def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) scopeName = 'NET' scopeName1 = 'First' scopeName2 = 'Second' self.dropout_vec = [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [ 0.5, 1. ] * 2 config_gpu = tf.ConfigProto() # GPU to be selected, just take zero , select GPU with CUDA_VISIBLE_DEVICES config_gpu.gpu_options.visible_device_list = '0' config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self._sess = tf.Session(config=config_gpu) with tf.device('/gpu:0'): self._input_images = tf.placeholder("float", shape=[ None, self._image_size[0], self._image_size[1], self._image_size[2] ], name="input_image") self._input_data = tf.placeholder(tf.float32, shape=[None, 1], name="input_speed") self._dout = tf.placeholder("float", shape=[len(self.dropout_vec)]) with tf.variable_scope(scopeName) as scope: self._network_tensor = load_imitation_learning_network( self._input_images, self._input_data, self._image_size, self._dout, scopeName1, scopeName2) import os dir_path = os.path.dirname(__file__) self._models_path = dir_path + '/model/test/' # tf.reset_default_graph() self._sess.run(tf.global_variables_initializer()) self.load_model() self._image_cut = image_cut
def __init__(self, checkpoint): Agent.__init__(self) self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda()
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping # Reading models and weights dir_path = 'E:\GP\org data less' self._model_path = dir_path + '/BH1_Nvidia.h5' self._weights_path = dir_path + '/BH1_Nividia_at_epoch_40.h5' self._image_cut = image_cut self.model = keras.models.load_model(self._model_path, custom_objects={'masked_loss_function': masked_loss_function}) self.model.load_weights(self._weights_path)
def __init__(self, city_name, mode, num_control, path=None, image_cut=[115, 510], gpu_fraction=0.75): Agent.__init__(self) # set keras session config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True config_gpu.gpu_options.per_process_gpu_memory_fraction = gpu_fraction KTF.set_session(tf.Session(config=config_gpu)) self.model = None self.mode = mode self.num_control = num_control self.path = path self._image_cut = image_cut self.init()
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) self.images = list([]) self.imagenum = 0 self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self.network = make_network() self._sess = tf.Session(config=tf.ConfigProto( log_device_placement=False)) self._sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(write_version=saver_pb2.SaverDef.V2) saver.restore(self._sess, './agents/imitation/mymodel/epoch-149.ckpt') print('hellohellohellohellohellohello') self._image_cut = image_cut