def meas_cb(self, msg): with self.lock: # check if cam_info is valid for camera in msg.M_cam: P = camera.cam_info.P all_zero = True for i in range(12): if P[i] != 0: all_zero = False if all_zero: rospy.logfatal("Camera info of %s is all zero. You should calibrate your camera intrinsics first "%camera.camera_id) exit(-1) # Modify all the camera info messages to make sure that ROI and binning are removed, and P is updated accordingly # Update is done in place #for camera in msg.M_cam: # camera.cam_info = camera_info_converter.unbin(camera.cam_info) if rospy.has_param('optimizer_conditional_resetter_enable'): self.reset_flag = rospy.get_param('optimizer_conditional_resetter_enable') else: self.reset_flag = False if self.reset_flag == True : urdf_cam_ns = rospy.get_param("urdf_cam_ns") new_cam_ns = rospy.get_param("new_cam_ns") u_info = rospy.wait_for_message(urdf_cam_ns+'/camera_info', CameraInfo) n_info = rospy.wait_for_message(new_cam_ns+'/camera_info', CameraInfo) urdf_cam_frame = u_info.header.frame_id new_cam_frame = n_info.header.frame_id mounting_frame = rospy.get_param("mounting_frame") # if any of the frames has changed... if self.prev_3_frames != () : if self.prev_3_frames != (urdf_cam_frame, new_cam_frame, mounting_frame): self.frames_changed = True if self.frames_changed : self.state = None self.meas = [] # clear cache self.timestamps = [] self.measurement_count = 0 self.prev_tf_transforms = {} rospy.loginfo('Reset calibration state') print "\033[43;1mTarget frames have changed. Clean up everything and start over! \033[0m\n\n" self.frames_changed = False if len(self.tf_check_pairs) > 0 : self.prev_tf_pair = self.tf_check_pairs[0] self.tf_check_pairs = [] self.tf_check_pairs.append((mounting_frame, urdf_cam_frame)) # only keep one pair in the list at a time self.prev_3_frames = (urdf_cam_frame, new_cam_frame, mounting_frame) self.prev_tf_pair = (mounting_frame, urdf_cam_frame) TheMoment = msg.header.stamp # check for tf transform changes for (frame1, frame2) in self.tf_check_pairs: transform = None print "\nLooking up transformation \033[34;1mfrom\033[0m %s \033[34;1mto\033[0m %s ..." % (frame1, frame2) while not rospy.is_shutdown(): try: self.tf_listener.waitForTransform(frame1, frame2, TheMoment, rospy.Duration(10)) transform = self.tf_listener.lookupTransform(frame1, frame2, TheMoment) #((),()) print "found\n" break except (tf.LookupException, tf.ConnectivityException): print "transform lookup failed, retrying..." if self.measurement_count > 0: prev_transform = self.prev_tf_transforms[(frame1, frame2)] dx = transform[0][0] - prev_transform[0][0] dy = transform[0][1] - prev_transform[0][1] dz = transform[0][2] - prev_transform[0][2] dAngle = self.getAngle(transform[1]) - self.getAngle(prev_transform[1]) a=self.getAxis(transform[1]) b=self.getAxis(prev_transform[1]) dAxis = (a[0]*b[0] + a[1]*b[1] + a[2]*b[2])/1. # a dot b #print "\n" #print "\033[34;1m-- Debug Info --\033[0m" print "checking for pose change..." print "measurement_count = %d" % self.measurement_count print " dx = %10f | < 0.0002 m" % dx print " dy = %10f | < 0.0002 m" % dy print " dz = %10f | < 0.0002 m" % dz print "dAngle = %10f | < 0.00174 rad" % dAngle print " dAxis = %10f | > 0.99999\n" % dAxis if ( (math.fabs(dx) > 0.0002) or (math.fabs(dy) > 0.0002) or (math.fabs(dz) > 0.0002) or (math.fabs(dAngle)>0.00174) or (math.fabs(dAxis) < 0.99999) ) : # if transform != previous_transform: print "\033[44;1mDetect pose change: %s has changed pose relative to %s since last time!\033[0m\n\n" % (frame1, frame2) ###self.reset() # no, you cannot call reset() here. self.state = None count = len(self.meas) self.meas = [] # clear cache self.timestamps = [] rospy.loginfo('Reset calibration state') print "\033[33;1m%ld\033[0m previous measurements in the cache are deleted.\n\n" % count self.measurement_count = 0 self.prev_tf_transforms[(frame1, frame2)] = transform # add timestamp to list self.timestamps.append(msg.header.stamp) # add measurements to list self.meas.append(msg) print "MEAS", len(self.meas) for m in self.meas: print " - stamp: %f"%m.header.stamp.to_sec() print "\n" self.measurement_count += 1 print "\nNo. of measurements fed to optimizer: %d\n\n" % self.measurement_count ## self.last_stamp_pub.publish(self.meas[-1].header.stamp) # initialize state if needed if True: #not self.state: self.state = CalibrationEstimate() camera_poses, checkerboard_poses = init_optimization_prior.find_initial_poses(self.meas) self.state.targets = [ posemath.toMsg(checkerboard_poses[i]) for i in range(len(checkerboard_poses)) ] self.state.cameras = [ CameraPose(camera_id, posemath.toMsg(camera_pose)) for camera_id, camera_pose in camera_poses.iteritems()] print "Proceed to optimization...\n" # run optimization self.state = estimate.enhance(self.meas, self.state) print "\nOptimized!\n" # publish calibration state res = CameraCalibration() ## initialize a new Message instance res.camera_pose = [camera.pose for camera in self.state.cameras] res.camera_id = [camera.camera_id for camera in self.state.cameras] res.time_stamp = [timestamp for timestamp in self.timestamps] #copy res.m_count = len(res.time_stamp); # self.measurement_count self.pub.publish(res)
pnt = ImagePoint() pnt.x = (pnt_mat[0]/pnt_mat[2]) + random.random()*noise pnt.y = (pnt_mat[1]/pnt_mat[2]) + random.random()*noise pnt.d = 1 meas.image_points.append(pnt) meas.cam_info.P = P meas.features = cal_pattern cal_sample.M_cam.append(meas) cal_samples.append(cal_sample) print cal_samples # add offset cal_estimate.cameras[0].pose = posemath.toMsg(posemath.fromMsg(cal_estimate.cameras[0].pose) * offset) #cal_estimate.cameras[1].pose = posemath.toMsg(posemath.fromMsg(cal_estimate.cameras[1].pose) * PyKDL.Frame(offset)) # Run optimization estimate.enhance(cal_samples, cal_estimate) #residual, J = estimate.calculate_residual_and_jacobian(cal_samples, cal_estimate) #set_printoptions(linewidth=300, precision=5, suppress=True) #print "Jacobian:\n", J #print "Residual:\n", reshape(residual, [-1,2]) #step = linalg.pinv(J)*residual #print "Unscaled Step:\n", reshape(step, [-1, 6]).T #print "RMS: ", estimate.rms(residual) #next_estimate = estimate.oplus(cal_estimate, step) #print "Next Estimate:\n", next_estimate
BAG = '/u/vpradeep/kinect_bags/kinect_extrinsics_2011-04-05-16-01-28.bag' bag = rosbag.Bag(BAG) for topic, msg, t in bag: assert topic == 'robot_measurement' cal_samples = [msg for topic, msg, t in bag] # create prior camera_poses, checkerboard_poses = init_optimization_prior.find_initial_poses(cal_samples) cal_estimate = CalibrationEstimate() cal_estimate.targets = [ posemath.toMsg(checkerboard_poses[i]) for i in range(len(checkerboard_poses)) ] cal_estimate.cameras = [ CameraPose(camera_id, posemath.toMsg(camera_pose)) for camera_id, camera_pose in camera_poses.iteritems()] # Run optimization new_cal_estimate = estimate.enhance(cal_samples, cal_estimate) cam_dict_list = dump_estimate.to_dict_list(new_cal_estimate.cameras) # For now, hardcode what transforms we care about tf_config = dict(); tf_config['camera_a'] = {'calibrated_frame':'camera_a/openni_rgb_optical_frame', 'parent_frame': 'world_frame', 'child_frame': 'camera_a/openni_camera'} tf_config['camera_b'] = {'calibrated_frame':'camera_b/openni_rgb_optical_frame', 'parent_frame': 'world_frame', 'child_frame': 'camera_b/openni_camera'} # Insert TF Data into output file for cam_dict in cam_dict_list: cam_id = cam_dict['camera_id'] if cam_id in tf_config: