예제 #1
0
파일: tasks.py 프로젝트: crudbug/canopsis
def serie_operatorset(manager, period, perfdatas, timewindow, usenan=True):
    """
    Generate set of operators.

    :param manager: Serie manager
    :type manager: canopsis.serie.manager.Serie

    :param period: Period used for timeserie
    :type period: canopsis.timeserie.timewindow.Period

    :param perfdatas: Perfdata classified by metric id
    :type perfdatas: dict

    :param timewindow: Time window used for consolidation
    :type timewindow: canopsis.timeserie.timewindow.TimeWindow

    :param usenan: include nan point values
    :type usenan: bool

    :returns: operators classified by name as dict
    """

    operators = {
        key: new_operator(key, manager, period, perfdatas, timewindow, usenan)
        for key in get_aggregations()
    }

    return operators
예제 #2
0
파일: core.py 프로젝트: crudbug/canopsis
    def _aggregation_value(self, values_to_aggregate, func=None):
        """Get the aggregated value related to input values_to_aggregate, a
        specific function and a timestamp.
        """

        if func is None:
            func = get_aggregations()[self.aggregation]

        if len(values_to_aggregate) > 0:
            result = round(func(values_to_aggregate), 2)

        else:
            result = 0 if self.fill else None

        return result
예제 #3
0
파일: core.py 프로젝트: crudbug/canopsis
    def calculate(self, points, timewindow, meta=None, usenan=True):
        """Do an operation on all points with input timewindow.

        :param bool usenan: if False (True by default) remove nan point values.
        :return: points such as follow:
            Let func self aggregation function and
            input points of the form: [(T0, V0), ..., (Tn, Vn)]
            then the result is [(T0, func(V0, V1)), (T2, func(V2, V3), ...].
        """

        result = []

        nan = float('nan')

        # start to exclude points not in timewindow
        # in taking care about round time
        if self.round_time:
            period = self._get_period(timewindow)
            round_starttimestamp = period.round_timestamp(
                timestamp=timewindow.start()
            )
            timewindow = timewindow.reduce(
                start=round_starttimestamp,
                stop=timewindow.stop()
            )

        # start to exclude points which are not in timewindow
        points = [
            point for point in points
            if point[0] in timewindow and (usenan or not isnan(point[1]))
        ]

        if not meta:
            meta = {}

        transform_method = meta.get('value', {}).get('type', None)
        points = apply_transform(points, method=transform_method)
        points_len = len(points)

        func = None

        # if no period and max_points > len(points)
        if (
                (not points) or self.period is None
                and self.max_points > points_len
        ):
            result = points  # result is points

        else:  # else calculate points with the right aggregation function
            func = get_aggregations()[self.aggregation]

            # get timesteps
            timesteps = self.timesteps(timewindow)[:-1]

            # initialize variables for loop
            i = 0
            values_to_aggregate = []
            last_point = None

            len_timesteps = len(timesteps)

            # iterate on timesteps to get points in [prev_ts, timestamp[
            for index, timestamp in enumerate(timesteps):
                # initialize values_to_aggregate
                values_to_aggregate = []
                # set timestamp and previous_timestamp

                if index < (len_timesteps - 1):  # calculate the upper bound
                    next_timestamp = timesteps[index + 1]

                else:
                    next_timestamp = None

                # fill the values_to_aggregate array
                for i in range(i, points_len):  # while points to process

                    pt_ts, pt_val = points[i]

                    # leave the loop if _timestamp is for a future aggregation
                    if next_timestamp is not None and pt_ts >= next_timestamp:
                        break

                    else:
                        # add value to list of values to aggregate
                        values_to_aggregate.append(pt_val)

                else:  # leave the loop whatever timesteps
                    i += 1

                # TODO: understand what it means :D
                if self.aggregation == "DELTA" and last_point:
                    values_to_aggregate.insert(0, last_point)

                if values_to_aggregate:

                    # get the aggregated value related to values_to_aggregate
                    aggregation_value = self._aggregation_value(
                        values_to_aggregate, func
                    )

                    # new point to add to result
                    if usenan or not isnan(aggregation_value):
                        aggregation_point = timestamp, aggregation_value
                        result.append(aggregation_point)
                        # save last_point for future DELTA checking
                        last_point = aggregation_point[-1]

                elif usenan:
                        result.append((timestamp, nan))

        return result
예제 #4
0
    def calculate(self, points, timewindow, meta=None):
        """
        Do an operation on all points with input timewindow.

        Return points su as follow:
        Let fn self aggregation function and
        input points of the form: [(T0, V0), ..., (Tn, Vn)]
        then the result is [(T0, fn(V0, V1)), (T2, fn(V2, V3), ...].
        """

        result = []

        # start to exclude points not in timewindow
        # in taking care about round time
        if self.round_time:
            period = self._get_period(timewindow)
            round_starttimestamp = period.round_timestamp(
                timestamp=timewindow.start(),
                normalize=True
            )
            timewindow = timewindow.reduce(
                start=round_starttimestamp,
                stop=timewindow.stop()
            )

        # start to exclude points which are not in timewindow
        points = [point for point in points if point[0] in timewindow]

        if not meta:
            meta = {}

        transform_method = meta.get('value', {}).get('type', None)
        points = self.apply_transform(points, method=transform_method)
        points_len = len(points)

        fn = None

        # if no period and max_points > len(points)
        if (not points) or self.period is None\
                and self.max_points > points_len:
            result = points  # result is points

        else:  # else get the right aggregation function
            fn = get_aggregations()[self.aggregation]

        # if an aggregation is required
        if fn is not None:

            # get timesteps
            timesteps = self.timesteps(timewindow)
            # initialize variables for loop
            i = 0
            values_to_aggregate = []
            last_point = None

            # iterate on all timesteps in order to get points in [prev_ts, ts[
            for index in range(1, len(timesteps)):
                # initialize values_to_aggregate
                values_to_aggregate = []
                # set timestamp and previous_timestamp
                previous_timestamp = timesteps[index - 1]
                timestamp = timesteps[index]

                # if no point to process in [previous_timestamp, timestamp]
                if points[i][0] > timestamp:
                    continue  # go to the next iteration

                # fill the values_to_aggregate array
                while i < points_len:  # while there are points to process

                    _timestamp, value = points[i]
                    i += 1

                    # leave the loop if _timestamp is for a future aggregation
                    if _timestamp > timestamp:
                        break

                    # if _timestamp is in timewindow and value is not None
                    # add value to list of values to aggregate
                    if value is not None:
                        values_to_aggregate.append(value)

                # TODO: understand what it means :D
                if self.aggregation == "DELTA" and last_point:
                    values_to_aggregate.insert(0, last_point)

                # get the aggregated value related to values_to_aggregate
                _aggregation_value = self._aggregation_value(
                    values_to_aggregate, fn)

                # new point to add to result
                aggregation_point = previous_timestamp, _aggregation_value
                result.append(aggregation_point)

                # save last_point for future DELTA checking
                if len(values_to_aggregate) > 0:
                    last_point = values_to_aggregate[-1]

                if i >= points_len:
                    break

        else:
            result = points

        return result