예제 #1
0
 def _gradient_matching_test_assert(self, model: Module,
                                    output_layer: Module,
                                    test_input: Tensor) -> None:
     out = _forward_layer_eval(model, test_input, output_layer)
     # Select first element of tuple
     out = out[0]
     gradient_attrib = NeuronGradient(model, output_layer)
     self.assertFalse(gradient_attrib.multiplies_by_inputs)
     for i in range(cast(Tuple[int, ...], out.shape)[1]):
         neuron: Tuple[int, ...] = (i, )
         while len(neuron) < len(out.shape) - 1:
             neuron = neuron + (0, )
         input_attrib = Saliency(lambda x: _forward_layer_eval(
             model, x, output_layer, grad_enabled=True)[0][
                 (slice(None), *neuron)])
         sal_vals = input_attrib.attribute(test_input, abs=False)
         grad_vals = gradient_attrib.attribute(test_input, neuron)
         # Verify matching sizes
         self.assertEqual(grad_vals.shape, sal_vals.shape)
         self.assertEqual(grad_vals.shape, test_input.shape)
         assertArraysAlmostEqual(
             sal_vals.reshape(-1).tolist(),
             grad_vals.reshape(-1).tolist(),
             delta=0.001,
         )
예제 #2
0
    def forward_eval_layer_with_inputs_helper(self, model, inputs_to_test):
        # hard coding for simplicity
        # 0 if using args, 1 if using kwargs
        #   => no 0s after first 1 (left to right)
        #
        # used to test utilization of args/kwargs
        use_args_or_kwargs = [
            [[0], [1]],
            [
                [0, 0],
                [0, 1],
                [1, 1],
            ],
        ]

        model = ModelInputWrapper(model)

        def forward_func(*args, args_or_kwargs=None):
            # convert to args or kwargs to test *args and **kwargs wrapping behavior
            new_args = []
            new_kwargs = {}
            for args_or_kwarg, name, inp in zip(args_or_kwargs,
                                                inputs_to_test.keys(), args):
                if args_or_kwarg:
                    new_kwargs[name] = inp
                else:
                    new_args.append(inp)
            return model(*new_args, **new_kwargs)

        for args_or_kwargs in use_args_or_kwargs[len(inputs_to_test) - 1]:
            with self.subTest(args_or_kwargs=args_or_kwargs):
                inputs = _forward_layer_eval(
                    functools.partial(forward_func,
                                      args_or_kwargs=args_or_kwargs),
                    inputs=tuple(inputs_to_test.values()),
                    layer=[
                        model.input_maps[name]
                        for name in inputs_to_test.keys()
                    ],
                )

                inputs_with_attrib_to_inp = _forward_layer_eval(
                    functools.partial(forward_func,
                                      args_or_kwargs=args_or_kwargs),
                    inputs=tuple(inputs_to_test.values()),
                    layer=[
                        model.input_maps[name]
                        for name in inputs_to_test.keys()
                    ],
                    attribute_to_layer_input=True,
                )

                for i1, i2, i3 in zip(inputs, inputs_with_attrib_to_inp,
                                      inputs_to_test.values()):
                    self.assertTrue((i1[0] == i2[0]).all())
                    self.assertTrue((i1[0] == i3).all())
예제 #3
0
 def neuron_forward_func(*args: Any):
     with torch.no_grad():
         layer_eval = _forward_layer_eval(
             self.forward_func,
             args,
             self.layer,
             device_ids=self.device_ids,
             attribute_to_layer_input=attribute_to_neuron_input,
         )
         return _verify_select_neuron(layer_eval, neuron_selector)
예제 #4
0
    def attribute(
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        n_steps: int = 50,
        method: str = "gausslegendre",
        internal_batch_size: Union[None, int] = None,
        return_convergence_delta: bool = False,
        attribute_to_layer_input: bool = False,
    ) -> Union[Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[
            Tensor, ...]]]], Tuple[Union[Tensor, Tuple[
                Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]],
                                   Tensor, ], ]:
        r"""
        This method attributes the output of the model with given target index
        (in case it is provided, otherwise it assumes that output is a
        scalar) to layer inputs or outputs of the model, depending on whether
        `attribute_to_layer_input` is set to True or False, using the approach
        described above.

        In addition to that it also returns, if `return_convergence_delta` is
        set to True, integral approximation delta based on the completeness
        property of integrated gradients.

        Args:

            inputs (tensor or tuple of tensors):  Input for which layer integrated
                        gradients are computed. If forward_func takes a single
                        tensor as input, a single input tensor should be provided.
                        If forward_func takes multiple tensors as input, a tuple
                        of the input tensors should be provided. It is assumed
                        that for all given input tensors, dimension 0 corresponds
                        to the number of examples, and if multiple input tensors
                        are provided, the examples must be aligned appropriately.
            baselines (scalar, tensor, tuple of scalars or tensors, optional):
                        Baselines define the starting point from which integral
                        is computed and can be provided as:

                        - a single tensor, if inputs is a single tensor, with
                          exactly the same dimensions as inputs or the first
                          dimension is one and the remaining dimensions match
                          with inputs.

                        - a single scalar, if inputs is a single tensor, which will
                          be broadcasted for each input value in input tensor.

                        - a tuple of tensors or scalars, the baseline corresponding
                          to each tensor in the inputs' tuple can be:
                            - either a tensor with matching dimensions to
                              corresponding tensor in the inputs' tuple
                              or the first dimension is one and the remaining
                              dimensions match with the corresponding
                              input tensor.
                            - or a scalar, corresponding to a tensor in the
                              inputs' tuple. This scalar value is broadcasted
                              for corresponding input tensor.

                        In the cases when `baselines` is not provided, we internally
                        use zero scalar corresponding to each input tensor.

                        Default: None
            target (int, tuple, tensor or list, optional):  Output indices for
                        which gradients are computed (for classification cases,
                        this is usually the target class).
                        If the network returns a scalar value per example,
                        no target index is necessary.
                        For general 2D outputs, targets can be either:

                        - a single integer or a tensor containing a single
                          integer, which is applied to all input examples

                        - a list of integers or a 1D tensor, with length matching
                          the number of examples in inputs (dim 0). Each integer
                          is applied as the target for the corresponding example.

                        For outputs with > 2 dimensions, targets can be either:

                        - A single tuple, which contains #output_dims - 1
                          elements. This target index is applied to all examples.

                        - A list of tuples with length equal to the number of
                          examples in inputs (dim 0), and each tuple containing
                          #output_dims - 1 elements. Each tuple is applied as the
                          target for the corresponding example.

                        Default: None
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It must be either a single additional
                        argument of a Tensor or arbitrary (non-tuple) type or a
                        tuple containing multiple additional arguments including
                        tensors or any arbitrary python types. These arguments
                        are provided to forward_func in order following the
                        arguments in inputs.
                        For a tensor, the first dimension of the tensor must
                        correspond to the number of examples. It will be
                        repeated for each of `n_steps` along the integrated
                        path. For all other types, the given argument is used
                        for all forward evaluations.
                        Note that attributions are not computed with respect
                        to these arguments.
                        Default: None
            n_steps (int, optional): The number of steps used by the approximation
                        method. Default: 50.
            method (string, optional): Method for approximating the integral,
                        one of `riemann_right`, `riemann_left`, `riemann_middle`,
                        `riemann_trapezoid` or `gausslegendre`.
                        Default: `gausslegendre` if no method is provided.
            internal_batch_size (int, optional): Divides total #steps * #examples
                        data points into chunks of size at most internal_batch_size,
                        which are computed (forward / backward passes)
                        sequentially. internal_batch_size must be at least equal to
                        #examples.
                        For DataParallel models, each batch is split among the
                        available devices, so evaluations on each available
                        device contain internal_batch_size / num_devices examples.
                        If internal_batch_size is None, then all evaluations are
                        processed in one batch.
                        Default: None
            return_convergence_delta (bool, optional): Indicates whether to return
                        convergence delta or not. If `return_convergence_delta`
                        is set to True convergence delta will be returned in
                        a tuple following attributions.
                        Default: False
            attribute_to_layer_input (bool, optional): Indicates whether to
                        compute the attribution with respect to the layer input
                        or output. If `attribute_to_layer_input` is set to True
                        then the attributions will be computed with respect to
                        layer input, otherwise it will be computed with respect
                        to layer output.
                        Note that currently it is assumed that either the input
                        or the output of internal layer, depending on whether we
                        attribute to the input or output, is a single tensor.
                        Support for multiple tensors will be added later.
                        Default: False
            Returns:
                **attributions** or 2-element tuple of **attributions**, **delta**:
                - **attributions** (*tensor*, tuple of *tensors* or tuple of *tensors*):
                        Integrated gradients with respect to `layer`'s inputs or
                        outputs. Attributions will always be the same size and
                        dimensionality as the input or output of the given layer,
                        depending on whether we attribute to the inputs or outputs
                        of the layer which is decided by the input flag
                        `attribute_to_layer_input`.

                        For a single layer, attributions are returned in a tuple if
                        the layer inputs / outputs contain multiple tensors,
                        otherwise a single tensor is returned.

                        For multiple layers, attributions will always be
                        returned as a list. Each element in this list will be
                        equivalent to that of a single layer output, i.e. in the
                        case that one layer, in the given layers, inputs / outputs
                        multiple tensors: the corresponding output element will be
                        a tuple of tensors. The ordering of the outputs will be
                        the same order as the layers given in the constructor.
                - **delta** (*tensor*, returned if return_convergence_delta=True):
                        The difference between the total approximated and true
                        integrated gradients. This is computed using the property
                        that the total sum of forward_func(inputs) -
                        forward_func(baselines) must equal the total sum of the
                        integrated gradient.
                        Delta is calculated per example, meaning that the number of
                        elements in returned delta tensor is equal to the number of
                        of examples in inputs.

            Examples::

                >>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
                >>> # and returns an Nx10 tensor of class probabilities.
                >>> # It contains an attribute conv1, which is an instance of nn.conv2d,
                >>> # and the output of this layer has dimensions Nx12x32x32.
                >>> net = ImageClassifier()
                >>> lig = LayerIntegratedGradients(net, net.conv1)
                >>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
                >>> # Computes layer integrated gradients for class 3.
                >>> # attribution size matches layer output, Nx12x32x32
                >>> attribution = lig.attribute(input, target=3)
        """
        inps, baselines = _format_input_baseline(inputs, baselines)
        _validate_input(inps, baselines, n_steps, method)

        baselines = _tensorize_baseline(inps, baselines)
        additional_forward_args = _format_additional_forward_args(
            additional_forward_args)

        def flatten_tuple(tup):
            return tuple(
                sum((list(x) if isinstance(x, (tuple, list)) else [x]
                     for x in tup), []))

        if self.device_ids is None:
            self.device_ids = getattr(self.forward_func, "device_ids", None)

        inputs_layer = _forward_layer_eval(
            self.forward_func,
            inps,
            self.layer,
            device_ids=self.device_ids,
            additional_forward_args=additional_forward_args,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        # if we have one output
        if not isinstance(self.layer, list):
            inputs_layer = (inputs_layer, )

        num_outputs = [
            1 if isinstance(x, Tensor) else len(x) for x in inputs_layer
        ]
        num_outputs_cumsum = torch.cumsum(
            torch.IntTensor([0] + num_outputs),
            dim=0  # type: ignore
        )
        inputs_layer = flatten_tuple(inputs_layer)

        baselines_layer = _forward_layer_eval(
            self.forward_func,
            baselines,
            self.layer,
            device_ids=self.device_ids,
            additional_forward_args=additional_forward_args,
            attribute_to_layer_input=attribute_to_layer_input,
        )
        baselines_layer = flatten_tuple(baselines_layer)

        # inputs -> these inputs are scaled
        def gradient_func(
            forward_fn: Callable,
            inputs: Union[Tensor, Tuple[Tensor, ...]],
            target_ind: TargetType = None,
            additional_forward_args: Any = None,
        ) -> Tuple[Tensor, ...]:
            if self.device_ids is None or len(self.device_ids) == 0:
                scattered_inputs = (inputs, )
            else:
                # scatter method does not have a precise enough return type in its
                # stub, so suppress the type warning.
                scattered_inputs = scatter(  # type:ignore
                    inputs, target_gpus=self.device_ids)

            scattered_inputs_dict = {
                scattered_input[0].device: scattered_input
                for scattered_input in scattered_inputs
            }

            with torch.autograd.set_grad_enabled(True):

                def layer_forward_hook(module,
                                       hook_inputs,
                                       hook_outputs=None,
                                       layer_idx=0):
                    device = _extract_device(module, hook_inputs, hook_outputs)
                    is_layer_tuple = (
                        isinstance(hook_outputs, tuple)
                        # hook_outputs is None if attribute_to_layer_input == True
                        if hook_outputs is not None else isinstance(
                            hook_inputs, tuple))

                    if is_layer_tuple:
                        return scattered_inputs_dict[device][
                            num_outputs_cumsum[layer_idx]:num_outputs_cumsum[
                                layer_idx + 1]]

                    return scattered_inputs_dict[device][
                        num_outputs_cumsum[layer_idx]]

                hooks = []
                try:

                    layers = self.layer
                    if not isinstance(layers, list):
                        layers = [self.layer]

                    for layer_idx, layer in enumerate(layers):
                        hook = None
                        # TODO:
                        # Allow multiple attribute_to_layer_input flags for
                        # each layer, i.e. attribute_to_layer_input[layer_idx]
                        if attribute_to_layer_input:
                            hook = layer.register_forward_pre_hook(
                                functools.partial(layer_forward_hook,
                                                  layer_idx=layer_idx))
                        else:
                            hook = layer.register_forward_hook(
                                functools.partial(layer_forward_hook,
                                                  layer_idx=layer_idx))

                        hooks.append(hook)

                    output = _run_forward(self.forward_func, tuple(),
                                          target_ind, additional_forward_args)
                finally:
                    for hook in hooks:
                        if hook is not None:
                            hook.remove()

                assert output[0].numel() == 1, (
                    "Target not provided when necessary, cannot"
                    " take gradient with respect to multiple outputs.")
                # torch.unbind(forward_out) is a list of scalar tensor tuples and
                # contains batch_size * #steps elements
                grads = torch.autograd.grad(torch.unbind(output), inputs)
            return grads

        self.ig.gradient_func = gradient_func
        all_inputs = ((inps + additional_forward_args)
                      if additional_forward_args is not None else inps)

        attributions = self.ig.attribute.__wrapped__(  # type: ignore
            self.ig,  # self
            inputs_layer,
            baselines=baselines_layer,
            target=target,
            additional_forward_args=all_inputs,
            n_steps=n_steps,
            method=method,
            internal_batch_size=internal_batch_size,
            return_convergence_delta=False,
        )

        # handle multiple outputs
        output: List[Tuple[Tensor, ...]] = [
            tuple(attributions[int(num_outputs_cumsum[i]
                                   ):int(num_outputs_cumsum[i + 1])])
            for i in range(len(num_outputs))
        ]

        if return_convergence_delta:
            start_point, end_point = baselines, inps
            # computes approximation error based on the completeness axiom
            delta = self.compute_convergence_delta(
                attributions,
                start_point,
                end_point,
                additional_forward_args=additional_forward_args,
                target=target,
            )
            return _format_outputs(isinstance(self.layer, list), output), delta
        return _format_outputs(isinstance(self.layer, list), output)
예제 #5
0
    def attribute(  # type: ignore
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        baselines: Union[Tensor, Tuple[Tensor, ...]],
        target: TargetType = None,
        additional_forward_args: Any = None,
        return_convergence_delta: bool = False,
        attribute_to_layer_input: bool = False,
    ) -> Union[Tensor, Tuple[Tensor, ...], Tuple[Union[Tensor, Tuple[
            Tensor, ...]], Tensor]]:
        inputs, baselines = _format_input_baseline(inputs, baselines)
        rand_coefficient = torch.tensor(
            np.random.uniform(0.0, 1.0, inputs[0].shape[0]),
            device=inputs[0].device,
            dtype=inputs[0].dtype,
        )

        input_baseline_scaled = tuple(
            _scale_input(input, baseline, rand_coefficient)
            for input, baseline in zip(inputs, baselines))
        grads, _ = compute_layer_gradients_and_eval(
            self.forward_func,
            self.layer,
            input_baseline_scaled,
            target,
            additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        attr_baselines = _forward_layer_eval(
            self.forward_func,
            baselines,
            self.layer,
            additional_forward_args=additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        attr_inputs = _forward_layer_eval(
            self.forward_func,
            inputs,
            self.layer,
            additional_forward_args=additional_forward_args,
            device_ids=self.device_ids,
            attribute_to_layer_input=attribute_to_layer_input,
        )

        if self.multiplies_by_inputs:
            input_baseline_diffs = tuple(
                input - baseline
                for input, baseline in zip(attr_inputs, attr_baselines))
            attributions = tuple(input_baseline_diff * grad
                                 for input_baseline_diff, grad in zip(
                                     input_baseline_diffs, grads))
        else:
            attributions = grads

        return _compute_conv_delta_and_format_attrs(
            self,
            return_convergence_delta,
            attributions,
            baselines,
            inputs,
            additional_forward_args,
            target,
            cast(Union[Literal[True], Literal[False]],
                 len(attributions) > 1),
        )
예제 #6
0
    def attribute(
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        layer_baselines: BaselineType = None,
        target: TargetType = None,
        additional_forward_args: Any = None,
        layer_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None,
        attribute_to_layer_input: bool = False,
        perturbations_per_eval: int = 1,
    ) -> Union[Tensor, Tuple[Tensor, ...]]:
        r"""
        Args:

            inputs (tensor or tuple of tensors):  Input for which layer
                        attributions are computed. If forward_func takes a single
                        tensor as input, a single input tensor should be provided.
                        If forward_func takes multiple tensors as input, a tuple
                        of the input tensors should be provided. It is assumed
                        that for all given input tensors, dimension 0 corresponds
                        to the number of examples, and if multiple input tensors
                        are provided, the examples must be aligned appropriately.
            layer_baselines (scalar, tensor, tuple of scalars or tensors, optional):
                        Layer baselines define reference values which replace each
                        layer input / output value when ablated.
                        Layer baselines should be a single tensor with dimensions
                        matching the input / output of the target layer (or
                        broadcastable to match it), based
                        on whether we are attributing to the input or output
                        of the target layer.
                        In the cases when `baselines` is not provided, we internally
                        use zero as the baseline for each neuron.
                        Default: None
            target (int, tuple, tensor or list, optional):  Output indices for
                        which gradients are computed (for classification cases,
                        this is usually the target class).
                        If the network returns a scalar value per example,
                        no target index is necessary.
                        For general 2D outputs, targets can be either:

                        - a single integer or a tensor containing a single
                          integer, which is applied to all input examples

                        - a list of integers or a 1D tensor, with length matching
                          the number of examples in inputs (dim 0). Each integer
                          is applied as the target for the corresponding example.

                        For outputs with > 2 dimensions, targets can be either:

                        - A single tuple, which contains #output_dims - 1
                          elements. This target index is applied to all examples.

                        - A list of tuples with length equal to the number of
                          examples in inputs (dim 0), and each tuple containing
                          #output_dims - 1 elements. Each tuple is applied as the
                          target for the corresponding example.

                        Default: None
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It must be either a single additional
                        argument of a Tensor or arbitrary (non-tuple) type or a
                        tuple containing multiple additional arguments including
                        tensors or any arbitrary python types. These arguments
                        are provided to forward_func in order following the
                        arguments in inputs.
                        Note that attributions are not computed with respect
                        to these arguments.
                        Default: None
            layer_mask (tensor or tuple of tensors, optional):
                        layer_mask defines a mask for the layer, grouping
                        elements of the layer input / output which should be
                        ablated together.
                        layer_mask should be a single tensor with dimensions
                        matching the input / output of the target layer (or
                        broadcastable to match it), based
                        on whether we are attributing to the input or output
                        of the target layer. layer_mask
                        should contain integers in the range 0 to num_groups
                        - 1, and all elements with the same value are
                        considered to be in the same group.
                        If None, then a layer mask is constructed which assigns
                        each neuron within the layer as a separate group, which
                        is ablated independently.
                        Default: None
            attribute_to_layer_input (bool, optional): Indicates whether to
                        compute the attributions with respect to the layer input
                        or output. If `attribute_to_layer_input` is set to True
                        then the attributions will be computed with respect to
                        layer's inputs, otherwise it will be computed with respect
                        to layer's outputs.
                        Note that currently it is assumed that either the input
                        or the output of the layer, depending on whether we
                        attribute to the input or output, is a single tensor.
                        Support for multiple tensors will be added later.
                        Default: False
            perturbations_per_eval (int, optional): Allows ablation of multiple
                        neuron (groups) to be processed simultaneously in one
                        call to forward_fn.
                        Each forward pass will contain a maximum of
                        perturbations_per_eval * #examples samples.
                        For DataParallel models, each batch is split among the
                        available devices, so evaluations on each available
                        device contain at most
                        (perturbations_per_eval * #examples) / num_devices
                        samples.
                        Default: 1

        Returns:
            *tensor* or tuple of *tensors* of **attributions**:
            - **attributions** (*tensor* or tuple of *tensors*):
                        Attribution of each neuron in given layer input or
                        output. Attributions will always be the same size as
                        the input or output of the given layer, depending on
                        whether we attribute to the inputs or outputs
                        of the layer which is decided by the input flag
                        `attribute_to_layer_input`
                        Attributions are returned in a tuple if
                        the layer inputs / outputs contain multiple tensors,
                        otherwise a single tensor is returned.


        Examples::

        >>> # SimpleClassifier takes a single input tensor of size Nx4x4,
        >>> # and returns an Nx3 tensor of class probabilities.
        >>> # It contains an attribute conv1, which is an instance of nn.conv2d,
        >>> # and the output of this layer has dimensions Nx12x3x3.
        >>> net = SimpleClassifier()
        >>> # Generating random input with size 2 x 4 x 4
        >>> input = torch.randn(2, 4, 4)
        >>> # Defining LayerFeatureAblation interpreter
        >>> ablator = LayerFeatureAblation(net, net.conv1)
        >>> # Computes ablation attribution, ablating each of the 108
        >>> # neurons independently.
        >>> attr = ablator.attribute(input, target=1)

        >>> # Alternatively, we may want to ablate neurons in groups, e.g.
        >>> # grouping all the layer outputs in the same row.
        >>> # This can be done by creating a layer mask as follows, which
        >>> # defines the groups of layer inputs / outouts, e.g.:
        >>> # +---+---+---+
        >>> # | 0 | 0 | 0 |
        >>> # +---+---+---+
        >>> # | 1 | 1 | 1 |
        >>> # +---+---+---+
        >>> # | 2 | 2 | 2 |
        >>> # +---+---+---+
        >>> # With this mask, all the 36 neurons in a row / channel are ablated
        >>> # simultaneously, and the attribution for each neuron in the same
        >>> # group (0 - 2) per example are the same.
        >>> # The attributions can be calculated as follows:
        >>> # layer mask has dimensions 1 x 3 x 3
        >>> layer_mask = torch.tensor([[[0,0,0],[1,1,1],
        >>>                             [2,2,2]]])
        >>> attr = ablator.attribute(input, target=1,
        >>>                          layer_mask=layer_mask)
        """
        def layer_forward_func(*args):
            layer_length = args[-1]
            layer_input = args[:layer_length]
            original_inputs = args[layer_length:-1]

            device_ids = self.device_ids
            if device_ids is None:
                device_ids = getattr(self.forward_func, "device_ids", None)

            all_layer_inputs = {}
            if device_ids is not None:
                scattered_layer_input = scatter(layer_input,
                                                target_gpus=device_ids)
                for device_tensors in scattered_layer_input:
                    all_layer_inputs[device_tensors[0].device] = device_tensors
            else:
                all_layer_inputs[layer_input[0].device] = layer_input

            def forward_hook(module, inp, out=None):
                device = _extract_device(module, inp, out)
                is_layer_tuple = (isinstance(out, tuple) if out is not None
                                  else isinstance(inp, tuple))
                if device not in all_layer_inputs:
                    raise AssertionError(
                        "Layer input not placed on appropriate "
                        "device. If using a DataParallel model, either provide the "
                        "DataParallel model as forward_func or provide device ids"
                        " to the constructor.")
                if not is_layer_tuple:
                    return all_layer_inputs[device][0]
                return all_layer_inputs[device]

            hook = None
            try:
                if attribute_to_layer_input:
                    hook = self.layer.register_forward_pre_hook(forward_hook)
                else:
                    hook = self.layer.register_forward_hook(forward_hook)
                eval = _run_forward(self.forward_func,
                                    original_inputs,
                                    target=target)
            finally:
                if hook is not None:
                    hook.remove()
            return eval

        with torch.no_grad():
            inputs = _format_tensor_into_tuples(inputs)
            additional_forward_args = _format_additional_forward_args(
                additional_forward_args)
            layer_eval = _forward_layer_eval(
                self.forward_func,
                inputs,
                self.layer,
                additional_forward_args,
                device_ids=self.device_ids,
                attribute_to_layer_input=attribute_to_layer_input,
            )
            layer_eval_len = (len(layer_eval), )
            all_inputs = ((inputs + additional_forward_args + layer_eval_len)
                          if additional_forward_args is not None else inputs +
                          layer_eval_len)

            ablator = FeatureAblation(layer_forward_func)

            layer_attribs = ablator.attribute.__wrapped__(
                ablator,  # self
                layer_eval,
                baselines=layer_baselines,
                additional_forward_args=all_inputs,
                feature_mask=layer_mask,
                perturbations_per_eval=perturbations_per_eval,
            )
            _attr = _format_output(len(layer_attribs) > 1, layer_attribs)
        return _attr
예제 #7
0
    def attribute(
        self,
        inputs: Union[Tensor, Tuple[Tensor, ...]],
        additional_forward_args: Any = None,
        attribute_to_layer_input: bool = False,
    ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor,
                                                                    ...]]]]:
        r"""
        Args:

            inputs (tensor or tuple of tensors):  Input for which layer
                        activation is computed. If forward_func takes a single
                        tensor as input, a single input tensor should be provided.
                        If forward_func takes multiple tensors as input, a tuple
                        of the input tensors should be provided. It is assumed
                        that for all given input tensors, dimension 0 corresponds
                        to the number of examples, and if multiple input tensors
                        are provided, the examples must be aligned appropriately.
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It must be either a single additional
                        argument of a Tensor or arbitrary (non-tuple) type or a
                        tuple containing multiple additional arguments including
                        tensors or any arbitrary python types. These arguments
                        are provided to forward_func in order following the
                        arguments in inputs.
                        Note that attributions are not computed with respect
                        to these arguments.
                        Default: None
            attribute_to_layer_input (bool, optional): Indicates whether to
                        compute the attribution with respect to the layer input
                        or output. If `attribute_to_layer_input` is set to True
                        then the attributions will be computed with respect to
                        layer input, otherwise it will be computed with respect
                        to layer output.
                        Note that currently it is assumed that either the input
                        or the output of internal layer, depending on whether we
                        attribute to the input or output, is a single tensor.
                        Support for multiple tensors will be added later.
                        Default: False

        Returns:
            *tensor* or tuple of *tensors* or *list* of **attributions**:
            - **attributions** (*tensor* or tuple of *tensors* or *list*):
                        Activation of each neuron in given layer output.
                        Attributions will always be the same size as the
                        output of the given layer.
                        Attributions are returned in a tuple if
                        the layer inputs / outputs contain multiple tensors,
                        otherwise a single tensor is returned.
                        If multiple layers are provided, attributions
                        are returned as a list, each element corresponding to the
                        activations of the corresponding layer.



        Examples::

            >>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
            >>> # and returns an Nx10 tensor of class probabilities.
            >>> # It contains an attribute conv1, which is an instance of nn.conv2d,
            >>> # and the output of this layer has dimensions Nx12x32x32.
            >>> net = ImageClassifier()
            >>> layer_act = LayerActivation(net, net.conv1)
            >>> input = torch.randn(2, 3, 32, 32, requires_grad=True)
            >>> # Computes layer activation.
            >>> # attribution is layer output, with size Nx12x32x32
            >>> attribution = layer_cond.attribute(input)
        """
        with torch.no_grad():
            layer_eval = _forward_layer_eval(
                self.forward_func,
                inputs,
                self.layer,
                additional_forward_args,
                device_ids=self.device_ids,
                attribute_to_layer_input=attribute_to_layer_input,
            )
        if isinstance(self.layer, Module):
            return _format_output(len(layer_eval) > 1, layer_eval)
        else:
            return [
                _format_output(len(single_layer_eval) > 1, single_layer_eval)
                for single_layer_eval in layer_eval
            ]