def predict(self): age = self.age.get() gender = self.gender.get() image = self.filename if not (image and age and gender): showerror("Error") Message("No Image is selected") return c = Cancer() im = Image.open(image) # <--- chokes! # im.resize(250,150) im = im.resize((250, 150)) if im.mode == "1": self.image = ImageTk.BitmapImage(im, foreground="white") Label(self, image=self.image, bg="black", bd=0).grid(row=8, column=1, pady=10, padx=10, columnspan=2) else: self.image = ImageTk.PhotoImage(im) Label(self, image=self.image, bd=0).grid(row=8, column=1, pady=10, padx=10, columnspan=2) img = cv2.imread(image) resized = cv2.resize(img, (250, 150), interpolation=cv2.INTER_AREA) filters = self.build_filters() res1 = self.process(resized, filters) #imgtk = ImageTk.PhotoImage(image=Image.fromarray(res1)) imgtk = ImageTk.PhotoImage(Image.fromarray(res1)) #cv2.imshow('result', res1) Label(self, image=imgtk, bd=0).grid(row=9, column=1, pady=10, padx=10, columnspan=2) output = c.predict(image, gender, age) if output.get('error'): Label(self, text="Error => {}".format(output.get('error', 'No')), font=FONT, fg="#000").grid(row=7, column=1, pady=10, padx=10) return Label(self, text="Result {}".format(output.get('cancer', 'No')), font=FONT, fg="#000").grid(row=7, column=1, pady=10, padx=10) Label(self, text="Cancer Label is {}".format( output.get('cancer_type', 'Type')), font=FONT, fg="#000").grid(row=7, column=2, pady=10, padx=10) Label(self, text="DO anything here", font=FONT, fg="#000").grid(row=10, column=1, pady=10, padx=10) Label(self, text="Do anything here 2", font=FONT, fg="#000").grid(row=10, column=2, pady=10, padx=10)
from __future__ import absolute_import, division, print_function import os import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.contrib.eager as tfe tf.enable_eager_execution() from cancer import Cancer cancer = Cancer() model = cancer.model optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = './cancer_model' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) data_array = [] while True: data = (input("Please enter features to predict (type 'exit' to stop):\n")) if data == 'exit': break data = data.split(",") data_array.append([float(i) for i in data]) if len(data_array) > 0:
from __future__ import absolute_import, division, print_function import os import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.contrib.eager as tfe tf.enable_eager_execution() from cancer import Cancer cancer = Cancer() model = cancer.model optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = './cancer_model' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) cancer.test()
from __future__ import absolute_import, division, print_function import os import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.contrib.eager as tfe tf.enable_eager_execution() from cancer import Cancer global_step = tf.train.get_or_create_global_step() summary_writer = tf.contrib.summary.create_file_writer('cancer_model', flush_millis=10000) with summary_writer.as_default(), tf.contrib.summary.always_record_summaries(): cancer = Cancer() trained_cancer = cancer.train() cancer.graph(trained_cancer, 'cancer_graphs') model = cancer.model optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = './cancer_model' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.save(file_prefix=checkpoint_prefix) tf.contrib.summary.scalar("loss", my_loss)
def setUp(self): self.cancer = Cancer()
class CancerTest(tf.test.TestCase): def setUp(self): self.cancer = Cancer() def test_download_function(self): filepath = self.cancer.download_data() self.assertAllEqual(filepath ,'cancer-training.csv') def test_download_test_data_function(self): filepath = self.cancer.download_test_data() self.assertAllEqual(filepath ,'cancer-testing.csv') def test_format_data_features_is_tensor(self): features, label, dataset = self.cancer.format_data(self.cancer.download_data()) self.assertTrue(isinstance(features[0], tf.Tensor)) self.assertTrue(isinstance(label[0], tf.Tensor)) def test_test_function_returns_accuracy(self): test_accuracy_result = self.cancer.test() self.assertAllEqual(test_accuracy_result[-1:], '%') def test_train_function_adds_to_loss_array(self): train_loss_results, train_accuracy_results = self.cancer.train() self.assertAllEqual(len(train_loss_results), 400) self.assertAllEqual(len(train_accuracy_results), 400) def test_predict_function(self): self.cancer.train() possible_answers = ['Example 1 prediction: Benign', 'Example 1 prediction: Malignant'] predictions = self.cancer.predict([[17.99,10.38,122.8,1001,0.1184,0.2776,0.3001,0.1471,0.2419,0.07871,1.095,0.9053,8.589,153.4,0.006399,0.04904,0.05373,0.01587,0.03003,0.006193,25.38,17.33,184.6,2019,0.1622,0.6656,0.7119,0.2654,0.4601,0.1189]]) self.assertTrue(predictions in possible_answers) def test_graph_creates_file(self): self.cancer.graph([[3,2,4,5], [2,7,1,0]], 'test_cancer_graphs') my_file = Path('./test_cancer_graphs/figure.png') self.assertTrue(my_file.is_file())
from __future__ import absolute_import, division, print_function import os import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.contrib.eager as tfe tf.enable_eager_execution() from cancer import Cancer cancer = Cancer() model = cancer.model optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = './cancer_model' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.train.get_or_create_global_step()) root.restore(tf.train.latest_checkpoint(checkpoint_dir)) cancer.train() model = cancer.model optimizer = tf.train.AdamOptimizer(learning_rate=0.001) checkpoint_dir = './cancer_model' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model,