def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 224, 224 num_classes = 1000 train_inputs = tf.random_uniform((train_batch_size, height, width, 3)) inception.inception_v1(train_inputs, num_classes) eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size, ))
def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points)
def testLogitsNotSqueezed(self): num_classes = 25 images = tf.random_uniform([1, 224, 224, 3]) logits, _ = inception.inception_v1(images, num_classes=num_classes, spatial_squeeze=False) with self.test_session() as sess: tf.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue( logits.op.name.startswith('InceptionV1/Logits/SpatialSqueeze')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes])
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = inception.inception_v1(eval_inputs, num_classes, is_training=False) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size, ))
def testUnknowBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = tf.placeholder(tf.float32, (None, height, width, 3)) logits, _ = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = tf.random_uniform((batch_size, height, width, 3)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes))
def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception.inception_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])