def transforms_from_agent(agent):
    """ Returns the KITTI object type and transforms, locations and extension of the given agent """
    if agent.HasField('pedestrian'):
        obj_type = 'Pedestrian'
        agent_transform = Transform(agent.pedestrian.transform)
        bbox_transform = Transform(agent.pedestrian.bounding_box.transform)
        ext = agent.pedestrian.bounding_box.extent
        location = agent.pedestrian.transform.location
    elif agent.HasField('vehicle'):
        obj_type = 'Car'
        agent_transform = Transform(agent.vehicle.transform)
        bbox_transform = Transform(agent.vehicle.bounding_box.transform)
        ext = agent.vehicle.bounding_box.extent
        location = agent.vehicle.transform.location
    else:
        return (None, None, None, None, None)
    return obj_type, agent_transform, bbox_transform, ext, location
예제 #2
0
def get_extrinsic(measurement_data, camera2):

    camera_to_car_transform = camera2.get_unreal_transform()
    world_transform = Transform(measurement_data.player_measurements.transform)

    newworld = np.array(convert_transform(world_transform))
    newcam = np.array(convert_transform(camera_to_car_transform))
    return np.matmul(newworld, newcam), newcam
예제 #3
0
def make_carla_settings(args):
    """Make a CarlaSettings object with the settings we need."""
    settings = CarlaSettings()
    settings.set(
        SynchronousMode=False,
        SendNonPlayerAgentsInfo=True,
        NumberOfVehicles=NUM_VEHICLES,
        NumberOfPedestrians=NUM_PEDESTRIANS,
        DisableTwoWheeledVehicles=NO_BIKE,
        # WeatherId=random.choice([1, 3, 7, 8, 14]),
        WeatherId=1,
        QualityLevel=args.quality_level)
    settings.randomize_seeds()
    camera0 = sensor.Camera('CameraRGB')
    camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    camera0.set_position(0, 0.0, CAMERA_HEIGHT_POS)
    camera0.set_rotation(0.0, 0.0, 0.0)
    settings.add_sensor(camera0)

    lidar = sensor.Lidar('Lidar32')
    lidar.set_position(0, 0.0, LIDAR_HEIGHT_POS)
    lidar.set_rotation(0, 0, 0)
    lidar.set(Channels=40,
              Range=MAX_RENDER_DEPTH_IN_METERS,
              PointsPerSecond=720000,
              RotationFrequency=10,
              UpperFovLimit=7,
              LowerFovLimit=-16)
    settings.add_sensor(lidar)
    """ Depth camera for filtering out occluded vehicles """
    depth_camera = sensor.Camera('DepthCamera', PostProcessing='Depth')
    depth_camera.set(FOV=90.0)
    depth_camera.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
    depth_camera.set_position(0, 0, CAMERA_HEIGHT_POS)
    depth_camera.set_rotation(0, 0, 0)
    settings.add_sensor(depth_camera)
    # (Intrinsic) K Matrix
    # | f 0 Cu
    # | 0 f Cv
    # | 0 0 1
    # (Cu, Cv) is center of image
    k = np.identity(3)
    k[0, 2] = WINDOW_WIDTH_HALF
    k[1, 2] = WINDOW_HEIGHT_HALF
    f = WINDOW_WIDTH / \
        (2.0 * math.tan(90.0 * math.pi / 360.0))
    k[0, 0] = k[1, 1] = f
    camera_to_car_transform = camera0.get_unreal_transform()
    lidar_to_car_transform = lidar.get_transform() * Transform(
        Rotation(yaw=90), Scale(z=-1))
    return settings, k, camera_to_car_transform, lidar_to_car_transform
예제 #4
0
def find_pts(update_pts, measurement_data, newcam):

    pts_2d_ls_new = []
    for i in range(len(update_pts)):

        world_transform = Transform(
            measurement_data.player_measurements.transform)

        newworld = np.array(convert_transform(world_transform))

        extrinsic = np.matmul(newworld, newcam)

        world_coord = np.asarray(update_pts[i]).reshape(4, -1)
        conversion = _3d_to_2d(extrinsic, world_coord, intrinsic)
        pts_2d_ls_new.append(conversion)
    return pts_2d_ls_new
예제 #5
0
def map_ground_bounding_box_to_2D(distance_img, world_transform,
                                  obstacle_transform, bounding_box,
                                  rgb_transform, rgb_intrinsic, rgb_img_size):
    (image_width, image_height) = rgb_img_size
    extrinsic_mat = world_transform * rgb_transform
    obj_transform = Transform(obstacle_transform.to_transform_pb2())
    bbox_pb2 = bounding_box.to_bounding_box_pb2()
    bbox_transform = Transform(bbox_pb2.transform)
    ext = bbox_pb2.extent

    # 8 bounding box vertices relative to (0,0,0)
    bbox = np.array([[ext.x, ext.y, ext.z], [ext.x, -ext.y, ext.z],
                     [ext.x, ext.y, -ext.z], [ext.x, -ext.y, -ext.z],
                     [-ext.x, ext.y, ext.z], [-ext.x, -ext.y, ext.z],
                     [-ext.x, ext.y, -ext.z], [-ext.x, -ext.y, -ext.z]])

    # Transform the vertices with respect to the bounding box transform.
    bbox = bbox_transform.transform_points(bbox)

    # The bounding box transform is with respect to the object transform.
    # Transform the points relative to its transform.
    bbox = obj_transform.transform_points(bbox)

    # Object's transform is relative to the world. Thus, the bbox contains
    # the 3D bounding box vertices relative to the world.

    coords = []
    for vertex in bbox:
        pos_vector = np.array([
            [vertex[0, 0]],  # [[X,
            [vertex[0, 1]],  #   Y,
            [vertex[0, 2]],  #   Z,
            [1.0]  #   1.0]]
        ])
        # Transform the points to camera.
        transformed_3d_pos = np.dot(inv(extrinsic_mat.matrix), pos_vector)
        # Transform the points to 2D.
        pos2d = np.dot(rgb_intrinsic, transformed_3d_pos[:3])

        # Normalize the 2D points.
        pos2d = np.array([pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2]])

        # Add the points to the image.
        if pos2d[2] > 0:  # If the point is in front of the camera.
            x_2d = float(image_width - pos2d[0])
            y_2d = float(image_height - pos2d[1])
            if (x_2d >= 0 or y_2d >= 0) and (x_2d < image_width
                                             or y_2d < image_height):
                coords.append((x_2d, y_2d, pos2d[2]))

    return coords
예제 #6
0
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 30
    frame_step = 10  # Save one image every 100 frames

    image_size = [800, 600]
    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 70
    autopilot = False
    control = VehicleControl()
    for start_i in range(150):
        output_folder = '/home2/mariap/Packages/CARLA_0.8.2/PythonClient/_out/pos_' + str(
            start_i)
        if not os.path.exists(output_folder):
            os.mkdir(output_folder)
            print("make " + str(output_folder))

    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')
        for start_i in range(150):
            output_folder = '/home2/mariap/Packages/CARLA_0.8.2/PythonClient/_out/pos_' + str(
                start_i)
            print(output_folder)

            # Here we load the settings.
            settings = CarlaSettings()
            settings.set(SynchronousMode=True,
                         SendNonPlayerAgentsInfo=True,
                         NumberOfVehicles=100,
                         NumberOfPedestrians=500,
                         WeatherId=random.choice([1, 3, 7, 8, 14]))
            settings.randomize_seeds()

            camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
            camera1.set_image_size(*image_size)
            camera1.set_position(*camera_local_pos)
            camera1.set_rotation(*camera_local_rotation)
            settings.add_sensor(camera1)

            camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
            camera2.set_image_size(*image_size)
            camera2.set_position(*camera_local_pos)
            camera2.set_rotation(*camera_local_rotation)
            settings.add_sensor(camera2)

            camera3 = Camera('CameraSeg',
                             PostProcessing='SemanticSegmentation')
            camera3.set_image_size(*image_size)
            camera3.set_position(*camera_local_pos)
            camera3.set_rotation(*camera_local_rotation)
            settings.add_sensor(camera3)

            client.load_settings(settings)

            # Start at location index id '0'
            client.start_episode(start_i)

            cameras_dict = {}
            pedestrians_dict = {}
            cars_dict = {}
            # Compute the camera transform matrix
            camera_to_car_transform = camera2.get_unreal_transform()
            # (Intrinsic) (3, 3) K Matrix
            K = np.identity(3)
            K[0, 2] = image_size[0] / 2.0
            K[1, 2] = image_size[1] / 2.0
            K[0,
              0] = K[1,
                     1] = image_size[0] / (2.0 * np.tan(fov * np.pi / 360.0))
            with open(output_folder + '/camera_intrinsics.p', 'w') as camfile:
                pickle.dump(K, camfile)

            # Iterate every frame in the episode except for the first one.
            for frame in range(1, number_of_frames):
                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                # Save one image every 'frame_step' frames
                if not frame % frame_step:
                    for name, measurement in sensor_data.items():
                        filename = '{:s}/{:0>6d}'.format(name, frame)
                        measurement.save_to_disk(
                            os.path.join(output_folder, filename))
                    # Start transformations time mesure.
                    timer = StopWatch()

                    # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                    image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                    image_seg = np.tile(
                        labels_to_array(sensor_data['CameraSeg']), (1, 1, 3))

                    # 2d to (camera) local 3d
                    # We use the image_RGB to colorize each 3D point, this is optional.
                    # "max_depth" is used to keep only the points that are near to the
                    # camera, meaning 1.0 the farest points (sky)
                    point_cloud = depth_to_local_point_cloud(
                        sensor_data['CameraDepth'], image_RGB, max_depth=far)

                    point_cloud_seg = depth_to_local_point_cloud(
                        sensor_data['CameraDepth'], image_seg, max_depth=far)

                    # (Camera) local 3d to world 3d.
                    # Get the transform from the player protobuf transformation.
                    world_transform = Transform(
                        measurements.player_measurements.transform)

                    # Compute the final transformation matrix.
                    car_to_world_transform = world_transform * camera_to_car_transform

                    # Car to World transformation given the 3D points and the
                    # transformation matrix.
                    point_cloud.apply_transform(car_to_world_transform)
                    point_cloud_seg.apply_transform(car_to_world_transform)

                    Rt = car_to_world_transform.matrix
                    Rt_inv = car_to_world_transform.inverse(
                    ).matrix  # Rt_inv is the world to camera matrix !!
                    #R_inv=world_transform.inverse().matrix
                    cameras_dict[frame] = {}
                    cameras_dict[frame]['inverse_rotation'] = Rt_inv[:]
                    cameras_dict[frame]['rotation'] = Rt[:]
                    cameras_dict[frame]['translation'] = Rt_inv[0:3, 3]
                    cameras_dict[frame][
                        'camera_to_car'] = camera_to_car_transform.matrix

                    # Get non-player info
                    vehicles = {}
                    pedestrians = {}
                    for agent in measurements.non_player_agents:
                        # check if the agent is a vehicle.
                        if agent.HasField('vehicle'):
                            pos = agent.vehicle.transform.location
                            pos_vector = np.array([[pos.x], [pos.y], [pos.z],
                                                   [1.0]])

                            trnasformed_3d_pos = np.dot(Rt_inv, pos_vector)
                            pos2d = np.dot(K, trnasformed_3d_pos[:3])

                            # Normalize the point
                            norm_pos2d = np.array([
                                pos2d[0] / pos2d[2], pos2d[1] / pos2d[2],
                                pos2d[2]
                            ])

                            # Now, pos2d contains the [x, y, d] values of the image in pixels (where d is the depth)
                            # You can use the depth to know the points that are in front of the camera (positive depth).

                            x_2d = image_size[0] - norm_pos2d[0]
                            y_2d = image_size[1] - norm_pos2d[1]
                            vehicles[agent.id] = {}
                            vehicles[agent.id]['transform'] = [
                                agent.vehicle.transform.location.x,
                                agent.vehicle.transform.location.y,
                                agent.vehicle.transform.location.z
                            ]
                            vehicles[agent.id][
                                'bounding_box.transform'] = agent.vehicle.bounding_box.transform.location.z

                            vehicles[agent.id][
                                'yaw'] = agent.vehicle.transform.rotation.yaw
                            vehicles[agent.id]['bounding_box'] = [
                                agent.vehicle.bounding_box.extent.x,
                                agent.vehicle.bounding_box.extent.y,
                                agent.vehicle.bounding_box.extent.z
                            ]
                            vehicle_transform = Transform(
                                agent.vehicle.bounding_box.transform)
                            pos = agent.vehicle.transform.location

                            bbox3d = agent.vehicle.bounding_box.extent

                            # Compute the 3D bounding boxes
                            # f contains the 4 points that corresponds to the bottom
                            f = np.array([[
                                pos.x + bbox3d.x, pos.y - bbox3d.y,
                                pos.z - bbox3d.z +
                                agent.vehicle.bounding_box.transform.location.z
                            ],
                                          [
                                              pos.x + bbox3d.x,
                                              pos.y + bbox3d.y,
                                              pos.z - bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x - bbox3d.x,
                                              pos.y + bbox3d.y,
                                              pos.z - bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x - bbox3d.x,
                                              pos.y - bbox3d.y,
                                              pos.z - bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x + bbox3d.x,
                                              pos.y - bbox3d.y,
                                              pos.z + bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x + bbox3d.x,
                                              pos.y + bbox3d.y,
                                              pos.z + bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x - bbox3d.x,
                                              pos.y + bbox3d.y,
                                              pos.z + bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ],
                                          [
                                              pos.x - bbox3d.x,
                                              pos.y - bbox3d.y,
                                              pos.z + bbox3d.z + agent.vehicle.
                                              bounding_box.transform.location.z
                                          ]])

                            f_rotated = vehicle_transform.transform_points(f)
                            f_2D_rotated = []
                            vehicles[
                                agent.id]['bounding_box_coord'] = f_rotated

                            for i in range(f.shape[0]):
                                point = np.array([[f_rotated[i, 0]],
                                                  [f_rotated[i, 1]],
                                                  [f_rotated[i, 2]], [1]])
                                transformed_2d_pos = np.dot(
                                    Rt_inv,
                                    point)  # 3d Position in camera space
                                pos2d = np.dot(
                                    K, transformed_2d_pos[:3]
                                )  # Conversion to camera frustum space
                                norm_pos2d = np.array([
                                    pos2d[0] / pos2d[2], pos2d[1] / pos2d[2],
                                    pos2d[2]
                                ])
                                #print([image_size[0] - (pos2d[0] / pos2d[2]), image_size[1] - (pos2d[1] / pos2d[2])])
                                f_2D_rotated.append(
                                    np.array([
                                        image_size[0] - norm_pos2d[0],
                                        image_size[1] - norm_pos2d[1]
                                    ]))
                            vehicles[
                                agent.id]['bounding_box_2D'] = f_2D_rotated

                        elif agent.HasField('pedestrian'):

                            pedestrians[agent.id] = {}
                            pedestrians[agent.id]['transform'] = [
                                agent.pedestrian.transform.location.x,
                                agent.pedestrian.transform.location.y,
                                agent.pedestrian.transform.location.z
                            ]
                            pedestrians[agent.id][
                                'yaw'] = agent.pedestrian.transform.rotation.yaw
                            pedestrians[agent.id]['bounding_box'] = [
                                agent.pedestrian.bounding_box.extent.x,
                                agent.pedestrian.bounding_box.extent.y,
                                agent.pedestrian.bounding_box.extent.z
                            ]
                            vehicle_transform = Transform(
                                agent.pedestrian.bounding_box.transform)
                            pos = agent.pedestrian.transform.location

                            bbox3d = agent.pedestrian.bounding_box.extent

                            # Compute the 3D bounding boxes
                            # f contains the 4 points that corresponds to the bottom
                            f = np.array(
                                [[pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z],
                                 [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z],
                                 [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z],
                                 [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z],
                                 [
                                     pos.x + bbox3d.x, pos.y - bbox3d.y,
                                     pos.z + bbox3d.z
                                 ],
                                 [
                                     pos.x + bbox3d.x, pos.y + bbox3d.y,
                                     pos.z + bbox3d.z
                                 ],
                                 [
                                     pos.x - bbox3d.x, pos.y + bbox3d.y,
                                     pos.z + bbox3d.z
                                 ],
                                 [
                                     pos.x - bbox3d.x, pos.y - bbox3d.y,
                                     pos.z + bbox3d.z
                                 ]])

                            f_rotated = vehicle_transform.transform_points(f)
                            pedestrians[
                                agent.id]['bounding_box_coord'] = f_rotated
                            f_2D_rotated = []

                            for i in range(f.shape[0]):
                                point = np.array([[f_rotated[i, 0]],
                                                  [f_rotated[i, 1]],
                                                  [f_rotated[i, 2]], [1]])
                                transformed_2d_pos = np.dot(
                                    Rt_inv, point)  # See above for cars
                                pos2d = np.dot(K, transformed_2d_pos[:3])
                                norm_pos2d = np.array([
                                    pos2d[0] / pos2d[2], pos2d[1] / pos2d[2],
                                    pos2d[2]
                                ])
                                f_2D_rotated.append([
                                    image_size[0] - norm_pos2d[0],
                                    image_size[1] - norm_pos2d[1]
                                ])
                            pedestrians[
                                agent.id]['bounding_box_2D'] = f_2D_rotated

                    cars_dict[frame] = vehicles
                    pedestrians_dict[frame] = pedestrians

                    # End transformations time mesure.
                    timer.stop()

                    # Save PLY to disk
                    # This generates the PLY string with the 3D points and the RGB colors
                    # for each row of the file.
                    point_cloud.save_to_disk(
                        os.path.join(output_folder,
                                     '{:0>5}.ply'.format(frame)))
                    point_cloud_seg.save_to_disk(
                        os.path.join(output_folder,
                                     '{:0>5}_seg.ply'.format(frame)))

                    print_message(timer.milliseconds(), len(point_cloud),
                                  frame)

                if autopilot:
                    client.send_control(
                        measurements.player_measurements.autopilot_control)
                else:
                    control.hand_brake = True
                    client.send_control(control)
            with open(output_folder + '/cameras.p', 'w') as camerafile:
                pickle.dump(cameras_dict, camerafile)
                print(output_folder + "cameras.p")
            with open(output_folder + '/people.p', 'w') as peoplefile:
                pickle.dump(pedestrians_dict, peoplefile)
            with open(output_folder + '/cars.p', 'w') as carfile:
                pickle.dump(cars_dict, carfile)
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 10  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [1280, 720]
    camera_local_pos = [0.7, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 59
    WINDOW_WIDTH = 1280
    WINDOW_HEIGHT = 720
    MINI_WINDOW_WIDTH = 320
    MINI_WINDOW_HEIGHT = 180

    WINDOW_WIDTH_HALF = WINDOW_WIDTH / 2
    WINDOW_HEIGHT_HALF = WINDOW_HEIGHT / 2

    k = np.identity(3)
    k[0, 2] = WINDOW_WIDTH_HALF
    k[1, 2] = WINDOW_HEIGHT_HALF
    k[0, 0] = k[1, 1] = WINDOW_WIDTH / \
        (2.0 * math.tan(59.0 * math.pi / 360.0))
    intrinsic = k
    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=1)
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)
        #scene = client.load_settings(settings)
        client.load_settings(settings)
        #print("sjdsjhdjshdjshdjshgds",scene.player_start_spots[0].location.x)
        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()
        print("camera_to_car_transform", camera_to_car_transform)
        carla_utils_obj = segmentation.carla_utils(intrinsic)

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                image_depth = to_rgb_array(sensor_data['CameraDepth'])
                #measurements.player_measurements.transform.location.x-=40
                #measurements.player_measurements.transform.location.z-=2
                world_transform = Transform(
                    measurements.player_measurements.transform)

                im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)

                pos_vector = ([
                    measurements.player_measurements.transform.location.x,
                    measurements.player_measurements.transform.location.y,
                    measurements.player_measurements.transform.location.z
                ])

                fdfd = str(world_transform)
                sdsd = fdfd[1:-1].split('\n')
                new = []
                for i in sdsd:
                    dd = i[:-1].lstrip('[ ')
                    ff = re.sub("\s+", ",", dd.strip())
                    gg = ff.split(',')
                    new.append([float(i) for i in gg])
                newworld = np.array(new)
                fdfd = str(camera_to_car_transform)
                sdsd = fdfd[1:-1].split('\n')
                new = []
                for i in sdsd:
                    dd = i[:-1].lstrip('[ ')
                    ff = re.sub("\s+", ",", dd.strip())
                    gg = ff.split(',')
                    new.append([float(i) for i in gg])
                newcam = np.array(new)
                extrinsic = np.matmul(newworld, newcam)
                get_2d_point = carla_utils_obj.run_seg(im_bgr, extrinsic,
                                                       pos_vector)
                print(get_2d_point)
                depth = image_depth[int(get_2d_point[0]), int(get_2d_point[1])]
                scale = depth[0] + depth[1] * 256 + depth[2] * 256 * 256
                scale = scale / ((256 * 256 * 256) - 1)
                depth = scale * 1000
                pos2d = np.array([(WINDOW_WIDTH - get_2d_point[1]) * depth,
                                  (WINDOW_HEIGHT - get_2d_point[0]) * depth,
                                  depth])

                first = np.dot(np.linalg.inv(intrinsic), pos2d)
                first = np.append(first, 1)
                sec = np.matmul((extrinsic), first)
                print("present", pos_vector)
                print('goal-', sec)
            client.send_control(
                measurements.player_measurements.autopilot_control)
예제 #8
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 15
    frames_per_episode = 1230
    #              [0 , 1 , 2 , 3 , 4  , 5  , 6  , 7  , 8  , 9  , 10, 11, 12, 13, 14]
    vehicles_num = [
        140, 100, 120, 80, 90, 100, 80, 90, 110, 100, 80, 70, 70, 80, 100
    ]

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in range(0, number_of_episodes):
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles=vehicles_num[
                        episode],  #random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=120,
                    DisableTwoWheeledVehicles=False,
                    WeatherId=episode,  #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.

                # LEFT RGB CAMERA
                camera_l = Camera('LeftCameraRGB', PostProcessing='SceneFinal')
                camera_l.set_image_size(800, 600)
                camera_l.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_l)

                # LEFT DEPTH
                camera_ld = Camera('LeftCameraDepth', PostProcessing='Depth')
                camera_ld.set_image_size(800, 600)
                camera_ld.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_ld)

                # LEFT SEGMENTATION
                camera_ls = Camera('LeftCameraSeg',
                                   PostProcessing='SemanticSegmentation')
                camera_ls.set_image_size(800, 600)
                camera_ls.set_position(1.30, -0.27, 1.50)
                settings.add_sensor(camera_ls)

                # RIGHT RGB CAMERA
                camera_r = Camera('RightCameraRGB',
                                  PostProcessing='SceneFinal')
                camera_r.set_image_size(800, 600)
                camera_r.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_r)

                # RIGHT DEPTH
                camera_rd = Camera('RightCameraDepth', PostProcessing='Depth')
                camera_rd.set_image_size(800, 600)
                camera_rd.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_rd)

                # RIGHT SEGMENTATION
                camera_rs = Camera('RightCameraSeg',
                                   PostProcessing='SemanticSegmentation')
                camera_rs.set_image_size(800, 600)
                camera_rs.set_position(1.30, 0.27, 1.50)
                settings.add_sensor(camera_rs)

                # LEFT 15 DEGREE RGB CAMERA
                camera_l_15 = Camera('15_LeftCameraRGB',
                                     PostProcessing='SceneFinal')
                camera_l_15.set_image_size(800, 600)
                camera_l_15.set_position(1.30, -0.7, 1.50)  # [X, Y, Z]
                camera_l_15.set_rotation(0, -15.0,
                                         0)  # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_l_15)

                # LEFT 15 DEGREE DEPTH
                camera_ld_15 = Camera('15_LeftCameraDepth',
                                      PostProcessing='Depth')
                camera_ld_15.set_image_size(800, 600)
                camera_ld_15.set_position(1.30, -0.7, 1.50)
                camera_ld_15.set_rotation(0, -15.0, 0)
                settings.add_sensor(camera_ld_15)

                # LEFT 15 DEGREE SEGMENTATION
                camera_ls_15 = Camera('15_LeftCameraSeg',
                                      PostProcessing='SemanticSegmentation')
                camera_ls_15.set_image_size(800, 600)
                camera_ls_15.set_position(1.30, -0.7, 1.50)
                camera_ls_15.set_rotation(0, -15.0, 0)
                settings.add_sensor(camera_ls_15)

                # Right 15 DEGREE RGB CAMERA
                camera_r_15 = Camera('15_RightCameraRGB',
                                     PostProcessing='SceneFinal')
                camera_r_15.set_image_size(800, 600)
                camera_r_15.set_position(1.30, 0.7, 1.50)
                camera_r_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_r_15)

                # Right 15 DEGREE DEPTH
                camera_rd_15 = Camera('15_RightCameraDepth',
                                      PostProcessing='Depth')
                camera_rd_15.set_image_size(800, 600)
                camera_rd_15.set_position(1.30, 0.7, 1.50)
                camera_rd_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_rd_15)

                # RIGHT 15 DEGREE SEGMENTATION
                camera_ls_15 = Camera('15_RightCameraSeg',
                                      PostProcessing='SemanticSegmentation')
                camera_ls_15.set_image_size(800, 600)
                camera_ls_15.set_position(1.30, 0.7, 1.50)
                camera_ls_15.set_rotation(0, 15.0, 0)
                settings.add_sensor(camera_ls_15)

                # LEFT 30 DEGREE RGB CAMERA
                camera_l_30 = Camera('30_LeftCameraRGB',
                                     PostProcessing='SceneFinal')
                camera_l_30.set_image_size(800, 600)
                camera_l_30.set_position(1.30, -0.7, 1.50)
                camera_l_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_l_30)

                # LEFT 30 DEGREE DEPTH
                camera_ld_30 = Camera('30_LeftCameraDepth',
                                      PostProcessing='Depth')
                camera_ld_30.set_image_size(800, 600)
                camera_ld_30.set_position(1.30, -0.7, 1.50)
                camera_ld_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_ld_30)

                # LEFT 30 DEGREE SEGMENTATION
                camera_ls_30 = Camera('30_LeftCameraSeg',
                                      PostProcessing='SemanticSegmentation')
                camera_ls_30.set_image_size(800, 600)
                camera_ls_30.set_position(1.30, -0.7, 1.50)
                camera_ls_30.set_rotation(0, -30.0, 0)
                settings.add_sensor(camera_ls_30)

                # RIGHT 30 DEGREE RGB CAMERA
                camera_r_30 = Camera('30_RightCameraRGB',
                                     PostProcessing='SceneFinal')
                camera_r_30.set_image_size(800, 600)
                camera_r_30.set_position(1.30, 0.7, 1.50)
                camera_r_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_r_30)

                # RIGHT 30 DEGREE DEPTH
                camera_rd_30 = Camera('30_RightCameraDepth',
                                      PostProcessing='Depth')
                camera_rd_30.set_image_size(800, 600)
                camera_rd_30.set_position(1.30, 0.7, 1.50)
                camera_rd_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_rd_30)

                # RIGHT 30 DEGREE SEGMENTATION
                camera_rs_30 = Camera('30_RightCameraSeg',
                                      PostProcessing='SemanticSegmentation')
                camera_rs_30.set_image_size(800, 600)
                camera_rs_30.set_position(1.30, 0.7, 1.50)
                camera_rs_30.set_rotation(0, 30.0, 0)
                settings.add_sensor(camera_rs_30)
            else:
                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)

            camera_l_to_car_transform = camera_l.get_unreal_transform()
            camera_r_to_car_transform = camera_r.get_unreal_transform()
            camera_l_15_to_car_transform = camera_l_15.get_unreal_transform()
            camera_r_15_to_car_transform = camera_r_15.get_unreal_transform()
            camera_l_30_to_car_transform = camera_l_30.get_unreal_transform()
            camera_r_30_to_car_transform = camera_r_30.get_unreal_transform()

            if not os.path.isdir(args.dataset_path +
                                 "/episode_{:0>4d}".format(episode)):
                os.makedirs(args.dataset_path +
                            "/episode_{:0>4d}".format(episode))
            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                #image = sensor_data.get('LeftCameraSeg', None)
                # array = image_converter.depth_to_logarithmic_grayscale(image)
                #array = image_converter.labels_to_cityscapes_palette(image)
                #filename = '{:0>6d}'.format(frame)
                #filename += '.png'
                #cv2.imwrite(filename, array)
                #image.save_to_disk("/data/khoshhal/Dataset/episode_{:0>4d}/{:s}/{:0>6d}".format(episode, "LeftCameraSeg", frame))

                # Print some of the measurements.
                # print_measurements(measurements)

                #player_measurements = measurements.player_measurements
                world_transform = Transform(
                    measurements.player_measurements.transform)

                # Compute the final transformation matrix.
                camera_l_to_world_transform = world_transform * camera_l_to_car_transform
                camera_r_to_world_transform = world_transform * camera_r_to_car_transform
                camera_l_15_to_world_transform = world_transform * camera_l_15_to_car_transform
                camera_r_15_to_world_transform = world_transform * camera_r_15_to_car_transform
                camera_l_30_to_world_transform = world_transform * camera_l_30_to_car_transform
                camera_r_30_to_world_transform = world_transform * camera_r_30_to_car_transform
                args.out_filename_format = dataset_path + '/episode_{:0>4d}/{:s}/{:0>6d}'
                # Save the images to disk if requested.
                if frame >= 30:
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(
                                episode, name, frame - 30)
                            measurement.save_to_disk(filename)

                        # Save Transform matrix of each camera to separated files
                        line = ""
                        filename = "{}/episode_{:0>4d}/LeftCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as LeftCamera:
                            for x in np.asarray(camera_l_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            LeftCamera.write(line)
                            line = ""
                        filename = "{}/episode_{:0>4d}/RightCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as RightCamera:
                            for x in np.asarray(camera_r_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            RightCamera.write(line)
                            line = ""

                        filename = "{}/episode_{:0>4d}/15_LeftCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_l_15_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}/episode_{:0>4d}/15_RightCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_r_15_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}/episode_{:0>4d}/30_LeftCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_l_30_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}/episode_{:0>4d}/30_RightCamera".format(
                            args.dataset_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_r_30_to_world_transform.
                                                matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not args.autopilot:

                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)

                #time.sleep(1)

            myfile.close()
            LeftCamera.close()
            RightCamera.close()
    def _on_loop(self):
        self._timer.tick()
        measurements, sensor_data = self.client.read_data()
        # logging.info("Frame no: {}, = {}".format(self.captured_frame_no,
        #                                         (self.captured_frame_no + 1) % NUM_RECORDINGS_BEFORE_RESET))
        # Reset the environment if the agent is stuck or can't find any agents or if we have captured enough frames in this one
        is_stuck = self._frames_since_last_capture >= NUM_EMPTY_FRAMES_BEFORE_RESET
        is_enough_datapoints = (self._captured_frames_since_restart +
                                1) % NUM_RECORDINGS_BEFORE_RESET == 0

        if (is_stuck or is_enough_datapoints) and GEN_DATA:
            logging.warning("Is stucK: {}, is_enough_datapoints: {}".format(
                is_stuck, is_enough_datapoints))
            self._on_new_episode()

            # If we dont sleep, the client will continue to render
            return True

        # (Extrinsic) Rt Matrix
        # (Camera) local 3d to world 3d.
        # Get the transform from the player protobuf transformation.
        world_transform = Transform(measurements.player_measurements.transform)
        # Compute the final transformation matrix.
        self._extrinsic = world_transform * self._camera_to_car_transform
        self._measurements = measurements
        self._last_player_location = measurements.player_measurements.transform.location
        self._main_image = sensor_data.get('CameraRGB', None)
        self._lidar_measurement = sensor_data.get('Lidar32', None)
        self._depth_image = sensor_data.get('DepthCamera', None)
        # Print measurements every second.
        if self._timer.elapsed_seconds_since_lap() > 1.0:
            if self._city_name is not None:
                # Function to get car position on map.
                map_position = self._map.convert_to_pixel([
                    measurements.player_measurements.transform.location.x,
                    measurements.player_measurements.transform.location.y,
                    measurements.player_measurements.transform.location.z
                ])
                # Function to get orientation of the road car is in.
                lane_orientation = self._map.get_lane_orientation([
                    measurements.player_measurements.transform.location.x,
                    measurements.player_measurements.transform.location.y,
                    measurements.player_measurements.transform.location.z
                ])

                MeasurementsDisplayHelper.print_player_measurements_map(
                    measurements.player_measurements, map_position,
                    lane_orientation, self._timer)
            else:
                MeasurementsDisplayHelper.print_player_measurements(
                    measurements.player_measurements, self._timer)
            # Plot position on the map as well.
            self._timer.lap()

        control = self._get_keyboard_control(pygame.key.get_pressed())
        # Set the player position
        if self._city_name is not None:
            self._position = self._map.convert_to_pixel([
                measurements.player_measurements.transform.location.x,
                measurements.player_measurements.transform.location.y,
                measurements.player_measurements.transform.location.z
            ])
            self._agent_positions = measurements.non_player_agents

        if control is None:
            self._on_new_episode()
        elif self._enable_autopilot:
            self.client.send_control(
                measurements.player_measurements.autopilot_control)
        else:
            self.client.send_control(control)
예제 #10
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 15
    frames_per_episode = 10050
    #              [0  , 1  , 2  , 3  , 4  , 5  , 6 , 7, 8  , 9  , 10, 11, 12, 13, 14]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    vehicles_num = [35, 35, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        # list_of_episodes = [11]
        # list_of_episodes = [9, 11, 14]
        list_of_episodes = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [6, 7, 9, 11, 14]
        # list_of_episodes = [2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [2, 7]
        # list_of_episodes = [5, 6, 7, 11, 14]
        # list_of_episodes = [6, 11]
        # list_of_episodes = [7]
        #list(range(0, number_of_episodes))
        #list_of_episodes.pop(13)
        #list_of_episodes.pop(12)
        #list_of_episodes.pop(10)
        #list_of_episodes.pop(8)

        for episode in list_of_episodes:
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles=vehicles_num[
                        episode],  #random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=4,
                    DisableTwoWheeledVehicles=False,
                    WeatherId=episode,  #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.
                #### Cameras aligned across the y-axis
                #### Horizontally shifted in the following Range
                # [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # LEFT RGB CAMERA
                # y_locs = [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # z_locs = [1.3, 1.84, 2.38, 2.92, 3.46, 4.0, 4.54]
                # y_locs_left = [-1.08, -0.54, 0.0, 0.54, 1.08]
                z_locs = [
                    i.item() - 7 * 0.5 for i in np.linspace(0, 14 * 0.5, 15)
                ]  # Up
                y_locs = [
                    i.item() - 7 * 0.5 for i in np.linspace(0, 14 * 0.5, 15)
                ]  # Right
                rotation_y = 0
                CameraArray = {}
                for j, y_position in enumerate(y_locs):
                    for i, z_position in enumerate(z_locs):
                        # COLOR
                        camera_rgb = Camera('RGB_{:0>2d}_{:0>2d}'.format(j, i),
                                            PostProcessing='SceneFinal')
                        camera_rgb.set_image_size(800, 600)
                        camera_rgb.set_position(2.0, y_position,
                                                2.00 - z_position)
                        camera_rgb.set_rotation(0, rotation_y, 0)
                        CameraArray['RGB_{:0>2d}_{:0>2d}'.format(
                            j, i)] = camera_rgb
                        settings.add_sensor(camera_rgb)
                        # DEPTH
                        camera_depth = Camera('Depth_{:0>2d}_{:0>2d}'.format(
                            j, i),
                                              PostProcessing='Depth')
                        camera_depth.set_image_size(800, 600)
                        camera_depth.set_position(2.0, y_position,
                                                  2.0 - z_position)
                        camera_depth.set_rotation(0, rotation_y, 0)
                        CameraArray['Depth_{:0>2d}_{:0>2d}'.format(
                            j, i)] = camera_depth
                        settings.add_sensor(camera_depth)
                        # SEGMENTATION
                        camera_seg = Camera(
                            'SEM_{:0>2d}_{:0>2d}'.format(j, i),
                            PostProcessing='SemanticSegmentation')
                        camera_seg.set_image_size(800, 600)
                        camera_seg.set_position(2.0, y_position,
                                                2.0 - z_position)
                        camera_seg.set_rotation(0, rotation_y, 0)
                        CameraArray['SEM_{:0>2d}_{:0>2d}'.format(
                            j, i)] = camera_seg
                        settings.add_sensor(camera_seg)
            else:
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()
            scene = client.load_settings(settings)
            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0,
                                                 number_of_player_starts - 1))
            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)
            print('Created a new episode...')
            Cameras_to_car = []
            for j in range(len(y_locs)):
                for i in range(len(z_locs)):
                    Cameras_to_car.append(
                        CameraArray['RGB_{:0>2d}_{:0>2d}'.format(
                            j, i)].get_transform())
            print('created a camera array')
            # Create a folder for saving episode data
            episode_dir = "{}/Town{:0>2d}/episode_{:0>5d}".format(
                args.data_path, args.town_id, episode)
            if not os.path.isdir(episode_dir):
                os.makedirs(episode_dir)
            print('created destination folder')
            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):
                # Read the data produced by the server this frame.
                time.sleep(1)
                measurements, sensor_data = client.read_data()
                print('got measurements')
                # player_measurements = measurements.player_measurements
                world_transform = Transform(
                    measurements.player_measurements.transform)
                # Compute the final transformation matrix.
                print('debug point 1')
                Cameras_to_world = [world_transform*cam_to_car \
                                        for cam_to_car in Cameras_to_car]
                if frame >= 50 and (frame % 100 == 0):
                    print('debug point 2')
                    if args.save_images_to_disk:
                        output_dir = os.path.join(
                            episode_dir, "{:0>6d}".format((frame - 50) / 100))
                        if not os.path.isdir(output_dir):
                            os.makedirs(output_dir)
                        for name, measurement in sensor_data.items():
                            # filename = args.out_filename_format.format(episode, name, (frame-50)/100)
                            filename = os.path.join(output_dir, name)
                            print('writing:', filename)
                            measurement.save_to_disk(filename)
                        cam_2_world_file = os.path.join(
                            output_dir, 'cam_2_world.txt')
                        with open(cam_2_world_file, 'w') as myfile:
                            for cam_num in range(len(Cameras_to_world)):
                                line = ""
                                for x in np.asarray(Cameras_to_world[cam_num].
                                                    matrix[:3, :]).reshape(-1):
                                    line += "{:.8e} ".format(x)
                                line = line[:-1]
                                line += "\n"
                                myfile.write(line)
                if not args.autopilot:
                    client.send_control(steer=random.uniform(-1.0, 1.0),
                                        throttle=0.5,
                                        brake=0.0,
                                        hand_brake=False,
                                        reverse=False)
                else:
                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.
                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)
예제 #11
0
def run_carla_client(args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 15
    frames_per_episode = 10030
    #              [0  , 1  , 2  , 3  , 4  , 5  , 6 , 7, 8  , 9  , 10, 11, 12, 13, 14]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    vehicles_num = [35, 35, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35]
    # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50]
    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')
        # list_of_episodes = [11]
        list_of_episodes = [9, 11, 14]
        # list_of_episodes = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [6, 7, 9, 11, 14]
        # list_of_episodes = [2, 3, 4, 5, 6, 7, 9, 11, 14]
        # list_of_episodes = [2, 7]
        # list_of_episodes = [5, 6, 7, 11, 14]
        # list_of_episodes = [6, 11]
        # list_of_episodes = [7]
        #list(range(0, number_of_episodes))
        #list_of_episodes.pop(13)
        #list_of_episodes.pop(12)
        #list_of_episodes.pop(10)
        #list_of_episodes.pop(8)

        for episode in list_of_episodes:
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles= vehicles_num[episode],#random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=25,
                    DisableTwoWheeledVehicles=False,
                    WeatherId= episode, #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.
                #### Cameras aligned across the y-axis
                #### Horizontally shifted in the following Range
                # [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # LEFT RGB CAMERA
                # y_locs = [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62]
                # x_locs = [1.3, 1.84, 2.38, 2.92, 3.46, 4.0, 4.54]
                # y_locs_left = [-1.08, -0.54, 0.0, 0.54, 1.08]
                y_locs_left = -1.08
                x_locs_left = [1.84, 2.38, 2.92]
                LeftSideCameras = {}
                for i,x_position in enumerate(x_locs_left):
                    # COLOR
                    camera_rgb = Camera('LeftSideCameras{0}RGB'.format(i),
                                     PostProcessing='SceneFinal')
                    camera_rgb.set_image_size(800, 600)
                    camera_rgb.set_position(x_position, y_locs_left, 1.50)
                    camera_rgb.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}RGB'.format(i)] = camera_rgb
                    settings.add_sensor(camera_rgb)
                    # DEPTH
                    camera_depth = Camera('LeftSideCameras{0}Depth'.format(i),
                                          PostProcessing='Depth')
                    camera_depth.set_image_size(800, 600)
                    camera_depth.set_position(x_position, y_locs_left, 1.50)
                    camera_depth.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}Depth'.format(i)] = camera_depth
                    settings.add_sensor(camera_depth)
                    # SEGMENTATION
                    camera_seg = Camera('LeftSideCameras{0}Seg'.format(i),
                                       PostProcessing='SemanticSegmentation')
                    camera_seg.set_image_size(800, 600)
                    camera_seg.set_position(x_position, y_locs_left, 1.50)
                    camera_seg.set_rotation(0, -90.0, 0)
                    LeftSideCameras['LeftSideCameras{0}Seg'.format(i)] = camera_seg
                    settings.add_sensor(camera_seg)

                y_locs_right = 1.08
                x_locs_right = [1.84, 2.38, 2.92]
                RightSideCameras = {}
                for i,x_position in enumerate(x_locs_right):
                    # COLOR
                    camera_rgb = Camera('RightSideCameras{0}RGB'.format(i),
                                     PostProcessing='SceneFinal')
                    camera_rgb.set_image_size(800, 600)
                    camera_rgb.set_position(x_position, y_locs_right, 1.50)
                    camera_rgb.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}RGB'.format(i)] = camera_rgb
                    settings.add_sensor(camera_rgb)
                    # DEPTH
                    camera_depth = Camera('RightSideCameras{0}Depth'.format(i),
                                          PostProcessing='Depth')
                    camera_depth.set_image_size(800, 600)
                    camera_depth.set_position(x_position, y_locs_right, 1.50)
                    camera_depth.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}Depth'.format(i)] = camera_depth
                    settings.add_sensor(camera_depth)
                    # SEGMENTATION
                    camera_seg = Camera('RightSideCameras{0}Seg'.format(i),
                                       PostProcessing='SemanticSegmentation')
                    camera_seg.set_image_size(800, 600)
                    camera_seg.set_position(x_position, y_locs_right, 1.50)
                    camera_seg.set_rotation(0, 90.0, 0)
                    RightSideCameras['RightSideCameras{0}Seg'.format(i)] = camera_seg
                    settings.add_sensor(camera_seg)

            else:
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()
            scene = client.load_settings(settings)
            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))
            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)
            LeftSideCameras_to_car = []
            for i in range(len(x_locs_right)):
                LeftSideCameras_to_car.append(LeftSideCameras['LeftSideCameras{0}RGB'.format(i)].get_transform())
            RightSideCameras_to_car = []
            for i in range(len(x_locs_right)):
                RightSideCameras_to_car.append(RightSideCameras['RightSideCameras{0}RGB'.format(i)].get_transform())
            # camera_90_p_l_to_car_transform = camera_90_p_l.get_transform()
            # camera_90_p_r_to_car_transform = camera_90_p_r.get_transform()
            # Create a folder for saving episode data
            if not os.path.isdir("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode)):
                os.makedirs("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode))

            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):
                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()
                # player_measurements = measurements.player_measurements
                world_transform = Transform(measurements.player_measurements.transform)
                # Compute the final transformation matrix.
                LeftSideCameras_to_world = [world_transform*cam_to_car \
                                        for cam_to_car in LeftSideCameras_to_car]
                RightSideCameras_to_world = [world_transform*cam_to_car \
                                        for cam_to_car in RightSideCameras_to_car]

                # for i in range(len()):
                #     LeftSideCameras_to_world.append()
                #     RightSideCameras_to_world.append(world_transform * RightSideCameras_to_car[i])
                # Save the images to disk if requested.
                if frame >= 30 and (frame % 2 == 0):
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(episode, name, (frame-30)/2)
                            measurement.save_to_disk(filename)
                        # Save Transform matrix of each camera to separated files
                        for cam_num in range(len(x_locs_left)):
                            line = ""
                            filename = "{}episode_{:0>5d}/LeftSideCameras{}".format(args.root_path, episode, cam_num) + ".txt"
                            with open(filename, 'a+') as myfile:
                                for x in np.asarray(LeftSideCameras_to_world[cam_num].matrix[:3, :]).reshape(-1):
                                    line += "{:.8e} ".format(x)
                                line = line[:-1]
                                line += "\n"
                                myfile.write(line)
                                line = ""
                        # Forward Cameras
                        # forward_cam_ids = list(range(len(x_locs_right)))
                        # forward_cam_ids.pop(mid_cam)
                        for i, cam_num in enumerate(x_locs_right):
                            line = ""
                            filename = "{}episode_{:0>5d}/RightSideCameras{}".format(args.root_path, episode, cam_num) + ".txt"
                            with open(filename, 'a+') as myfile:
                                for x in np.asarray(RightSideCameras_to_world[i].matrix[:3, :]).reshape(-1):
                                    line += "{:.8e} ".format(x)
                                line = line[:-1]
                                line += "\n"
                                myfile.write(line)
                                line = ""
                if not args.autopilot:
                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.5,
                        brake=0.0,
                        hand_brake=False,
                        reverse=False)
                else:
                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.
                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)
예제 #12
0
    def read_carla_data(self):
        read_start_time = time.time()
        measurements, sensor_data = self.client.read_data()
        measure_time = time.time()

        self._logger.info(
            'Got readings for game time {} and platform time {}'.format(
                measurements.game_timestamp, measurements.platform_timestamp))

        # Send measurements
        player_measurements = measurements.player_measurements
        vehicle_pos = ((player_measurements.transform.location.x,
                        player_measurements.transform.location.y,
                        player_measurements.transform.location.z),
                       (player_measurements.transform.orientation.x,
                        player_measurements.transform.orientation.y,
                        player_measurements.transform.orientation.z))

        world_transform = Transform(player_measurements.transform)

        timestamp = Timestamp(
            coordinates=[measurements.game_timestamp, self.message_num])
        self.message_num += 1
        ray.register_custom_serializer(Message, use_pickle=True)
        ray.register_custom_serializer(WatermarkMessage, use_pickle=True)
        watermark = WatermarkMessage(timestamp)
        self.get_output_stream('world_transform').send(
            Message(world_transform, timestamp))
        self.get_output_stream('world_transform').send(watermark)
        self.get_output_stream('vehicle_pos').send(
            Message(vehicle_pos, timestamp))
        self.get_output_stream('vehicle_pos').send(watermark)
        acceleration = (player_measurements.acceleration.x,
                        player_measurements.acceleration.y,
                        player_measurements.acceleration.z)
        self.get_output_stream('acceleration').send(
            Message(acceleration, timestamp))
        self.get_output_stream('acceleration').send(watermark)
        self.get_output_stream('forward_speed').send(
            Message(player_measurements.forward_speed, timestamp))
        self.get_output_stream('forward_speed').send(watermark)
        self.get_output_stream('vehicle_collisions').send(
            Message(player_measurements.collision_vehicles, timestamp))
        self.get_output_stream('vehicle_collisions').send(watermark)
        self.get_output_stream('pedestrian_collisions').send(
            Message(player_measurements.collision_pedestrians, timestamp))
        self.get_output_stream('pedestrian_collisions').send(watermark)
        self.get_output_stream('other_collisions').send(
            Message(player_measurements.collision_other, timestamp))
        self.get_output_stream('other_collisions').send(watermark)
        self.get_output_stream('other_lane').send(
            Message(player_measurements.intersection_otherlane, timestamp))
        self.get_output_stream('other_lane').send(watermark)
        self.get_output_stream('offroad').send(
            Message(player_measurements.intersection_offroad, timestamp))
        self.get_output_stream('offroad').send(watermark)

        vehicles = []
        pedestrians = []
        traffic_lights = []
        speed_limit_signs = []

        for agent in measurements.non_player_agents:
            if agent.HasField('vehicle'):
                pos = messages.Transform(agent.vehicle.transform)
                bb = messages.BoundingBox(agent.vehicle.bounding_box)
                forward_speed = agent.vehicle.forward_speed
                vehicle = messages.Vehicle(pos, bb, forward_speed)
                vehicles.append(vehicle)
            elif agent.HasField('pedestrian'):
                if not self.agent_id_map.get(agent.id):
                    self.pedestrian_count += 1
                    self.agent_id_map[agent.id] = self.pedestrian_count

                pedestrian_index = self.agent_id_map[agent.id]
                pos = messages.Transform(agent.pedestrian.transform)
                bb = messages.BoundingBox(agent.pedestrian.bounding_box)
                forward_speed = agent.pedestrian.forward_speed
                pedestrian = messages.Pedestrian(pedestrian_index, pos, bb,
                                                 forward_speed)
                pedestrians.append(pedestrian)
            elif agent.HasField('traffic_light'):
                transform = messages.Transform(agent.traffic_light.transform)
                traffic_light = messages.TrafficLight(
                    transform, agent.traffic_light.state)
                traffic_lights.append(traffic_light)
            elif agent.HasField('speed_limit_sign'):
                transform = messages.Transform(
                    agent.speed_limit_sign.transform)
                speed_sign = messages.SpeedLimitSign(
                    transform, agent.speed_limit_sign.speed_limit)
                speed_limit_signs.append(speed_sign)

        vehicles_msg = Message(vehicles, timestamp)
        self.get_output_stream('vehicles').send(vehicles_msg)
        self.get_output_stream('vehicles').send(watermark)
        pedestrians_msg = Message(pedestrians, timestamp)
        self.get_output_stream('pedestrians').send(pedestrians_msg)
        self.get_output_stream('pedestrians').send(watermark)
        traffic_lights_msg = Message(traffic_lights, timestamp)
        self.get_output_stream('traffic_lights').send(traffic_lights_msg)
        self.get_output_stream('traffic_lights').send(watermark)
        traffic_sings_msg = Message(speed_limit_signs, timestamp)
        self.get_output_stream('traffic_signs').send(traffic_sings_msg)
        self.get_output_stream('traffic_signs').send(watermark)

        # Send sensor data
        for name, measurement in sensor_data.items():
            data_stream = self.get_output_stream(name)
            if data_stream.get_label('camera_type') == 'SceneFinal':
                # Transform the Carla RGB images to BGR.
                data_stream.send(
                    Message(
                        pylot_utils.bgra_to_bgr(to_bgra_array(measurement)),
                        timestamp))
            else:
                data_stream.send(Message(measurement, timestamp))
            data_stream.send(watermark)

        self.client.send_control(**self.control)
        end_time = time.time()

        measurement_runtime = (measure_time - read_start_time) * 1000
        total_runtime = (end_time - read_start_time) * 1000
        self._logger.info('Carla measurement time {}; total time {}'.format(
            measurement_runtime, total_runtime))
        self._csv_logger.info('{},{},{},{}'.format(time_epoch_ms(), self.name,
                                                   measurement_runtime,
                                                   total_runtime))
def exec_waypoint_nav_demo(args):
    """ Executes waypoint navigation demo.
    """

    with make_carla_client(args.host, args.port) as client:
        print('Carla client connected.')

        settings, camera2 = make_carla_settings(args)

        # Now we load these settings into the server. The server replies
        # with a scene description containing the available start spots for
        # the player. Here we can provide a CarlaSettings object or a
        # CarlaSettings.ini file as string.

        scene = client.load_settings(settings)

        # Refer to the player start folder in the WorldOutliner to see the
        # player start information
        player_start = PLAYER_START_INDEX

        # Notify the server that we want to start the episode at the
        # player_start index. This function blocks until the server is ready
        # to start the episode.
        print('Starting new episode at %r...' % scene.map_name)
        client.start_episode(player_start)

        #############################################
        # Load Configurations
        #############################################

        # Load configuration file (options.cfg) and then parses for the various
        # options. Here we have two main options:
        # live_plotting and live_plotting_period, which controls whether
        # live plotting is enabled or how often the live plotter updates
        # during the simulation run.
        config = configparser.ConfigParser()
        config.read(
            os.path.join(os.path.dirname(os.path.realpath(__file__)),
                         'options.cfg'))
        demo_opt = config['Demo Parameters']

        # Get options
        enable_live_plot = demo_opt.get('live_plotting', 'true').capitalize()
        enable_live_plot = enable_live_plot == 'True'
        live_plot_period = float(demo_opt.get('live_plotting_period', 0))

        # Set options
        live_plot_timer = Timer(live_plot_period)

        #############################################
        # Load Waypoints
        #############################################
        # Opens the waypoint file and stores it to "waypoints"
        camera_to_car_transform = camera2.get_unreal_transform()

        carla_utils_obj = segmentationobj.carla_utils(intrinsic)
        measurement_data, sensor_data = client.read_data()
        measurements = measurement_data
        image_RGB = to_rgb_array(sensor_data['CameraRGB'])
        image_depth = to_rgb_array(sensor_data['CameraDepth'])

        world_transform = Transform(measurements.player_measurements.transform)

        im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)

        pos_vector = ([
            measurements.player_measurements.transform.location.x,
            measurements.player_measurements.transform.location.y,
            measurements.player_measurements.transform.location.z
        ])

        fdfd = str(world_transform)
        sdsd = fdfd[1:-1].split('\n')
        new = []
        for i in sdsd:
            dd = i[:-1].lstrip('[ ')
            ff = re.sub("\s+", ",", dd.strip())
            gg = ff.split(',')
            new.append([float(i) for i in gg])
        newworld = np.array(new)
        fdfd = str(camera_to_car_transform)
        sdsd = fdfd[1:-1].split('\n')
        new = []
        for i in sdsd:
            dd = i[:-1].lstrip('[ ')
            ff = re.sub("\s+", ",", dd.strip())
            gg = ff.split(',')
            new.append([float(i) for i in gg])
        newcam = np.array(new)
        extrinsic = np.matmul(newworld, newcam)
        #print("dfjdfjkjfdkf",extrinsic)
        get_2d_point, pointsmid, res_img = carla_utils_obj.run_seg(
            im_bgr, extrinsic, pos_vector)
        #print(get_2d_point)
        #dis1=((get_2d_point[1]-pointsmid[0][1]),(get_2d_point[0]-pointsmid[0][0]))
        #dis2=((get_2d_point[1]-pointsmid[1][1]),(get_2d_point[0]-pointsmid[1][0]))
        #dis3=((get_2d_point[1]-pointsmid[2][1]),(get_2d_point[0]-pointsmid[2][0]))
        #dis4=((get_2d_point[1]-pointsmid[3][1]),(get_2d_point[0]-pointsmid[3][0]))
        #flagbox=darknet_proper_fps.performDetect(im_bgr,thresh,configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly,pointsmid)
        depth1 = image_depth[int(pointsmid[0][0]), int(pointsmid[0][1])]
        depth2 = image_depth[int(pointsmid[1][0]), int(pointsmid[1][1])]
        depth3 = image_depth[int(pointsmid[2][0]), int(pointsmid[2][1])]
        depth4 = image_depth[int(pointsmid[3][0]), int(pointsmid[3][1])]

        scale1 = depth1[0] + depth1[1] * 256 + depth1[2] * 256 * 256
        scale1 = scale1 / ((256 * 256 * 256) - 1)
        depth1 = scale1 * 1000
        pos2d1 = np.array([(WINDOW_WIDTH - pointsmid[0][1]) * depth1,
                           (WINDOW_HEIGHT - pointsmid[0][0]) * depth1, depth1])
        first1 = np.dot(np.linalg.inv(intrinsic), pos2d1)
        first1 = np.append(first1, 1)
        sec1 = np.matmul((extrinsic), first1)

        scale2 = depth2[0] + depth2[1] * 256 + depth2[2] * 256 * 256
        scale2 = scale2 / ((256 * 256 * 256) - 1)
        depth2 = scale2 * 1000
        pos2d2 = np.array([(WINDOW_WIDTH - pointsmid[1][1]) * depth2,
                           (WINDOW_HEIGHT - pointsmid[1][0]) * depth2, depth2])
        first2 = np.dot(np.linalg.inv(intrinsic), pos2d2)
        first2 = np.append(first2, 1)
        sec2 = np.matmul((extrinsic), first2)

        scale3 = depth3[0] + depth3[1] * 256 + depth3[2] * 256 * 256
        scale3 = scale3 / ((256 * 256 * 256) - 1)
        depth3 = scale3 * 1000
        pos2d3 = np.array([(WINDOW_WIDTH - pointsmid[2][1]) * depth3,
                           (WINDOW_HEIGHT - pointsmid[2][0]) * depth3, depth3])
        first3 = np.dot(np.linalg.inv(intrinsic), pos2d3)
        first3 = np.append(first3, 1)
        sec3 = np.matmul((extrinsic), first3)

        scale4 = depth4[0] + depth4[1] * 256 + depth4[2] * 256 * 256
        scale4 = scale4 / ((256 * 256 * 256) - 1)
        depth4 = scale4 * 1000
        pos2d4 = np.array([(WINDOW_WIDTH - pointsmid[3][1]) * depth4,
                           (WINDOW_HEIGHT - pointsmid[3][0]) * depth4, depth4])
        first4 = np.dot(np.linalg.inv(intrinsic), pos2d4)
        first4 = np.append(first4, 1)
        sec4 = np.matmul((extrinsic), first4)

        depth = image_depth[int(get_2d_point[0]), int(get_2d_point[1])]
        scale = depth[0] + depth[1] * 256 + depth[2] * 256 * 256
        scale = scale / ((256 * 256 * 256) - 1)
        depth = scale * 1000
        pos2d = np.array([(WINDOW_WIDTH - get_2d_point[1]) * depth,
                          (WINDOW_HEIGHT - get_2d_point[0]) * depth, depth])

        first = np.dot(np.linalg.inv(intrinsic), pos2d)
        first = np.append(first, 1)
        sec = np.matmul((extrinsic), first)
        print("present", pos_vector)
        print('goal-', sec)
        pos_vector[2] = 4.0
        ini = pos_vector
        goal = list(sec)
        goal[2] = 1.08
        aa = ini[0]
        dec = abs(ini[1] - goal[1]) / abs(aa - (goal[0]))
        f1 = open(WAYPOINTS_FILENAME, 'a+')
        for i in range(int(goal[0]), int(aa)):

            # print(int(goal[0])-i)
            if abs((int(aa) - i)) < 10:

                ini = [ini[0] - 1, ini[1] + dec, ini[2] - 0.03]
            else:
                ini = [ini[0] - 1, ini[1] + dec, ini[2]]
            #if i<int(aa)-1:
            f1.write(
                str(ini[0]) + ',' + str(ini[1]) + ',' + str(ini[2]) + '\n')
            #else:
            #f1.write(str(ini[0])+','+str(ini[1])+','+str(ini[2]))

        waypoints_file = WAYPOINTS_FILENAME
        waypoints_np = None
        with open(waypoints_file) as waypoints_file_handle:
            waypoints = list(
                csv.reader(waypoints_file_handle,
                           delimiter=',',
                           quoting=csv.QUOTE_NONNUMERIC))
            waypoints_np = np.array(waypoints)
        #print("dfjdjfhjdhfjdfhjdfdjdfdufh",waypoints_np)
        print((waypoints_np))

        # Because the waypoints are discrete and our controller performs better
        # with a continuous path, here we will send a subset of the waypoints
        # within some lookahead distance from the closest point to the vehicle.
        # Interpolating between each waypoint will provide a finer resolution
        # path and make it more "continuous". A simple linear interpolation
        # is used as a preliminary method to address this issue, though it is
        # better addressed with better interpolation methods (spline
        # interpolation, for example).
        # More appropriate interpolation methods will not be used here for the
        # sake of demonstration on what effects discrete paths can have on
        # the controller. It is made much more obvious with linear
        # interpolation, because in a way part of the path will be continuous
        # while the discontinuous parts (which happens at the waypoints) will
        # show just what sort of effects these points have on the controller.
        # Can you spot these during the simulation? If so, how can you further
        # reduce these effects?

        # Linear interpolation computations
        # Compute a list of distances between waypoints
        wp_distance = []  # distance array
        for i in range(1, waypoints_np.shape[0]):
            wp_distance.append(
                np.sqrt((waypoints_np[i, 0] - waypoints_np[i - 1, 0])**2 +
                        (waypoints_np[i, 1] - waypoints_np[i - 1, 1])**2))
        wp_distance.append(0)  # last distance is 0 because it is the distance
        # from the last waypoint to the last waypoint

        # Linearly interpolate between waypoints and store in a list
        wp_interp = []  # interpolated values
        # (rows = waypoints, columns = [x, y, v])
        wp_interp_hash = []  # hash table which indexes waypoints_np
        # to the index of the waypoint in wp_interp
        interp_counter = 0  # counter for current interpolated point index
        for i in range(waypoints_np.shape[0] - 1):
            # Add original waypoint to interpolated waypoints list (and append
            # it to the hash table)
            wp_interp.append(list(waypoints_np[i]))
            wp_interp_hash.append(interp_counter)
            interp_counter += 1

            # Interpolate to the next waypoint. First compute the number of
            # points to interpolate based on the desired resolution and
            # incrementally add interpolated points until the next waypoint
            # is about to be reached.
            num_pts_to_interp = int(np.floor(wp_distance[i] /\
                                         float(INTERP_DISTANCE_RES)) - 1)
            wp_vector = waypoints_np[i + 1] - waypoints_np[i]
            wp_uvector = wp_vector / np.linalg.norm(wp_vector)
            for j in range(num_pts_to_interp):
                next_wp_vector = INTERP_DISTANCE_RES * float(j +
                                                             1) * wp_uvector
                wp_interp.append(list(waypoints_np[i] + next_wp_vector))
                interp_counter += 1
        # add last waypoint at the end
        wp_interp.append(list(waypoints_np[-1]))
        wp_interp_hash.append(interp_counter)
        interp_counter += 1

        #############################################
        # Controller 2D Class Declaration
        #############################################
        # This is where we take the controller2d.py class
        # and apply it to the simulator
        controller = controller2d.Controller2D(waypoints)

        #############################################
        # Determine simulation average timestep (and total frames)
        #############################################
        # Ensure at least one frame is used to compute average timestep
        num_iterations = ITER_FOR_SIM_TIMESTEP
        if (ITER_FOR_SIM_TIMESTEP < 1):
            num_iterations = 1

        # Gather current data from the CARLA server. This is used to get the
        # simulator starting game time. Note that we also need to
        # send a command back to the CARLA server because synchronous mode
        # is enabled.

        sim_start_stamp = measurement_data.game_timestamp / 1000.0
        # Send a control command to proceed to next iteration.
        #print("dddddddddddddddddddddddddddddddddddddddddddddd",sim_start_stamp)
        # This mainly applies for simulations that are in synchronous mode.
        send_control_command(client, throttle=0.0, steer=0, brake=1.0)
        # Computes the average timestep based on several initial iterations
        sim_duration = 0
        for i in range(num_iterations):
            # Gather current data
            measurement_data, sensor_data = client.read_data()
            # Send a control command to proceed to next iteration
            send_control_command(client, throttle=0.0, steer=0, brake=1.0)
            # Last stamp
            if i == num_iterations - 1:
                sim_duration = measurement_data.game_timestamp / 1000.0 -\
                               sim_start_stamp

        # Outputs average simulation timestep and computes how many frames
        # will elapse before the simulation should end based on various
        # parameters that we set in the beginning.
        SIMULATION_TIME_STEP = sim_duration / float(num_iterations)
        print("SERVER SIMULATION STEP APPROXIMATION: " + \
              str(SIMULATION_TIME_STEP))
        TOTAL_EPISODE_FRAMES = int((TOTAL_RUN_TIME + WAIT_TIME_BEFORE_START) /\
                               SIMULATION_TIME_STEP) + TOTAL_FRAME_BUFFER

        #############################################
        # Frame-by-Frame Iteration and Initialization
        #############################################
        # Store pose history starting from the start position
        measurement_data, sensor_data = client.read_data()
        start_x, start_y, start_yaw = get_current_pose(measurement_data)
        send_control_command(client, throttle=0.0, steer=0, brake=1.0)
        x_history = [start_x]
        y_history = [start_y]
        yaw_history = [start_yaw]
        time_history = [0]
        speed_history = [0]

        #############################################
        # Vehicle Trajectory Live Plotting Setup
        #############################################
        # Uses the live plotter to generate live feedback during the simulation
        # The two feedback includes the trajectory feedback and
        # the controller feedback (which includes the speed tracking).
        lp_traj = lv.LivePlotter(tk_title="Trajectory Trace")
        lp_1d = lv.LivePlotter(tk_title="Controls Feedback")

        ###
        # Add 2D position / trajectory plot
        ###
        trajectory_fig = lp_traj.plot_new_dynamic_2d_figure(
            title='Vehicle Trajectory',
            figsize=(FIGSIZE_X_INCHES, FIGSIZE_Y_INCHES),
            edgecolor="black",
            rect=[PLOT_LEFT, PLOT_BOT, PLOT_WIDTH, PLOT_HEIGHT])

        trajectory_fig.set_invert_x_axis()  # Because UE4 uses left-handed
        # coordinate system the X
        # axis in the graph is flipped
        trajectory_fig.set_axis_equal()  # X-Y spacing should be equal in size

        # Add waypoint markers
        trajectory_fig.add_graph("waypoints",
                                 window_size=waypoints_np.shape[0],
                                 x0=waypoints_np[:, 0],
                                 y0=waypoints_np[:, 1],
                                 linestyle="-",
                                 marker="",
                                 color='g')
        # Add trajectory markers
        trajectory_fig.add_graph("trajectory",
                                 window_size=TOTAL_EPISODE_FRAMES,
                                 x0=[start_x] * TOTAL_EPISODE_FRAMES,
                                 y0=[start_y] * TOTAL_EPISODE_FRAMES,
                                 color=[1, 0.5, 0])
        # Add lookahead path
        trajectory_fig.add_graph("lookahead_path",
                                 window_size=INTERP_MAX_POINTS_PLOT,
                                 x0=[start_x] * INTERP_MAX_POINTS_PLOT,
                                 y0=[start_y] * INTERP_MAX_POINTS_PLOT,
                                 color=[0, 0.7, 0.7],
                                 linewidth=4)
        # Add starting position marker
        trajectory_fig.add_graph("start_pos",
                                 window_size=1,
                                 x0=[start_x],
                                 y0=[start_y],
                                 marker=11,
                                 color=[1, 0.5, 0],
                                 markertext="Start",
                                 marker_text_offset=1)
        # Add end position marker
        trajectory_fig.add_graph("end_pos",
                                 window_size=1,
                                 x0=[waypoints_np[-1, 0]],
                                 y0=[waypoints_np[-1, 1]],
                                 marker="D",
                                 color='r',
                                 markertext="End",
                                 marker_text_offset=1)
        # Add car marker
        trajectory_fig.add_graph("car",
                                 window_size=1,
                                 marker="s",
                                 color='b',
                                 markertext="Car",
                                 marker_text_offset=1)

        ###
        # Add 1D speed profile updater
        ###
        forward_speed_fig =\
                lp_1d.plot_new_dynamic_figure(title="Forward Speed (m/s)")
        forward_speed_fig.add_graph("forward_speed",
                                    label="forward_speed",
                                    window_size=TOTAL_EPISODE_FRAMES)
        forward_speed_fig.add_graph("reference_signal",
                                    label="reference_Signal",
                                    window_size=TOTAL_EPISODE_FRAMES)

        # Add throttle signals graph
        throttle_fig = lp_1d.plot_new_dynamic_figure(title="Throttle")
        throttle_fig.add_graph("throttle",
                               label="throttle",
                               window_size=TOTAL_EPISODE_FRAMES)
        # Add brake signals graph
        brake_fig = lp_1d.plot_new_dynamic_figure(title="Brake")
        brake_fig.add_graph("brake",
                            label="brake",
                            window_size=TOTAL_EPISODE_FRAMES)
        # Add steering signals graph
        steer_fig = lp_1d.plot_new_dynamic_figure(title="Steer")
        steer_fig.add_graph("steer",
                            label="steer",
                            window_size=TOTAL_EPISODE_FRAMES)

        # live plotter is disabled, hide windows
        if not enable_live_plot:
            lp_traj._root.withdraw()
            lp_1d._root.withdraw()

        # Iterate the frames until the end of the waypoints is reached or
        # the TOTAL_EPISODE_FRAMES is reached. The controller simulation then
        # ouptuts the results to the controller output directory.
        reached_the_end = False
        skip_first_frame = True
        closest_index = 0  # Index of waypoint that is currently closest to
        # the car (assumed to be the first index)
        closest_distance = 0  # Closest distance of closest waypoint to car
        counter = 0
        #print("dssssssssssssssssssssssssssssssssssssssssssssssssssssssss",TOTAL_EPISODE_FRAMES)
        for frame in range(TOTAL_EPISODE_FRAMES):
            # Gather current data from the CARLA server
            measurement_data, sensor_data = client.read_data()
            #print("lllllllllllllllllllllllllll",len(waypoints_np),waypoints_np[-1])
            #update_pts=list(waypoints_np[-1])

            # Update pose, timestamp
            current_x, current_y, current_yaw = \
                get_current_pose(measurement_data)
            current_speed = measurement_data.player_measurements.forward_speed
            current_timestamp = float(measurement_data.game_timestamp) / 1000.0
            #print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",current_timestamp)
            # Wait for some initial time before starting the demo
            if current_timestamp <= WAIT_TIME_BEFORE_START:
                send_control_command(client, throttle=0.0, steer=0, brake=1.0)
                counter += 1
                #flagbox=darknet_proper_fps.performDetect(res_img,thresh,configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly,pointsmid)
                continue
            else:
                current_timestamp = current_timestamp - WAIT_TIME_BEFORE_START
            #print("sdmskdkfjdkfjdjksf",counter)
            #for i in range(1,5):
            update_pts = [list(sec1), list(sec2), list(sec3), list(sec4)]
            pts_2d_ls = []
            for i in range(len(update_pts)):
                world_coord = np.asarray(update_pts[i]).reshape(4, -1)
                # print("world_coord.shape",world_coord.shape)
                # world_coord = np.array([[250.0 ,129.0 ,38.0 ,1.0]]).reshape(4,-1)
                world_transform = Transform(
                    measurement_data.player_measurements.transform)

                fdfd = str(world_transform)
                sdsd = fdfd[1:-1].split('\n')
                new = []
                for i in sdsd:
                    dd = i[:-1].lstrip('[ ')
                    ff = re.sub("\s+", ",", dd.strip())
                    gg = ff.split(',')
                    new.append([float(i) for i in gg])
                newworld = np.array(new)

                extrinsic = np.matmul(newworld, newcam)
                cam_coord = np.linalg.inv(extrinsic) @ world_coord
                img_coord = intrinsic @ cam_coord[:3]
                img_coord = np.array([
                    img_coord[0] / img_coord[2], img_coord[1] / img_coord[2],
                    img_coord[2]
                ])

                if (img_coord[2] > 0):
                    x_2d = WINDOW_WIDTH - img_coord[0]
                    y_2d = WINDOW_HEIGHT - img_coord[1]
                    pts_2d_ls.append([x_2d, y_2d])

            #x_diff=(pts_2d_ls[0]-get_2d_point[1])
            #y_diff=(pts_2d_ls[1]-get_2d_point[0])
            #print("sdsdjsdsjdksjdskdjk",x_diff,y_diff,pts_2d_ls,get_2d_point)
            #get_2d_point=[pts_2d_ls[1],pts_2d_ls[0]]

            image_RGB = to_rgb_array(sensor_data['CameraRGB'])
            im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)
            image_depth = to_rgb_array(sensor_data['CameraDepth'])
            counter += 1
            if counter == 0:
                flagbox = False
            else:
                #pointsmid[0][1]=pointsmid[0][1]+x_diff
                #pointsmid[0][0]=pointsmid[0][0]+y_diff
                #pointsmid[1][1]=pointsmid[1][1]+x_diff
                #pointsmid[1][0]=pointsmid[1][0]+y_diff
                #pointsmid[2][1]=pointsmid[2][1]+x_diff
                #pointsmid[2][0]=pointsmid[2][0]+y_diff
                #pointsmid[3][1]=pointsmid[3][1]+x_diff
                #pointsmid[3][0]=pointsmid[3][0]+y_diff
                try:
                    pointsmid[0][1] = pts_2d_ls[0][0]
                    pointsmid[0][0] = pts_2d_ls[0][1]
                    pointsmid[1][1] = pts_2d_ls[1][0]
                    pointsmid[1][0] = pts_2d_ls[1][1]
                    pointsmid[2][1] = pts_2d_ls[2][0]
                    pointsmid[2][0] = pts_2d_ls[2][1]
                    pointsmid[3][1] = pts_2d_ls[3][0]
                    pointsmid[3][0] = pts_2d_ls[3][1]
                    disbox = False
                    flagbox = darknet_proper_fps.performDetect(
                        im_bgr, thresh, configPath, weightPath, metaPath,
                        showImage, makeImageOnly, initOnly, pointsmid, disbox)
                except Exception as e:
                    disbox = True
                    flagbox = darknet_proper_fps.performDetect(
                        im_bgr, thresh, configPath, weightPath, metaPath,
                        showImage, makeImageOnly, initOnly, pointsmid, disbox)
                    if flagbox != False:
                        midofpts = [(pointsmid[1][1] + pointsmid[0][1]) / 2,
                                    (pointsmid[1][0] + pointsmid[0][0]) / 2]
                        depthflag = image_depth[int(flagbox[1]),
                                                int(flagbox[0])]
                        depthpts = image_depth[int(midofpts[1]),
                                               int(midofpts[0])]
                        print(depthflag, depthpts)
                        #cv2.circle(im_bgr,(int(flagbox[0]),int(flagbox[1])), 5, (255,0,255), -1)
                        #cv2.circle(im_bgr,(int(midofpts[0]),int(midofpts[1])), 5, (0,0,255), -1)
                        cv2.imwrite('./seg_out/{}_zz.jpg'.format(frame),
                                    im_bgr)
                        scalenew = depthflag[
                            0] + depthflag[1] * 256 + depthflag[2] * 256 * 256
                        scalenew = scalenew / ((256 * 256 * 256) - 1)
                        depthflag = scalenew * 1000
                        scalenew = depthpts[
                            0] + depthpts[1] * 256 + depthpts[2] * 256 * 256
                        scalenew = scalenew / ((256 * 256 * 256) - 1)
                        depthpts = scalenew * 1000
                        diff = abs(depthflag - depthpts)
                        print("entereeeeeeeeeeeeeeeeeeeeeeeeeeeeherree", diff)
                        if diff < 10:
                            flagbox = True
                        else:
                            flagbox = False
                    print(e)

            print("fffffffffffffffffff", flagbox)
            x_history.append(current_x)
            y_history.append(current_y)
            yaw_history.append(current_yaw)
            speed_history.append(current_speed)
            time_history.append(current_timestamp)
            if flagbox == False:

                # Store history

                ###
                # Controller update (this uses the controller2d.py implementation)
                ###

                # To reduce the amount of waypoints sent to the controller,
                # provide a subset of waypoints that are within some
                # lookahead distance from the closest point to the car. Provide
                # a set of waypoints behind the car as well.

                # Find closest waypoint index to car. First increment the index
                # from the previous index until the new distance calculations
                # are increasing. Apply the same rule decrementing the index.
                # The final index should be the closest point (it is assumed that
                # the car will always break out of instability points where there
                # are two indices with the same minimum distance, as in the
                # center of a circle)
                closest_distance = np.linalg.norm(
                    np.array([
                        waypoints_np[closest_index, 0] - current_x,
                        waypoints_np[closest_index, 1] - current_y
                    ]))
                new_distance = closest_distance
                new_index = closest_index
                while new_distance <= closest_distance:
                    closest_distance = new_distance
                    closest_index = new_index
                    new_index += 1
                    if new_index >= waypoints_np.shape[0]:  # End of path
                        break
                    new_distance = np.linalg.norm(
                        np.array([
                            waypoints_np[new_index, 0] - current_x,
                            waypoints_np[new_index, 1] - current_y
                        ]))
                new_distance = closest_distance
                new_index = closest_index
                while new_distance <= closest_distance:
                    closest_distance = new_distance
                    closest_index = new_index
                    new_index -= 1
                    if new_index < 0:  # Beginning of path
                        break
                    new_distance = np.linalg.norm(
                        np.array([
                            waypoints_np[new_index, 0] - current_x,
                            waypoints_np[new_index, 1] - current_y
                        ]))

            # Once the closest index is found, return the path that has 1
            # waypoint behind and X waypoints ahead, where X is the index
            # that has a lookahead distance specified by
            # INTERP_LOOKAHEAD_DISTANCE
                waypoint_subset_first_index = closest_index - 1
                if waypoint_subset_first_index < 0:
                    waypoint_subset_first_index = 0

                waypoint_subset_last_index = closest_index
                total_distance_ahead = 0
                while total_distance_ahead < INTERP_LOOKAHEAD_DISTANCE:
                    total_distance_ahead += wp_distance[
                        waypoint_subset_last_index]
                    waypoint_subset_last_index += 1
                    if waypoint_subset_last_index >= waypoints_np.shape[0]:
                        waypoint_subset_last_index = waypoints_np.shape[0] - 1
                        break

            # Use the first and last waypoint subset indices into the hash
            # table to obtain the first and last indicies for the interpolated
            # list. Update the interpolated waypoints to the controller
            # for the next controller update.
                new_waypoints = \
                    wp_interp[wp_interp_hash[waypoint_subset_first_index]:\
                              wp_interp_hash[waypoint_subset_last_index] + 1]
                controller.update_waypoints(new_waypoints)

                # Update the other controller values and controls
                controller.update_values(current_x, current_y, current_yaw,
                                         current_speed, current_timestamp,
                                         frame)
                controller.update_controls()
                cmd_throttle, cmd_steer, cmd_brake = controller.get_commands()

                # Skip the first frame (so the controller has proper outputs)
                if skip_first_frame and frame == 0:
                    pass
                else:
                    # Update live plotter with new feedback
                    trajectory_fig.roll("trajectory", current_x, current_y)
                    trajectory_fig.roll("car", current_x, current_y)
                    # When plotting lookahead path, only plot a number of points
                    # (INTERP_MAX_POINTS_PLOT amount of points). This is meant
                    # to decrease load when live plotting
                    new_waypoints_np = np.array(new_waypoints)
                    path_indices = np.floor(
                        np.linspace(0, new_waypoints_np.shape[0] - 1,
                                    INTERP_MAX_POINTS_PLOT))
                    trajectory_fig.update(
                        "lookahead_path",
                        new_waypoints_np[path_indices.astype(int), 0],
                        new_waypoints_np[path_indices.astype(int), 1],
                        new_colour=[0, 0.7, 0.7])
                    forward_speed_fig.roll("forward_speed", current_timestamp,
                                           current_speed)
                    forward_speed_fig.roll("reference_signal",
                                           current_timestamp,
                                           controller._desired_speed)

                    throttle_fig.roll("throttle", current_timestamp,
                                      cmd_throttle)
                    brake_fig.roll("brake", current_timestamp, cmd_brake)
                    steer_fig.roll("steer", current_timestamp, cmd_steer)

                    # Refresh the live plot based on the refresh rate
                    # set by the options
                    if enable_live_plot and \
                   live_plot_timer.has_exceeded_lap_period():
                        lp_traj.refresh()
                        lp_1d.refresh()
                        live_plot_timer.lap()

            # Output controller command to CARLA server
                send_control_command(client,
                                     throttle=cmd_throttle,
                                     steer=cmd_steer,
                                     brake=cmd_brake)

                # Find if reached the end of waypoint. If the car is within
                # DIST_THRESHOLD_TO_LAST_WAYPOINT to the last waypoint,
                # the simulation will end.
                dist_to_last_waypoint = np.linalg.norm(
                    np.array([
                        waypoints[-1][0] -
                        current_x,  ###########changed waypoints[-1]
                        waypoints[-1][1] - current_y
                    ]))
                if dist_to_last_waypoint < DIST_THRESHOLD_TO_LAST_WAYPOINT:
                    reached_the_end = True
                if reached_the_end:
                    break
            else:
                send_control_command(client,
                                     throttle=0.0,
                                     steer=0.0,
                                     brake=1.0)
                break

        # End of demo - Stop vehicle and Store outputs to the controller output
        # directory.
        if reached_the_end:
            print("Reached the end of path. Writing to controller_output...")
            send_control_command(client, throttle=0.0, steer=0.0, brake=1.0)
        else:
            print("stop!!!!.")
        # Stop the car
        #send_control_command(client, throttle=0.0, steer=0.0, brake=1.0)
        # Store the various outputs
        store_trajectory_plot(trajectory_fig.fig, 'trajectory.png')
        store_trajectory_plot(forward_speed_fig.fig, 'forward_speed.png')
        store_trajectory_plot(throttle_fig.fig, 'throttle_output.png')
        store_trajectory_plot(brake_fig.fig, 'brake_output.png')
        store_trajectory_plot(steer_fig.fig, 'steer_output.png')
        write_trajectory_file(x_history, y_history, speed_history,
                              time_history)
예제 #14
0
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 100  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [800, 600]
    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 70

    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=random.choice([1, 3, 7, 8, 14]))
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)

        client.load_settings(settings)

        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.
                timer = StopWatch()

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])

                # 2d to (camera) local 3d
                # We use the image_RGB to colorize each 3D point, this is optional.
                # "max_depth" is used to keep only the points that are near to the
                # camera, meaning 1.0 the farest points (sky)
                point_cloud = depth_to_local_point_cloud(
                    sensor_data['CameraDepth'], image_RGB, max_depth=far)

                # (Camera) local 3d to world 3d.
                # Get the transform from the player protobuf transformation.
                world_transform = Transform(
                    measurements.player_measurements.transform)

                # Compute the final transformation matrix.
                car_to_world_transform = world_transform * camera_to_car_transform

                # Car to World transformation given the 3D points and the
                # transformation matrix.
                point_cloud.apply_transform(car_to_world_transform)

                # End transformations time mesure.
                timer.stop()

                # Save PLY to disk
                # This generates the PLY string with the 3D points and the RGB colors
                # for each row of the file.
                point_cloud.save_to_disk(
                    os.path.join(output_folder, '{:0>5}.ply'.format(frame)))

                print_message(timer.milliseconds(), len(point_cloud), frame)

            client.send_control(
                measurements.player_measurements.autopilot_control)
def run_carla_client(args):
    number_of_episodes = 15
    frames_per_episode = 5030
    #              [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11, 12, 13, 14]
    vehicles_num = [25, 20, 30, 20, 15, 45, 45, 50, 25, 25, 25, 20, 25, 25, 25] 

    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:
        print('CarlaClient connected')

        for episode in [1, 4, 11]:
            # Start a new episode.

            if args.settings_filepath is None:

                # Create a CarlaSettings object. This object is a wrapper around
                # the CarlaSettings.ini file. Here we set the configuration we
                # want for the new episode.
                settings = CarlaSettings()
                settings.set(
                    SynchronousMode=True,
                    SendNonPlayerAgentsInfo=False,
                    NumberOfVehicles= vehicles_num[episode],#random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25,
                    NumberOfPedestrians=50,
                    DisableTwoWheeledVehicles=False,
                    WeatherId= episode, #1, #random.choice([1, 3, 7, 8, 14]),
                    QualityLevel=args.quality_level)
                settings.randomize_seeds()

                # Now we want to add a couple of cameras to the player vehicle.
                # We will collect the images produced by these cameras every
                # frame.


                #### FRONT STEREO ####

                # LEFT RGB CAMERA
                camera_l = Camera('LeftCameraRGB', PostProcessing='SceneFinal')
                camera_l.set_image_size(800, 600)
                camera_l.set_position(1.50, -0.27, 1.50)
                settings.add_sensor(camera_l)

                # LEFT DEPTH
                camera_ld = Camera('LeftCameraDepth', PostProcessing='Depth')
                camera_ld.set_image_size(800, 600)
                camera_ld.set_position(1.50, -0.27, 1.50)
                settings.add_sensor(camera_ld)

                # LEFT SEGMENTATION
                camera_ls = Camera('LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_ls.set_image_size(800, 600)
                camera_ls.set_position(1.50, -0.27, 1.50)
                settings.add_sensor(camera_ls)

                # RIGHT RGB CAMERA
                camera_r = Camera('RightCameraRGB', PostProcessing='SceneFinal')
                camera_r.set_image_size(800, 600)
                camera_r.set_position(1.50, 0.27, 1.50)
                settings.add_sensor(camera_r)

                # RIGHT DEPTH
                camera_rd = Camera('RightCameraDepth', PostProcessing='Depth')
                camera_rd.set_image_size(800, 600)
                camera_rd.set_position(1.50, 0.27, 1.50)
                settings.add_sensor(camera_rd)

                # RIGHT SEGMENTATION
                camera_rs = Camera('RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_rs.set_image_size(800, 600)
                camera_rs.set_position(1.50, 0.27, 1.50)
                settings.add_sensor(camera_rs)


                #### -45 DEGREE STEREO CAMERA ####

                # LEFT STEREO -45 DEGREE RGB
                camera_45_n_l = Camera('45_N_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_45_n_l.set_image_size(800, 600)
                camera_45_n_l.set_position(0.8, -1.0, 1.50) # [X, Y, Z]
                camera_45_n_l.set_rotation(0, -45.0, 0)     # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_45_n_l)

                # RIGHT STEREO -45 DEGREE RGB
                camera_45_n_r = Camera('45_N_RightCameraRGB', PostProcessing='SceneFinal')
                camera_45_n_r.set_image_size(800, 600)
                camera_45_n_r.set_position(1.2, -0.6, 1.50)
                camera_45_n_r.set_rotation(0, -45.0, 0)
                settings.add_sensor(camera_45_n_r)

                # LEFT STEREO -45 DEGREE DEPTH
                camera_45_n_ld = Camera('45_N_LeftCameraDepth', PostProcessing='Depth')
                camera_45_n_ld.set_image_size(800, 600)
                camera_45_n_ld.set_position(0.8, -1.0, 1.50)
                camera_45_n_ld.set_rotation(0, -45.0, 0)
                settings.add_sensor(camera_45_n_ld)

                # RIGHT STEREO -45 DEGREE DEPTH
                camera_45_n_rd = Camera('45_N_RightCameraDepth', PostProcessing='Depth')
                camera_45_n_rd.set_image_size(800, 600)
                camera_45_n_rd.set_position(1.2, -0.6, 1.50)
                camera_45_n_rd.set_rotation(0, -45.0, 0)
                settings.add_sensor(camera_45_n_rd)

                # LEFT STEREO -45 DEGREE SEGMENTATION
                camera_45_n_ls = Camera('45_N_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_45_n_ls.set_image_size(800, 600)
                camera_45_n_ls.set_position(0.8, -1.0, 1.50)
                camera_45_n_ls.set_rotation(0, -45.0, 0)
                settings.add_sensor(camera_45_n_ls)

                # RIGHT STEREO -45 DEGREE SEGMENTATION
                camera_45_n_rs = Camera('45_N_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_45_n_rs.set_image_size(800, 600)
                camera_45_n_rs.set_position(1.2, -0.6, 1.50)
                camera_45_n_rs.set_rotation(0, -45.0, 0)
                settings.add_sensor(camera_45_n_rs)

                
                #### +45 DEGREE STEREO CAMERA ####

                # LEFT STEREO +45 DEGREE RGB
                camera_45_p_l = Camera('45_P_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_45_p_l.set_image_size(800, 600)
                camera_45_p_l.set_position(1.2, 0.6, 1.50) # [X, Y, Z]
                camera_45_p_l.set_rotation(0, 45.0, 0)     # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_45_p_l)

                # RIGHT STEREO +45 DEGREE RGB
                camera_45_p_r = Camera('45_P_RightCameraRGB', PostProcessing='SceneFinal')
                camera_45_p_r.set_image_size(800, 600)
                camera_45_p_r.set_position(0.8, 1.0, 1.50)
                camera_45_p_r.set_rotation(0, 45.0, 0)
                settings.add_sensor(camera_45_p_r)

                # LEFT STEREO +45 DEGREE DEPTH
                camera_45_p_ld = Camera('45_P_LeftCameraDepth', PostProcessing='Depth')
                camera_45_p_ld.set_image_size(800, 600)
                camera_45_p_ld.set_position(1.2, 0.6, 1.50)
                camera_45_p_ld.set_rotation(0, 45.0, 0)
                settings.add_sensor(camera_45_p_ld)

                # RIGHT STEREO +45 DEGREE DEPTH
                camera_45_p_rd = Camera('45_P_RightCameraDepth', PostProcessing='Depth')
                camera_45_p_rd.set_image_size(800, 600)
                camera_45_p_rd.set_position(0.8, 1.0, 1.50)
                camera_45_p_rd.set_rotation(0, 45.0, 0)
                settings.add_sensor(camera_45_p_rd)

                # LEFT STEREO +45 DEGREE SEGMENTATION
                camera_45_p_ls = Camera('45_P_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_45_p_ls.set_image_size(800, 600)
                camera_45_p_ls.set_position(1.2, 0.6, 1.50)
                camera_45_p_ls.set_rotation(0, 45.0, 0)
                settings.add_sensor(camera_45_p_ls)

                # RIGHT STEREO +45 DEGREE SEGMENTATION
                camera_45_p_rs = Camera('45_P_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_45_p_rs.set_image_size(800, 600)
                camera_45_p_rs.set_position(0.8, 1.0, 1.50)
                camera_45_p_rs.set_rotation(0, 45.0, 0)
                settings.add_sensor(camera_45_p_rs)

                '''
                #### -90 DEGREE STEREO CAMERA ####

                # LEFT STEREO -90 DEGREE RGB
                camera_90_n_l = Camera('90_N_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_90_n_l.set_image_size(800, 600)
                camera_90_n_l.set_position(-0.27, -1.0, 1.50) # [X, Y, Z]
                camera_90_n_l.set_rotation(0, -90.0, 0)     # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_90_n_l)

                # RIGHT STEREO -90 DEGREE RGB
                camera_90_n_r = Camera('90_N_RightCameraRGB', PostProcessing='SceneFinal')
                camera_90_n_r.set_image_size(800, 600)
                camera_90_n_r.set_position(0.27, -1.0, 1.50)
                camera_90_n_r.set_rotation(0, -90.0, 0)
                settings.add_sensor(camera_90_n_r)

                # LEFT STEREO -90 DEGREE DEPTH
                camera_90_n_ld = Camera('90_N_LeftCameraDepth', PostProcessing='Depth')
                camera_90_n_ld.set_image_size(800, 600)
                camera_90_n_ld.set_position(-0.27, -1.0, 1.50)
                camera_90_n_ld.set_rotation(0, -90.0, 0)
                settings.add_sensor(camera_90_n_ld)

                # RIGHT STEREO -90 DEGREE DEPTH
                camera_90_n_rd = Camera('90_N_RightCameraDepth', PostProcessing='Depth')
                camera_90_n_rd.set_image_size(800, 600)
                camera_90_n_rd.set_position(0.27, -1.0, 1.50)
                camera_90_n_rd.set_rotation(0, -90.0, 0)
                settings.add_sensor(camera_90_n_rd)

                # LEFT STEREO -90 DEGREE SEGMENTATION
                camera_90_n_ls = Camera('90_N_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_90_n_ls.set_image_size(800, 600)
                camera_90_n_ls.set_position(-0.27, -1.0, 1.50)
                camera_90_n_ls.set_rotation(0, -90.0, 0)
                settings.add_sensor(camera_90_n_ls)

                # RIGHT STEREO -90 DEGREE SEGMENTATION
                camera_90_n_rs = Camera('90_N_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_90_n_rs.set_image_size(800, 600)
                camera_90_n_rs.set_position(0.27, -1.0, 1.50)
                camera_90_n_rs.set_rotation(0, -90.0, 0)
                settings.add_sensor(camera_90_n_rs)


                #### +90 DEGREE STEREO CAMERA ####

                # LEFT STEREO +90 DEGREE RGB
                camera_90_p_l = Camera('90_P_LeftCameraRGB', PostProcessing='SceneFinal')
                camera_90_p_l.set_image_size(800, 600)
                camera_90_p_l.set_position(0.27, 1.0, 1.50) # [X, Y, Z]
                camera_90_p_l.set_rotation(0, 90.0, 0)     # [pitch(Y), yaw(Z), roll(X)]
                settings.add_sensor(camera_90_p_l)

                # RIGHT STEREO +90 DEGREE RGB
                camera_90_p_r = Camera('90_P_RightCameraRGB', PostProcessing='SceneFinal')
                camera_90_p_r.set_image_size(800, 600)
                camera_90_p_r.set_position(-0.27, 1.0, 1.50)
                camera_90_p_r.set_rotation(0, 90.0, 0)
                settings.add_sensor(camera_90_p_r)

                # LEFT STEREO +90 DEGREE DEPTH
                camera_90_p_ld = Camera('90_P_LeftCameraDepth', PostProcessing='Depth')
                camera_90_p_ld.set_image_size(800, 600)
                camera_90_p_ld.set_position(0.27, 1.0, 1.50)
                camera_90_p_ld.set_rotation(0, 90.0, 0)
                settings.add_sensor(camera_90_p_ld)

                # RIGHT STEREO +90 DEGREE DEPTH
                camera_90_p_rd = Camera('90_P_RightCameraDepth', PostProcessing='Depth')
                camera_90_p_rd.set_image_size(800, 600)
                camera_90_p_rd.set_position(-0.27, 1.0, 1.50)
                camera_90_p_rd.set_rotation(0, 90.0, 0)
                settings.add_sensor(camera_90_p_rd)

                # LEFT STEREO +90 DEGREE SEGMENTATION
                camera_90_p_ls = Camera('90_P_LeftCameraSeg', PostProcessing='SemanticSegmentation')
                camera_90_p_ls.set_image_size(800, 600)
                camera_90_p_ls.set_position(0.27, 1.0, 1.50)
                camera_90_p_ls.set_rotation(0, 90.0, 0)
                settings.add_sensor(camera_90_p_ls)

                # RIGHT STEREO +90 DEGREE SEGMENTATION
                camera_90_p_rs = Camera('90_P_RightCameraSeg', PostProcessing='SemanticSegmentation')
                camera_90_p_rs.set_image_size(800, 600)
                camera_90_p_rs.set_position(-0.27, 1.0, 1.50)
                camera_90_p_rs.set_rotation(0, 90.0, 0)
                settings.add_sensor(camera_90_p_rs)
                '''

                '''
                if args.lidar:
                    lidar = Lidar('Lidar32')
                    lidar.set_position(0, 0, 2.50)
                    lidar.set_rotation(0, 0, 0)
                    lidar.set(
                        Channels=32,
                        Range=50,
                        PointsPerSecond=100000,
                        RotationFrequency=10,
                        UpperFovLimit=10,
                        LowerFovLimit=-30)
                    settings.add_sensor(lidar)
                '''

            else:

                # Alternatively, we can load these settings from a file.
                with open(args.settings_filepath, 'r') as fp:
                    settings = fp.read()

            # Now we load these settings into the server. The server replies
            # with a scene description containing the available start spots for
            # the player. Here we can provide a CarlaSettings object or a
            # CarlaSettings.ini file as string.
            scene = client.load_settings(settings)

            # Choose one player start at random.
            number_of_player_starts = len(scene.player_start_spots)
            player_start = random.randint(0, max(0, number_of_player_starts - 1))

            # Notify the server that we want to start the episode at the
            # player_start index. This function blocks until the server is ready
            # to start the episode.
            print('Starting new episode...')
            client.start_episode(player_start)


            camera_l_to_car_transform = camera_l.get_unreal_transform()
            camera_r_to_car_transform = camera_r.get_unreal_transform()

            camera_45_n_l_to_car_transform = camera_45_n_l.get_unreal_transform()
            camera_45_n_r_to_car_transform = camera_45_n_r.get_unreal_transform()

            camera_45_p_l_to_car_transform = camera_45_p_l.get_unreal_transform()
            camera_45_p_r_to_car_transform = camera_45_p_r.get_unreal_transform()

            '''
            camera_90_n_l_to_car_transform = camera_90_n_l.get_unreal_transform()
            camera_90_n_r_to_car_transform = camera_90_n_r.get_unreal_transform()

            camera_90_p_l_to_car_transform = camera_90_p_l.get_unreal_transform()
            camera_90_p_r_to_car_transform = camera_90_p_r.get_unreal_transform()
            '''


            # Create a folder for saving episode data
            if not os.path.isdir("/data/khoshhal/Dataset/episode_{:0>4d}".format(episode)):
                os.makedirs("/data/khoshhal/Dataset/episode_{:0>4d}".format(episode))
            
            # Iterate every frame in the episode.
            for frame in range(0, frames_per_episode):

                # Read the data produced by the server this frame.
                measurements, sensor_data = client.read_data()

                # player_measurements = measurements.player_measurements
                world_transform = Transform(measurements.player_measurements.transform)

                # Compute the final transformation matrix.
                camera_l_to_world_transform = world_transform * camera_l_to_car_transform
                camera_r_to_world_transform = world_transform * camera_r_to_car_transform

                camera_45_n_l_to_world_transform = world_transform * camera_45_n_l_to_car_transform
                camera_45_n_r_to_world_transform = world_transform * camera_45_n_r_to_car_transform

                camera_45_p_l_to_world_transform = world_transform * camera_45_p_l_to_car_transform
                camera_45_p_r_to_world_transform = world_transform * camera_45_p_r_to_car_transform

                '''
                camera_90_n_l_to_world_transform = world_transform * camera_90_n_l_to_car_transform
                camera_90_n_r_to_world_transform = world_transform * camera_90_n_r_to_car_transform

                camera_90_p_l_to_world_transform = world_transform * camera_90_p_l_to_car_transform
                camera_90_p_r_to_world_transform = world_transform * camera_90_p_r_to_car_transform
                '''


                # Save the images to disk if requested.
                if frame >= 30:# and (frame % 2 == 0):
                    if args.save_images_to_disk:
                        for name, measurement in sensor_data.items():
                            filename = args.out_filename_format.format(episode, name, (frame-30))
                            measurement.save_to_disk(filename)

                        # Save Transform matrix of each camera to separated files
                        line = ""
                        
                        filename = "{}episode_{:0>4d}/LeftCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_l_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""
                        
                        filename = "{}episode_{:0>4d}/RightCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_r_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/45_N_LeftCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_45_n_l_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/45_N_RightCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_45_n_r_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/45_P_LeftCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_45_p_l_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/45_P_RightCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_45_p_r_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        '''
                        filename = "{}episode_{:0>4d}/90_N_LeftCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_90_n_l_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/90_N_RightCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_90_n_r_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/90_P_LeftCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_90_p_l_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""

                        filename = "{}episode_{:0>4d}/90_P_RightCamera".format(args.root_path, episode) + ".txt"
                        with open(filename, 'a') as myfile:
                            for x in np.asarray(camera_90_p_r_to_world_transform.matrix[:3, :]).reshape(-1):
                                line += "{:.8e} ".format(x)
                            line = line[:-1]
                            line += "\n"
                            myfile.write(line)
                            line = ""
                        '''


                # We can access the encoded data of a given image as numpy
                # array using its "data" property. For instance, to get the
                # depth value (normalized) at pixel X, Y
                #
                #     depth_array = sensor_data['CameraDepth'].data
                #     value_at_pixel = depth_array[Y, X]
                #

                # Now we have to send the instructions to control the vehicle.
                # If we are in synchronous mode the server will pause the
                # simulation until we send this control.

                if not args.autopilot:

                    client.send_control(
                        steer=random.uniform(-1.0, 1.0),
                        throttle=0.5,
                        brake=0.0,
                        hand_brake=False,
                        reverse=False)

                else:

                    # Together with the measurements, the server has sent the
                    # control that the in-game autopilot would do this frame. We
                    # can enable autopilot by sending back this control to the
                    # server. We can modify it if wanted, here for instance we
                    # will add some noise to the steer.

                    control = measurements.player_measurements.autopilot_control
                    #control.steer += random.uniform(-0.1, 0.1)
                    client.send_control(control)
예제 #16
0
def get_bbox(self, measurement, seg):
    global 
    width = WIDTH
    height = HEIGHT
    extrinsic = Transform(measurement.player_measurements.transform) * self.obs_to_car_transform 
    bbox_list = []
    orientation_list = []
    distance_list = []
    # main_rotation = measurement.player_measurements.transform.rotation
    player_location = measurement.player_measurements.transform.location
    player_location = np.array([player_location.x, player_location.y, player_location.z])
    # collect the 2bbox generated from the 3d-bbox of non-player agents
    for agent in measurement.non_player_agents:
        if agent.HasField("vehicle"):
            # veh_id = agent.id
            # idx = self.nonplayer_ids[veh_id]
            vehicle_transform = Transform(agent.vehicle.transform)
            bbox_transform = Transform(agent.vehicle.bounding_box.transform)
            ext = agent.vehicle.bounding_box.extent
            bbox = np.array([
                [  ext.x,   ext.y,   ext.z],
                [- ext.x,   ext.y,   ext.z],
                [  ext.x, - ext.y,   ext.z],
                [- ext.x, - ext.y,   ext.z],
                [  ext.x,   ext.y, - ext.z],
                [- ext.x,   ext.y, - ext.z],
                [  ext.x, - ext.y, - ext.z],
                [- ext.x, - ext.y, - ext.z]
            ])

            bbox = bbox_transform.transform_points(bbox)
            bbox = vehicle_transform.transform_points(bbox)
            
            orientation = agent.vehicle.transform.orientation
            vehicle_location = agent.vehicle.transform.location
            cur_location = np.array([vehicle_location.x, vehicle_location.y, vehicle_location.z])
            distance = np.linalg.norm(player_location - cur_location)

            vertices = []
            for vertex in bbox:
                pos_vector = np.array([
                    [vertex[0,0]],  # [[X,
                    [vertex[0,1]],  #   Y,
                    [vertex[0,2]],  #   Z,
                    [1.0]           #   1.0]]
                ])
                transformed_3d_pos = np.dot(inv(extrinsic.matrix), pos_vector)
                pos2d = np.dot(self.intrinsic, transformed_3d_pos[:3])
                pos2d = np.array([
                    pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2]
                ])
                
                if pos2d[2] > 0:
                    x_2d = width - pos2d[0]
                    y_2d = height - pos2d[1]
                    vertices.append([x_2d, y_2d])
            if len(vertices) > 1:
                # vehicle_rotation = agent.vehicle.transform.rotation
                vertices = np.array(vertices)
                bbox_list.append([np.min(vertices[:, 0]), np.min(vertices[:, 1]),
                    np.max(vertices[:, 0]), np.max(vertices[:, 1])])
                orientation_list.append(orientation)
                distance_list.append(distance)
    seg_bboxes = seg_to_bbox(seg)
    final_bboxes = []
    final_directions = []
    final_distances = []
    assert(len(bbox_list) == len(orientation_list))
    for i in range(len(bbox_list)):
        bbox = bbox_list[i]
        direction = orientation_list[i]
        xmin, ymin, xmax, ymax = bbox
        x1, y1, x2, y2 = width, height, 0, 0
        for segbbox in seg_bboxes:
            xmin0, ymin0, xmax0, ymax0 = segbbox
            if xmin0 >= xmin - 5 and ymin0 >= ymin - 5 and xmax0 < xmax + 5 and ymax0 < ymax + 5:
                x1 = min(x1, xmin0)
                y1 = min(y1, ymin0)
                x2 = max(x2, xmax0)
                y2 = max(y2, ymax0)
        if x2 > x1 and y2 > y1 and [int(x1), int(y1), int(x2), int(y2)] not in final_bboxes:
            final_bboxes.append([int(x1), int(y1), int(x2), int(y2)])
            relative_orientation = get_angle(direction.x, direction.y, self.orientation.x, self.orientation.y)
            final_directions.append(relative_orientation)
            final_distances.append(distance_list[i])
    # for angle in final_directions:
    #     self.angle_logger.write("timestep {}: {}\n".format(self.timestep, angle))
    #     self.angle_logger.flush()
    final_distances = np.array(final_distances)
    visible_coll_num = min(coll_veh_num, final_distances.size)
    coll_idx = np.argpartition(final_distances, visible_coll_num - 1)[:visible_coll_num]
    final_colls = [1 if i in coll_idx else 0 for i in range(final_distances.size)]
    return final_bboxes, final_directions, final_colls
예제 #17
0
def run_carla_client( args):
    # Here we will run 3 episodes with 300 frames each.
    number_of_episodes = 150
    frames_per_episode = 500

    # for start_i in range(150):
    #     if start_i%4==0:
    #         output_folder = 'Packages/CARLA_0.8.2/PythonClient/new_data-viz/test_' + str(start_i)
    #         if not os.path.exists(output_folder):
    #             os.mkdir(output_folder)
    #             print( "make "+str(output_folder))
    # ./CarlaUE4.sh -carla-server  -benchmark -fps=17 -windowed
    # carla-server "/usr/local/carla/Unreal/CarlaUE4/CarlaUE4.uproject" /usr/local/carla/Maps/Town03 -benchmark -fps=10 -windowed


    # We assume the CARLA server is already waiting for a client to connect at
    # host:port. To create a connection we can use the `make_carla_client`
    # context manager, it creates a CARLA client object and starts the
    # connection. It will throw an exception if something goes wrong. The
    # context manager makes sure the connection is always cleaned up on exit.
    with make_carla_client(args.host, args.port) as client:

        print('CarlaClient connected')
        global episode_nbr
        print (episode_nbr)
        for episode in range(0,number_of_episodes):
            if episode % 1 == 0:
                output_folder = 'Datasets/carla-sync/train/test_' + str(episode)
                if not os.path.exists(output_folder+"/cameras.p"):
                    # Start a new episode.
                    episode_nbr=episode
                    frame_step = 1  # Save one image every 100 frames
                    pointcloud_step=50
                    image_size = [800, 600]
                    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
                    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
                    fov = 70
                    # Create a CarlaSettings object. This object is a wrapper around
                    # the CarlaSettings.ini file. Here we set the configuration we
                    # want for the new episode.
                    settings = CarlaSettings()
                    settings.set(
                        SynchronousMode=True,
                        SendNonPlayerAgentsInfo=True,
                        NumberOfVehicles=50,
                        NumberOfPedestrians=200,
                        WeatherId=random.choice([1, 3, 7, 8, 14]),
                        QualityLevel=args.quality_level)
                    settings.randomize_seeds()

                    # Now we want to add a couple of cameras to the player vehicle.
                    # We will collect the images produced by these cameras every
                    # frame.


                    camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
                    camera1.set_image_size(*image_size)
                    camera1.set_position(*camera_local_pos)
                    camera1.set_rotation(*camera_local_rotation)
                    settings.add_sensor(camera1)

                    camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
                    camera2.set_image_size(*image_size)
                    camera2.set_position(*camera_local_pos)
                    camera2.set_rotation(*camera_local_rotation)
                    settings.add_sensor(camera2)

                    camera3 = Camera('CameraSeg', PostProcessing='SemanticSegmentation', FOV=fov)
                    camera3.set_image_size(*image_size)
                    camera3.set_position(*camera_local_pos)
                    camera3.set_rotation(*camera_local_rotation)
                    settings.add_sensor(camera3)



                    # Now we load these settings into the server. The server replies
                    # with a scene description containing the available start spots for
                    # the player. Here we can provide a CarlaSettings object or a
                    # CarlaSettings.ini file as string.
                    scene = client.load_settings(settings)

                    # Choose one player start at random.
                    number_of_player_starts = len(scene.player_start_spots)
                    player_start = episode#random.randint(0, max(0, number_of_player_starts - 1))

                    output_folder = 'Datasets/carla-sync/train/test_' + str(episode)
                    # Notify the server that we want to start the episode at the
                    # player_start index. This function blocks until the server is ready
                    # to start the episode.
                    print('Starting new episode...')
                    client.start_episode(player_start)


                    cameras_dict = {}
                    pedestrians_dict = {}
                    cars_dict = {}
                    # Compute the camera transform matrix
                    camera_to_car_transform = camera2.get_unreal_transform()
                    # (Intrinsic) (3, 3) K Matrix
                    K = np.identity(3)
                    K[0, 2] = image_size[0] / 2.0
                    K[1, 2] = image_size[1] / 2.0
                    K[0, 0] = K[1, 1] = image_size[0] / (2.0 * np.tan(fov * np.pi / 360.0))
                    with open(output_folder + '/camera_intrinsics.p', 'w') as camfile:
                        pickle.dump(K, camfile)


                    # Iterate every frame in the episode.
                    for frame in range(0, frames_per_episode):

                        # Read the data produced by the server this frame.
                        measurements, sensor_data = client.read_data()

                        # Print some of the measurements.
                        #print_measurements(measurements)
                        if not frame % frame_step:
                            # Save the images to disk if requested.

                            for name, measurement in sensor_data.items():
                                filename = args.out_filename_format.format(episode, name, frame)
                                print (filename)
                                measurement.save_to_disk(filename)

                            # We can access the encoded data of a given image as numpy
                            # array using its "data" property. For instance, to get the
                            # depth value (normalized) at pixel X, Y
                            #
                            #     depth_array = sensor_data['CameraDepth'].data
                            #     value_at_pixel = depth_array[Y, X]
                            #

                            # Now we have to send the instructions to control the vehicle.
                            # If we are in synchronous mode the server will pause the
                            # simulation until we send this control.

                            # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                            image_RGB = to_rgb_array(sensor_data['CameraRGB'])

                            labels=labels_to_array(sensor_data['CameraSeg'])[:,:,np.newaxis]

                            image_seg = np.tile(labels, (1, 1, 3))
                            depth_array = sensor_data['CameraDepth'].data*1000


                            # 2d to (camera) local 3d
                            # We use the image_RGB to colorize each 3D point, this is optional.
                            # "max_depth" is used to keep only the points that are near to the
                            # camera, meaning 1.0 the farest points (sky)
                            if not frame % pointcloud_step:
                                point_cloud = depth_to_local_point_cloud(
                                    sensor_data['CameraDepth'],
                                    image_RGB,
                                    max_depth=args.far
                                )

                                point_cloud_seg = depth_to_local_point_cloud(
                                    sensor_data['CameraDepth'],
                                    segmentation=image_seg,
                                    max_depth=args.far
                                )

                            # (Camera) local 3d to world 3d.
                            # Get the transform from the player protobuf transformation.
                            world_transform = Transform(
                                measurements.player_measurements.transform
                            )

                            # Compute the final transformation matrix.
                            car_to_world_transform = world_transform * camera_to_car_transform

                            # Car to World transformation given the 3D points and the
                            # transformation matrix.
                            point_cloud.apply_transform(car_to_world_transform)
                            point_cloud_seg.apply_transform(car_to_world_transform)

                            Rt = car_to_world_transform.matrix
                            Rt_inv = car_to_world_transform.inverse().matrix
                            # R_inv=world_transform.inverse().matrix
                            cameras_dict[frame] = {}
                            cameras_dict[frame]['inverse_rotation'] = Rt_inv[:]
                            cameras_dict[frame]['rotation'] = Rt[:]
                            cameras_dict[frame]['translation'] = Rt_inv[0:3, 3]
                            cameras_dict[frame]['camera_to_car'] = camera_to_car_transform.matrix

                            # Get non-player info
                            vehicles = {}
                            pedestrians = {}
                            for agent in measurements.non_player_agents:
                                # check if the agent is a vehicle.
                                if agent.HasField('vehicle'):
                                    pos = agent.vehicle.transform.location
                                    pos_vector = np.array([[pos.x], [pos.y], [pos.z], [1.0]])

                                    trnasformed_3d_pos = np.dot(Rt_inv, pos_vector)
                                    pos2d = np.dot(K, trnasformed_3d_pos[:3])

                                    # Normalize the point
                                    norm_pos2d = np.array([
                                        pos2d[0] / pos2d[2],
                                        pos2d[1] / pos2d[2],
                                        pos2d[2]])

                                    # Now, pos2d contains the [x, y, d] values of the image in pixels (where d is the depth)
                                    # You can use the depth to know the points that are in front of the camera (positive depth).

                                    x_2d = image_size[0] - norm_pos2d[0]
                                    y_2d = image_size[1] - norm_pos2d[1]
                                    vehicles[agent.id] = {}
                                    vehicles[agent.id]['transform'] = [agent.vehicle.transform.location.x,
                                                                       agent.vehicle.transform.location.y,
                                                                       agent.vehicle.transform.location.z]
                                    vehicles[agent.id][
                                        'bounding_box.transform'] = agent.vehicle.bounding_box.transform.location.z

                                    vehicles[agent.id]['yaw'] = agent.vehicle.transform.rotation.yaw
                                    vehicles[agent.id]['bounding_box'] = [agent.vehicle.bounding_box.extent.x,
                                                                          agent.vehicle.bounding_box.extent.y,
                                                                          agent.vehicle.bounding_box.extent.z]
                                    vehicle_transform = Transform(agent.vehicle.bounding_box.transform)
                                    pos = agent.vehicle.transform.location

                                    bbox3d = agent.vehicle.bounding_box.extent

                                    # Compute the 3D bounding boxes
                                    # f contains the 4 points that corresponds to the bottom
                                    f = np.array([[pos.x + bbox3d.x, pos.y - bbox3d.y,
                                                   pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x + bbox3d.x, pos.y + bbox3d.y,
                                                   pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x - bbox3d.x, pos.y + bbox3d.y,
                                                   pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x - bbox3d.x, pos.y - bbox3d.y,
                                                   pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x + bbox3d.x, pos.y - bbox3d.y,
                                                   pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x + bbox3d.x, pos.y + bbox3d.y,
                                                   pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x - bbox3d.x, pos.y + bbox3d.y,
                                                   pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z],
                                                  [pos.x - bbox3d.x, pos.y - bbox3d.y,
                                                   pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z]])

                                    f_rotated = vehicle_transform.transform_points(f)
                                    f_2D_rotated = []
                                    vehicles[agent.id]['bounding_box_coord'] = f_rotated

                                    for i in range(f.shape[0]):
                                        point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]])
                                        transformed_2d_pos = np.dot(Rt_inv, point)
                                        pos2d = np.dot(K, transformed_2d_pos[:3])
                                        norm_pos2d = np.array([
                                            pos2d[0] / pos2d[2],
                                            pos2d[1] / pos2d[2],
                                            pos2d[2]])
                                        # print([image_size[0] - (pos2d[0] / pos2d[2]), image_size[1] - (pos2d[1] / pos2d[2])])
                                        f_2D_rotated.append(
                                            np.array([image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1]]))
                                    vehicles[agent.id]['bounding_box_2D'] = f_2D_rotated


                                elif agent.HasField('pedestrian'):
                                    pedestrians[agent.id] = {}
                                    pedestrians[agent.id]['transform'] = [agent.pedestrian.transform.location.x,
                                                                          agent.pedestrian.transform.location.y,
                                                                          agent.pedestrian.transform.location.z]
                                    pedestrians[agent.id]['yaw'] = agent.pedestrian.transform.rotation.yaw
                                    pedestrians[agent.id]['bounding_box'] = [agent.pedestrian.bounding_box.extent.x,
                                                                             agent.pedestrian.bounding_box.extent.y,
                                                                             agent.pedestrian.bounding_box.extent.z]
                                    # get the needed transformations
                                    # remember to explicitly make it Transform() so you can use transform_points()
                                    pedestrian_transform = Transform(agent.pedestrian.transform)
                                    bbox_transform = Transform(agent.pedestrian.bounding_box.transform)

                                    # get the box extent
                                    ext = agent.pedestrian.bounding_box.extent
                                    # 8 bounding box vertices relative to (0,0,0)
                                    bbox = np.array([
                                        [  ext.x,   ext.y,   ext.z],
                                        [- ext.x,   ext.y,   ext.z],
                                        [  ext.x, - ext.y,   ext.z],
                                        [- ext.x, - ext.y,   ext.z],
                                        [  ext.x,   ext.y, - ext.z],
                                        [- ext.x,   ext.y, - ext.z],
                                        [  ext.x, - ext.y, - ext.z],
                                        [- ext.x, - ext.y, - ext.z]
                                    ])

                                    # transform the vertices respect to the bounding box transform
                                    bbox = bbox_transform.transform_points(bbox)

                                    # the bounding box transform is respect to the pedestrian transform
                                    # so let's transform the points relative to it's transform
                                    bbox = pedestrian_transform.transform_points(bbox)

                                    # pedestrian's transform is relative to the world, so now,
                                    # bbox contains the 3D bounding box vertices relative to the world
                                    pedestrians[agent.id]['bounding_box_coord'] =copy.deepcopy(bbox)

                                    # Additionally, you can print these vertices to check that is working
                                    f_2D_rotated=[]
                                    ys=[]
                                    xs=[]
                                    zs=[]
                                    for vertex in bbox:
                                        pos_vector = np.array([
                                            [vertex[0,0]],  # [[X,
                                            [vertex[0,1]],  #   Y,
                                            [vertex[0,2]],  #   Z,
                                            [1.0]           #   1.0]]
                                        ])

                                        # transform the points to camera
                                        transformed_3d_pos =np.dot(Rt_inv, pos_vector)# np.dot(inv(self._extrinsic.matrix), pos_vector)
                                        zs.append(transformed_3d_pos[2])
                                        # transform the points to 2D
                                        pos2d =np.dot(K, transformed_3d_pos[:3]) #np.dot(self._intrinsic, transformed_3d_pos[:3])

                                        # normalize the 2D points
                                        pos2d = np.array([
                                            pos2d[0] / pos2d[2],
                                            pos2d[1] / pos2d[2],
                                            pos2d[2]
                                        ])

                                        # print the points in the screen
                                        if pos2d[2] > 0: # if the point is in front of the camera
                                            x_2d = image_size[0]-pos2d[0]#WINDOW_WIDTH - pos2d[0]
                                            y_2d = image_size[1]-pos2d[1]#WINDOW_HEIGHT - pos2d[1]
                                            ys.append(y_2d)
                                            xs.append(x_2d)
                                            f_2D_rotated.append( (y_2d, x_2d))
                                    if len(xs)>1:
                                        bbox=[[int(min(xs)), int(max(xs))],[int(min(ys)), int(max(ys))]]
                                        clipped_seg=labels[bbox[1][0]:bbox[1][1],bbox[0][0]:bbox[0][1]]
                                        recounted = Counter(clipped_seg.flatten())


                                        if 4 in recounted.keys() and recounted[4]>0.1*len(clipped_seg.flatten()):
                                            clipped_depth=depth_array[bbox[1][0]:bbox[1][1],bbox[0][0]:bbox[0][1]]
                                            #print (clipped_depth.shape)
                                            people_indx=np.where(clipped_seg==4)
                                            masked_depth=[]
                                            for people in zip(people_indx[0],people_indx[1] ):
                                                #print(people)
                                                masked_depth.append(clipped_depth[people])
                                            #masked_depth=clipped_depth[np.where(clipped_seg==4)]
                                            #print (masked_depth)
                                            #print ("Depth "+ str(min(zs))+" "+ str(max(zs)))
                                            #recounted = Counter(masked_depth)
                                            #print(recounted)
                                            avg_depth=np.mean(masked_depth)
                                            if avg_depth<700 and avg_depth>=min(zs)-10 and avg_depth<= max(zs)+10:
                                                #print("Correct depth")
                                                pedestrians[agent.id]['bounding_box_2D'] = f_2D_rotated
                                                pedestrians[agent.id]['bounding_box_2D_size']=recounted[4]
                                                pedestrians[agent.id]['bounding_box_2D_avg_depth']=avg_depth
                                                pedestrians[agent.id]['bounding_box_2D_depths']=zs
                                                #print ( pedestrians[agent.id].keys())
                                            #else:
                                                # print(recounted)
                                                # print ("Depth "+ str(min(zs))+" "+ str(max(zs)))


                                    #if sum(norm(depth_array-np.mean(zs))<1.0):


                                    # pedestrians[agent.id] = {}
                                    # pedestrians[agent.id]['transform'] = [agent.pedestrian.transform.location.x,
                                    #                                       agent.pedestrian.transform.location.y,
                                    #                                       agent.pedestrian.transform.location.z]
                                    # pedestrians[agent.id]['yaw'] = agent.pedestrian.transform.rotation.yaw
                                    # pedestrians[agent.id]['bounding_box'] = [agent.pedestrian.bounding_box.extent.x,
                                    #                                          agent.pedestrian.bounding_box.extent.y,
                                    #                                          agent.pedestrian.bounding_box.extent.z]
                                    # vehicle_transform = Transform(agent.pedestrian.bounding_box.transform)
                                    # pos = agent.pedestrian.transform.location
                                    #
                                    # bbox3d = agent.pedestrian.bounding_box.extent
                                    #
                                    # # Compute the 3D bounding boxes
                                    # # f contains the 4 points that corresponds to the bottom
                                    # f = np.array([[pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z- bbox3d.z ],
                                    #               [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z- bbox3d.z ],
                                    #               [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z- bbox3d.z ],
                                    #               [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z- bbox3d.z ],
                                    #               [pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z],
                                    #               [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z],
                                    #               [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z],
                                    #               [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z]])
                                    #
                                    # f_rotated = pedestrian_transform.transform_points(f)
                                    # pedestrians[agent.id]['bounding_box_coord'] = f_rotated
                                    # f_2D_rotated = []
                                    #
                                    # for i in range(f.shape[0]):
                                    #     point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]])
                                    #     transformed_2d_pos = np.dot(Rt_inv, point)
                                    #     pos2d = np.dot(K, transformed_2d_pos[:3])
                                    #     norm_pos2d = np.array([
                                    #         pos2d[0] / pos2d[2],
                                    #         pos2d[1] / pos2d[2],
                                    #         pos2d[2]])
                                    #     f_2D_rotated.append([image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1]])
                                    # pedestrians[agent.id]['bounding_box_2D'] = f_2D_rotated

                            cars_dict[frame] = vehicles

                            pedestrians_dict[frame] = pedestrians
                            #print("End of Episode")
                            #print(len(pedestrians_dict[frame]))

                            # Save PLY to disk
                            # This generates the PLY string with the 3D points and the RGB colors
                            # for each row of the file.
                            if not frame % pointcloud_step:
                                point_cloud.save_to_disk(os.path.join(
                                    output_folder, '{:0>5}.ply'.format(frame))
                                )
                                point_cloud_seg.save_to_disk(os.path.join(
                                    output_folder, '{:0>5}_seg.ply'.format(frame))
                                )

                        if not args.autopilot:

                            client.send_control(
                                hand_brake=True)

                        else:

                            # Together with the measurements, the server has sent the
                            # control that the in-game autopilot would do this frame. We
                            # can enable autopilot by sending back this control to the
                            # server. We can modify it if wanted, here for instance we
                            # will add some noise to the steer.

                            control = measurements.player_measurements.autopilot_control
                            control.steer += random.uniform(-0.1, 0.1)
                            client.send_control(control)
                    print ("Start pickle save")
                    with open(output_folder + '/cameras.p', 'w') as camerafile:
                        pickle.dump(cameras_dict, camerafile)
                    with open(output_folder + '/people.p', 'w') as peoplefile:
                        pickle.dump(pedestrians_dict, peoplefile)
                    with open(output_folder + '/cars.p', 'w') as carfile:
                        pickle.dump(cars_dict, carfile)
                    print ("Episode done")
def run_carla_client(host, port, far):
    # Here we will run a single episode with 300 frames.
    number_of_frames = 3000
    frame_step = 10  # Save one image every 100 frames
    output_folder = '_out'
    image_size = [1280, 720]
    camera_local_pos = [0.3, 0.0, 1.3]  # [X, Y, Z]
    camera_local_rotation = [0, 0, 0]  # [pitch(Y), yaw(Z), roll(X)]
    fov = 59

    # Connect with the server
    with make_carla_client(host, port) as client:
        print('CarlaClient connected')

        # Here we load the settings.
        settings = CarlaSettings()
        settings.set(SynchronousMode=True,
                     SendNonPlayerAgentsInfo=False,
                     NumberOfVehicles=20,
                     NumberOfPedestrians=40,
                     WeatherId=7)
        settings.randomize_seeds()

        camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
        camera1.set_image_size(*image_size)
        camera1.set_position(*camera_local_pos)
        camera1.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera1)

        camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
        camera2.set_image_size(*image_size)
        camera2.set_position(*camera_local_pos)
        camera2.set_rotation(*camera_local_rotation)
        settings.add_sensor(camera2)

        client.load_settings(settings)

        # Start at location index id '0'
        client.start_episode(0)

        # Compute the camera transform matrix
        camera_to_car_transform = camera2.get_unreal_transform()
        print("camera_to_car_transform", camera_to_car_transform)

        # Iterate every frame in the episode except for the first one.
        for frame in range(1, number_of_frames):
            # Read the data produced by the server this frame.
            measurements, sensor_data = client.read_data()

            # Save one image every 'frame_step' frames
            if not frame % frame_step:
                # Start transformations time mesure.

                # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
                image_RGB = to_rgb_array(sensor_data['CameraRGB'])
                world_transform = Transform(
                    measurements.player_measurements.transform)

                # Compute the final transformation matrix.
                car_to_world_transform = world_transform * camera_to_car_transform
                print("{}.png".format(str(frame)))
                print([
                    measurements.player_measurements.transform.location.x,
                    measurements.player_measurements.transform.location.y,
                    measurements.player_measurements.transform.location.z
                ])
                print("world_transform\n", world_transform)
                #print("car_to_world_transform\n",car_to_world_transform)
                print('\n')

                im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR)
                cv2.imwrite("./{}/{}.png".format(output_folder, str(frame)),
                            im_bgr)
                # 2d to (camera) local 3d
                # We use the image_RGB to colorize each 3D point, this is optional.
                # "max_depth" is used to keep only the points that are near to the
                # camera, meaning 1.0 the farest points (sky)

                # Save PLY to disk
                # This generates the PLY string with the 3D points and the RGB colors
                # for each row of the file.

            client.send_control(
                measurements.player_measurements.autopilot_control)