plugin_ce(binned_data_c)**2 else: ce_c = cal.unbiased_square_ce(binned_data_c) ces.append(ce_c) return np.mean(ces)
def estimate_ce(data, estimator): zs = [z for z, y in data] binned_data = calibration.bin(data, calibration.get_discrete_bins(zs)) return estimator(binned_data)
def main(): # Make synthetic dataset. np.random.seed(0) # Keep results consistent. num_points = 1000 (zs, ys) = synthetic_data_1d(num_points=num_points) # Estimate a lower bound on the calibration error. # Here z_i is the confidence of the uncalibrated model, y_i is the true label. # In simple_example.py we used get_calibration_error, but for advanced users # we recommend using the more explicit lower_bound_scaling_ce to have # more control over functionality, and be explicit about the semantics - # that we are only estimating a lower bound. l2_calibration_error = calibration.lower_bound_scaling_ce(zs, ys) print("Uncalibrated model l2 calibration error is > %.2f%%" % (100 * l2_calibration_error)) # We can break this down into multiple steps. 1. We choose a binning scheme, # 2. we bin the data, and 3. we measure the calibration error. # Each of these steps can be customized, and users can substitute the component # with their own code. data = list(zip(zs, ys)) bins = calibration.get_equal_bins(zs, num_bins=10) l2_calibration_error = calibration.unbiased_l2_ce(calibration.bin(data, bins)) print("Uncalibrated model l2 calibration error is > %.2f%%" % (100 * l2_calibration_error)) # Use Platt binning to train a recalibrator. calibrator = calibration.PlattBinnerCalibrator(num_points, num_bins=10) calibrator.train_calibration(np.array(zs), ys) # Measure the calibration error of recalibrated model. # In this case we have a binning model, so we can estimate the true calibration error. # Again, for advanced users we recommend being explicit and using get_binning_ce instead # of get_calibration_error. (test_zs, test_ys) = synthetic_data_1d(num_points=num_points) calibrated_zs = list(calibrator.calibrate(test_zs)) l2_calibration_error = calibration.get_binning_ce(calibrated_zs, test_ys) print("Scaling-binning l2 calibration error is %.2f%%" % (100 * l2_calibration_error)) # As above we can break this down into 3 steps. Notice here we have a binning model, # so we use get_discrete_bins to get all the bins (all possible values the model # outputs). data = list(zip(calibrated_zs, test_ys)) bins = calibration.get_discrete_bins(calibrated_zs) binned = calibration.bin(data, bins) l2_calibration_error = calibration.unbiased_l2_ce(calibration.bin(data, bins)) print("Scaling-binning l2 calibration error is %.2f%%" % (100 * l2_calibration_error)) # Compute calibration error and confidence interval. # In the simple_example.py we just called get_calibration_error_uncertainties. # This function uses the bootstrap to estimate confidence intervals. # The bootstrap first requires us to define the functional we are trying to # estimate, and then resamples the data multiple times to estimate confidence intervals. def estimate_ce(data, estimator): zs = [z for z, y in data] binned_data = calibration.bin(data, calibration.get_discrete_bins(zs)) return estimator(binned_data) functional = lambda data: estimate_ce(data, lambda x: calibration.plugin_ce(x)) [lower, _, upper] = calibration.bootstrap_uncertainty(data, functional, num_samples=100) print(" Confidence interval is [%.2f%%, %.2f%%]" % (100 * lower, 100 * upper)) # Advanced: boostrap can be used to debias the l1-calibration error (ECE) as well. # This is a heuristic, which does not (yet) come with a formal guarantee. functional = lambda data: estimate_ce(data, lambda x: calibration.plugin_ce(x, power=1)) [lower, mid, upper] = calibration.bootstrap_uncertainty(data, functional, num_samples=100) print("Debiased estimate of L1 calibration error is %.2f%%" % (100 * mid)) print(" Confidence interval is [%.2f%%, %.2f%%]" % (100 * lower, 100 * upper))
def estimator(data): binned_data = cal.bin(data, bins) return cal.plugin_ce(binned_data, power=lp)
def plugin_estimator(p, l): data = list(zip(p, l)) binned_data = cal.bin(data, bins) return cal.plugin_ce(binned_data, power=lp)
def eval_top_calibration(probs, probs, labels): correct = (cal.get_top_predictions(probs) == labels) data = list(zip(probs, correct)) bins = cal.get_discrete_bins(probs) binned_data = cal.bin(data, bins) return cal.plugin_ce(binned_data)**2
def estimate_unbiased_ce(data): binned_data = cal.bin(data, bins) return np.sqrt(max(0.0, cal.unbiased_square_ce(binned_data)))