color_norm_ratio = visual_util.make_color_norm(post_uncn_dict["noise"] / post_uncn_dict["overall"], method="percentile") color_norm_pred = visual_util.make_color_norm( list(post_mean_dict.values())[:2], # exclude "resid" vales from pal method="percentile") """ 3.1. posterior predictive uncertainty """ for unc_name, unc_value in post_uncn_dict.items(): save_name = os.path.join( _SAVE_ADDR_PREFIX, '{}/ensemble_posterior_uncn_{}.png'.format(family_name, unc_name)) color_norm = visual_util.posterior_heatmap_2d(unc_value, X=X_valid, X_monitor=X_train, cmap='inferno_r', norm=color_norm_unc, norm_method="percentile", save_addr=save_name) """ 3.2. posterior predictive mean """ for mean_name, mean_value in post_mean_dict.items(): save_name = os.path.join( _SAVE_ADDR_PREFIX, '{}/ensemble_posterior_mean_{}.png'.format(family_name, mean_name)) color_norm = visual_util.posterior_heatmap_2d(mean_value, X=X_valid, X_monitor=X_train, cmap='RdYlGn_r', norm=color_norm_pred, norm_method="percentile", save_addr=save_name)
for i, model in enumerate(_MODEL_DICTIONARY['root']): weights_dict[model] = weights[:, i] # prepare color norms for plt.scatter color_norm_weights = visual_util.make_color_norm( list(weights_dict.values())[:1], method="percentile") for model_name, model_weight in weights_dict.items(): save_name = os.path.join(_SAVE_ADDR_PREFIX, '{}/ensemble_weights_val_{}.png'.format( family_name, model_name)) color_norm = visual_util.posterior_heatmap_2d(model_weight, X=X_valid, X_monitor=X_train, cmap='viridis', norm=color_norm_weights, norm_method="percentile", save_addr=save_name) # prepare color norms for plt.scatter # color_norm_unc = visual_util.make_color_norm( # list(post_uncn_dict.values())[:1], # use "overall" and "mean" for pal # method="percentile") # color_norm_ratio = visual_util.make_color_norm( # post_uncn_dict["noise"] / post_uncn_dict["overall"], # method="percentile") # color_norm_pred = visual_util.make_color_norm( # list(post_mean_dict.values())[:2], # exclude "resid" vales from pal # method="percentile") """ 3.1. posterior predictive uncertainty """