예제 #1
0
def main(args):
    # The image source may differ from the default depending on the command-line arguments
    source = None
    try:
        if args.picamera:
            source = capture.picamera()
            LOG.info('Will grab frames from the picamera.')
        elif args.image is not None:
            file = args.image
            source = capture.image_file(file)
            LOG.info('Will grab frames from a static image: {}.'.format(file))
        elif args.ipcamera is not None:
            url = 'http://{}/mjpg/video.mjpg'.format(args.ipcamera)
            source = capture.ip_camera(url)
            LOG.info('Will grab frames from IP camera at {}'.format(url))
        else:
            index = args.webcam
            source = capture.webcam(index)
            LOG.info('Will grab frames from webcam #{}.'.format(index))
    except (capture.CameraInitializationError, FileNotFoundError) as e:
        # TODO Do something meaningful and retry
        LOG.error(e)
        exit('Unable to read from image source.')

    # Initialize NetworkTables one time at the start; other code assumes it is initialized.
    network.init_network_tables(args.ip)

    # NetworkTables communication. The script aims to be interchangeable with GRIP.
    network_publisher = NetworkTablePublisher('GRIP/myContoursReport', silent=args.nt_silent)

    # Debug communication
    detect_receiver = None  # TODO
    detect_publisher = NetworkTablePublisher('Grapple', silent=args.nt_silent)
    detect = Detect(detect_receiver, detect_publisher)

    # For GUI debugging
    display = DisplayObserver()

    for image in source:
        targets = detect.get_data(image)

        # Adapt the payload into the same format as GRIP to be compatible with
        # the current code on the RIO
        # TODO this is probably why the zip function is a thing
        areas, centers_x, centers_y = [], [], []
        for area, (center_x, center_y) in targets:
            areas.append(area)
            centers_x.append(center_x)
            centers_y.append(center_y)
        network_publisher.on_next(('area', areas))
        network_publisher.on_next(('centerX', centers_x))
        network_publisher.on_next(('centerY', centers_y))

        if not args.no_gui:
            # Overlay the contours onto the original image and display it
            centers = list(zip(centers_x, centers_y))
            display.on_next(detect.to_image(centers))

    # All done, manually evoke cleanup callbacks
    network_publisher.on_completed()
    display.on_completed()