def transforms_from_agent(agent): """ Returns the KITTI object type and transforms, locations and extension of the given agent """ if agent.HasField('pedestrian'): obj_type = 'Pedestrian' agent_transform = Transform(agent.pedestrian.transform) bbox_transform = Transform(agent.pedestrian.bounding_box.transform) ext = agent.pedestrian.bounding_box.extent location = agent.pedestrian.transform.location elif agent.HasField('vehicle'): obj_type = 'Car' agent_transform = Transform(agent.vehicle.transform) bbox_transform = Transform(agent.vehicle.bounding_box.transform) ext = agent.vehicle.bounding_box.extent location = agent.vehicle.transform.location else: return (None, None, None, None, None) return obj_type, agent_transform, bbox_transform, ext, location
def get_extrinsic(measurement_data, camera2): camera_to_car_transform = camera2.get_unreal_transform() world_transform = Transform(measurement_data.player_measurements.transform) newworld = np.array(convert_transform(world_transform)) newcam = np.array(convert_transform(camera_to_car_transform)) return np.matmul(newworld, newcam), newcam
def make_carla_settings(args): """Make a CarlaSettings object with the settings we need.""" settings = CarlaSettings() settings.set( SynchronousMode=False, SendNonPlayerAgentsInfo=True, NumberOfVehicles=NUM_VEHICLES, NumberOfPedestrians=NUM_PEDESTRIANS, DisableTwoWheeledVehicles=NO_BIKE, # WeatherId=random.choice([1, 3, 7, 8, 14]), WeatherId=1, QualityLevel=args.quality_level) settings.randomize_seeds() camera0 = sensor.Camera('CameraRGB') camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT) camera0.set_position(0, 0.0, CAMERA_HEIGHT_POS) camera0.set_rotation(0.0, 0.0, 0.0) settings.add_sensor(camera0) lidar = sensor.Lidar('Lidar32') lidar.set_position(0, 0.0, LIDAR_HEIGHT_POS) lidar.set_rotation(0, 0, 0) lidar.set(Channels=40, Range=MAX_RENDER_DEPTH_IN_METERS, PointsPerSecond=720000, RotationFrequency=10, UpperFovLimit=7, LowerFovLimit=-16) settings.add_sensor(lidar) """ Depth camera for filtering out occluded vehicles """ depth_camera = sensor.Camera('DepthCamera', PostProcessing='Depth') depth_camera.set(FOV=90.0) depth_camera.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT) depth_camera.set_position(0, 0, CAMERA_HEIGHT_POS) depth_camera.set_rotation(0, 0, 0) settings.add_sensor(depth_camera) # (Intrinsic) K Matrix # | f 0 Cu # | 0 f Cv # | 0 0 1 # (Cu, Cv) is center of image k = np.identity(3) k[0, 2] = WINDOW_WIDTH_HALF k[1, 2] = WINDOW_HEIGHT_HALF f = WINDOW_WIDTH / \ (2.0 * math.tan(90.0 * math.pi / 360.0)) k[0, 0] = k[1, 1] = f camera_to_car_transform = camera0.get_unreal_transform() lidar_to_car_transform = lidar.get_transform() * Transform( Rotation(yaw=90), Scale(z=-1)) return settings, k, camera_to_car_transform, lidar_to_car_transform
def find_pts(update_pts, measurement_data, newcam): pts_2d_ls_new = [] for i in range(len(update_pts)): world_transform = Transform( measurement_data.player_measurements.transform) newworld = np.array(convert_transform(world_transform)) extrinsic = np.matmul(newworld, newcam) world_coord = np.asarray(update_pts[i]).reshape(4, -1) conversion = _3d_to_2d(extrinsic, world_coord, intrinsic) pts_2d_ls_new.append(conversion) return pts_2d_ls_new
def map_ground_bounding_box_to_2D(distance_img, world_transform, obstacle_transform, bounding_box, rgb_transform, rgb_intrinsic, rgb_img_size): (image_width, image_height) = rgb_img_size extrinsic_mat = world_transform * rgb_transform obj_transform = Transform(obstacle_transform.to_transform_pb2()) bbox_pb2 = bounding_box.to_bounding_box_pb2() bbox_transform = Transform(bbox_pb2.transform) ext = bbox_pb2.extent # 8 bounding box vertices relative to (0,0,0) bbox = np.array([[ext.x, ext.y, ext.z], [ext.x, -ext.y, ext.z], [ext.x, ext.y, -ext.z], [ext.x, -ext.y, -ext.z], [-ext.x, ext.y, ext.z], [-ext.x, -ext.y, ext.z], [-ext.x, ext.y, -ext.z], [-ext.x, -ext.y, -ext.z]]) # Transform the vertices with respect to the bounding box transform. bbox = bbox_transform.transform_points(bbox) # The bounding box transform is with respect to the object transform. # Transform the points relative to its transform. bbox = obj_transform.transform_points(bbox) # Object's transform is relative to the world. Thus, the bbox contains # the 3D bounding box vertices relative to the world. coords = [] for vertex in bbox: pos_vector = np.array([ [vertex[0, 0]], # [[X, [vertex[0, 1]], # Y, [vertex[0, 2]], # Z, [1.0] # 1.0]] ]) # Transform the points to camera. transformed_3d_pos = np.dot(inv(extrinsic_mat.matrix), pos_vector) # Transform the points to 2D. pos2d = np.dot(rgb_intrinsic, transformed_3d_pos[:3]) # Normalize the 2D points. pos2d = np.array([pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2]]) # Add the points to the image. if pos2d[2] > 0: # If the point is in front of the camera. x_2d = float(image_width - pos2d[0]) y_2d = float(image_height - pos2d[1]) if (x_2d >= 0 or y_2d >= 0) and (x_2d < image_width or y_2d < image_height): coords.append((x_2d, y_2d, pos2d[2])) return coords
def run_carla_client(host, port, far): # Here we will run a single episode with 300 frames. number_of_frames = 30 frame_step = 10 # Save one image every 100 frames image_size = [800, 600] camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z] camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)] fov = 70 autopilot = False control = VehicleControl() for start_i in range(150): output_folder = '/home2/mariap/Packages/CARLA_0.8.2/PythonClient/_out/pos_' + str( start_i) if not os.path.exists(output_folder): os.mkdir(output_folder) print("make " + str(output_folder)) # Connect with the server with make_carla_client(host, port) as client: print('CarlaClient connected') for start_i in range(150): output_folder = '/home2/mariap/Packages/CARLA_0.8.2/PythonClient/_out/pos_' + str( start_i) print(output_folder) # Here we load the settings. settings = CarlaSettings() settings.set(SynchronousMode=True, SendNonPlayerAgentsInfo=True, NumberOfVehicles=100, NumberOfPedestrians=500, WeatherId=random.choice([1, 3, 7, 8, 14])) settings.randomize_seeds() camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov) camera1.set_image_size(*image_size) camera1.set_position(*camera_local_pos) camera1.set_rotation(*camera_local_rotation) settings.add_sensor(camera1) camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov) camera2.set_image_size(*image_size) camera2.set_position(*camera_local_pos) camera2.set_rotation(*camera_local_rotation) settings.add_sensor(camera2) camera3 = Camera('CameraSeg', PostProcessing='SemanticSegmentation') camera3.set_image_size(*image_size) camera3.set_position(*camera_local_pos) camera3.set_rotation(*camera_local_rotation) settings.add_sensor(camera3) client.load_settings(settings) # Start at location index id '0' client.start_episode(start_i) cameras_dict = {} pedestrians_dict = {} cars_dict = {} # Compute the camera transform matrix camera_to_car_transform = camera2.get_unreal_transform() # (Intrinsic) (3, 3) K Matrix K = np.identity(3) K[0, 2] = image_size[0] / 2.0 K[1, 2] = image_size[1] / 2.0 K[0, 0] = K[1, 1] = image_size[0] / (2.0 * np.tan(fov * np.pi / 360.0)) with open(output_folder + '/camera_intrinsics.p', 'w') as camfile: pickle.dump(K, camfile) # Iterate every frame in the episode except for the first one. for frame in range(1, number_of_frames): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # Save one image every 'frame_step' frames if not frame % frame_step: for name, measurement in sensor_data.items(): filename = '{:s}/{:0>6d}'.format(name, frame) measurement.save_to_disk( os.path.join(output_folder, filename)) # Start transformations time mesure. timer = StopWatch() # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) image_seg = np.tile( labels_to_array(sensor_data['CameraSeg']), (1, 1, 3)) # 2d to (camera) local 3d # We use the image_RGB to colorize each 3D point, this is optional. # "max_depth" is used to keep only the points that are near to the # camera, meaning 1.0 the farest points (sky) point_cloud = depth_to_local_point_cloud( sensor_data['CameraDepth'], image_RGB, max_depth=far) point_cloud_seg = depth_to_local_point_cloud( sensor_data['CameraDepth'], image_seg, max_depth=far) # (Camera) local 3d to world 3d. # Get the transform from the player protobuf transformation. world_transform = Transform( measurements.player_measurements.transform) # Compute the final transformation matrix. car_to_world_transform = world_transform * camera_to_car_transform # Car to World transformation given the 3D points and the # transformation matrix. point_cloud.apply_transform(car_to_world_transform) point_cloud_seg.apply_transform(car_to_world_transform) Rt = car_to_world_transform.matrix Rt_inv = car_to_world_transform.inverse( ).matrix # Rt_inv is the world to camera matrix !! #R_inv=world_transform.inverse().matrix cameras_dict[frame] = {} cameras_dict[frame]['inverse_rotation'] = Rt_inv[:] cameras_dict[frame]['rotation'] = Rt[:] cameras_dict[frame]['translation'] = Rt_inv[0:3, 3] cameras_dict[frame][ 'camera_to_car'] = camera_to_car_transform.matrix # Get non-player info vehicles = {} pedestrians = {} for agent in measurements.non_player_agents: # check if the agent is a vehicle. if agent.HasField('vehicle'): pos = agent.vehicle.transform.location pos_vector = np.array([[pos.x], [pos.y], [pos.z], [1.0]]) trnasformed_3d_pos = np.dot(Rt_inv, pos_vector) pos2d = np.dot(K, trnasformed_3d_pos[:3]) # Normalize the point norm_pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) # Now, pos2d contains the [x, y, d] values of the image in pixels (where d is the depth) # You can use the depth to know the points that are in front of the camera (positive depth). x_2d = image_size[0] - norm_pos2d[0] y_2d = image_size[1] - norm_pos2d[1] vehicles[agent.id] = {} vehicles[agent.id]['transform'] = [ agent.vehicle.transform.location.x, agent.vehicle.transform.location.y, agent.vehicle.transform.location.z ] vehicles[agent.id][ 'bounding_box.transform'] = agent.vehicle.bounding_box.transform.location.z vehicles[agent.id][ 'yaw'] = agent.vehicle.transform.rotation.yaw vehicles[agent.id]['bounding_box'] = [ agent.vehicle.bounding_box.extent.x, agent.vehicle.bounding_box.extent.y, agent.vehicle.bounding_box.extent.z ] vehicle_transform = Transform( agent.vehicle.bounding_box.transform) pos = agent.vehicle.transform.location bbox3d = agent.vehicle.bounding_box.extent # Compute the 3D bounding boxes # f contains the 4 points that corresponds to the bottom f = np.array([[ pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z ], [ pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z - bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z - bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z - bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z + agent.vehicle. bounding_box.transform.location.z ], [ pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z + agent.vehicle. bounding_box.transform.location.z ]]) f_rotated = vehicle_transform.transform_points(f) f_2D_rotated = [] vehicles[ agent.id]['bounding_box_coord'] = f_rotated for i in range(f.shape[0]): point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]]) transformed_2d_pos = np.dot( Rt_inv, point) # 3d Position in camera space pos2d = np.dot( K, transformed_2d_pos[:3] ) # Conversion to camera frustum space norm_pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) #print([image_size[0] - (pos2d[0] / pos2d[2]), image_size[1] - (pos2d[1] / pos2d[2])]) f_2D_rotated.append( np.array([ image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1] ])) vehicles[ agent.id]['bounding_box_2D'] = f_2D_rotated elif agent.HasField('pedestrian'): pedestrians[agent.id] = {} pedestrians[agent.id]['transform'] = [ agent.pedestrian.transform.location.x, agent.pedestrian.transform.location.y, agent.pedestrian.transform.location.z ] pedestrians[agent.id][ 'yaw'] = agent.pedestrian.transform.rotation.yaw pedestrians[agent.id]['bounding_box'] = [ agent.pedestrian.bounding_box.extent.x, agent.pedestrian.bounding_box.extent.y, agent.pedestrian.bounding_box.extent.z ] vehicle_transform = Transform( agent.pedestrian.bounding_box.transform) pos = agent.pedestrian.transform.location bbox3d = agent.pedestrian.bounding_box.extent # Compute the 3D bounding boxes # f contains the 4 points that corresponds to the bottom f = np.array( [[pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z], [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z], [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z], [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z], [ pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z ], [ pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z ], [ pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z ], [ pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z ]]) f_rotated = vehicle_transform.transform_points(f) pedestrians[ agent.id]['bounding_box_coord'] = f_rotated f_2D_rotated = [] for i in range(f.shape[0]): point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]]) transformed_2d_pos = np.dot( Rt_inv, point) # See above for cars pos2d = np.dot(K, transformed_2d_pos[:3]) norm_pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) f_2D_rotated.append([ image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1] ]) pedestrians[ agent.id]['bounding_box_2D'] = f_2D_rotated cars_dict[frame] = vehicles pedestrians_dict[frame] = pedestrians # End transformations time mesure. timer.stop() # Save PLY to disk # This generates the PLY string with the 3D points and the RGB colors # for each row of the file. point_cloud.save_to_disk( os.path.join(output_folder, '{:0>5}.ply'.format(frame))) point_cloud_seg.save_to_disk( os.path.join(output_folder, '{:0>5}_seg.ply'.format(frame))) print_message(timer.milliseconds(), len(point_cloud), frame) if autopilot: client.send_control( measurements.player_measurements.autopilot_control) else: control.hand_brake = True client.send_control(control) with open(output_folder + '/cameras.p', 'w') as camerafile: pickle.dump(cameras_dict, camerafile) print(output_folder + "cameras.p") with open(output_folder + '/people.p', 'w') as peoplefile: pickle.dump(pedestrians_dict, peoplefile) with open(output_folder + '/cars.p', 'w') as carfile: pickle.dump(cars_dict, carfile)
def run_carla_client(host, port, far): # Here we will run a single episode with 300 frames. number_of_frames = 3000 frame_step = 10 # Save one image every 100 frames output_folder = '_out' image_size = [1280, 720] camera_local_pos = [0.7, 0.0, 1.3] # [X, Y, Z] camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)] fov = 59 WINDOW_WIDTH = 1280 WINDOW_HEIGHT = 720 MINI_WINDOW_WIDTH = 320 MINI_WINDOW_HEIGHT = 180 WINDOW_WIDTH_HALF = WINDOW_WIDTH / 2 WINDOW_HEIGHT_HALF = WINDOW_HEIGHT / 2 k = np.identity(3) k[0, 2] = WINDOW_WIDTH_HALF k[1, 2] = WINDOW_HEIGHT_HALF k[0, 0] = k[1, 1] = WINDOW_WIDTH / \ (2.0 * math.tan(59.0 * math.pi / 360.0)) intrinsic = k # Connect with the server with make_carla_client(host, port) as client: print('CarlaClient connected') # Here we load the settings. settings = CarlaSettings() settings.set(SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles=20, NumberOfPedestrians=40, WeatherId=1) settings.randomize_seeds() camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov) camera1.set_image_size(*image_size) camera1.set_position(*camera_local_pos) camera1.set_rotation(*camera_local_rotation) settings.add_sensor(camera1) camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov) camera2.set_image_size(*image_size) camera2.set_position(*camera_local_pos) camera2.set_rotation(*camera_local_rotation) settings.add_sensor(camera2) #scene = client.load_settings(settings) client.load_settings(settings) #print("sjdsjhdjshdjshdjshgds",scene.player_start_spots[0].location.x) # Start at location index id '0' client.start_episode(0) # Compute the camera transform matrix camera_to_car_transform = camera2.get_unreal_transform() print("camera_to_car_transform", camera_to_car_transform) carla_utils_obj = segmentation.carla_utils(intrinsic) # Iterate every frame in the episode except for the first one. for frame in range(1, number_of_frames): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # Save one image every 'frame_step' frames if not frame % frame_step: # Start transformations time mesure. # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) image_depth = to_rgb_array(sensor_data['CameraDepth']) #measurements.player_measurements.transform.location.x-=40 #measurements.player_measurements.transform.location.z-=2 world_transform = Transform( measurements.player_measurements.transform) im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR) pos_vector = ([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) fdfd = str(world_transform) sdsd = fdfd[1:-1].split('\n') new = [] for i in sdsd: dd = i[:-1].lstrip('[ ') ff = re.sub("\s+", ",", dd.strip()) gg = ff.split(',') new.append([float(i) for i in gg]) newworld = np.array(new) fdfd = str(camera_to_car_transform) sdsd = fdfd[1:-1].split('\n') new = [] for i in sdsd: dd = i[:-1].lstrip('[ ') ff = re.sub("\s+", ",", dd.strip()) gg = ff.split(',') new.append([float(i) for i in gg]) newcam = np.array(new) extrinsic = np.matmul(newworld, newcam) get_2d_point = carla_utils_obj.run_seg(im_bgr, extrinsic, pos_vector) print(get_2d_point) depth = image_depth[int(get_2d_point[0]), int(get_2d_point[1])] scale = depth[0] + depth[1] * 256 + depth[2] * 256 * 256 scale = scale / ((256 * 256 * 256) - 1) depth = scale * 1000 pos2d = np.array([(WINDOW_WIDTH - get_2d_point[1]) * depth, (WINDOW_HEIGHT - get_2d_point[0]) * depth, depth]) first = np.dot(np.linalg.inv(intrinsic), pos2d) first = np.append(first, 1) sec = np.matmul((extrinsic), first) print("present", pos_vector) print('goal-', sec) client.send_control( measurements.player_measurements.autopilot_control)
def run_carla_client(args): # Here we will run 3 episodes with 300 frames each. number_of_episodes = 15 frames_per_episode = 1230 # [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11, 12, 13, 14] vehicles_num = [ 140, 100, 120, 80, 90, 100, 80, 90, 110, 100, 80, 70, 70, 80, 100 ] # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') for episode in range(0, number_of_episodes): # Start a new episode. if args.settings_filepath is None: # Create a CarlaSettings object. This object is a wrapper around # the CarlaSettings.ini file. Here we set the configuration we # want for the new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles=vehicles_num[ episode], #random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25, NumberOfPedestrians=120, DisableTwoWheeledVehicles=False, WeatherId=episode, #1, #random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. # LEFT RGB CAMERA camera_l = Camera('LeftCameraRGB', PostProcessing='SceneFinal') camera_l.set_image_size(800, 600) camera_l.set_position(1.30, -0.27, 1.50) settings.add_sensor(camera_l) # LEFT DEPTH camera_ld = Camera('LeftCameraDepth', PostProcessing='Depth') camera_ld.set_image_size(800, 600) camera_ld.set_position(1.30, -0.27, 1.50) settings.add_sensor(camera_ld) # LEFT SEGMENTATION camera_ls = Camera('LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_ls.set_image_size(800, 600) camera_ls.set_position(1.30, -0.27, 1.50) settings.add_sensor(camera_ls) # RIGHT RGB CAMERA camera_r = Camera('RightCameraRGB', PostProcessing='SceneFinal') camera_r.set_image_size(800, 600) camera_r.set_position(1.30, 0.27, 1.50) settings.add_sensor(camera_r) # RIGHT DEPTH camera_rd = Camera('RightCameraDepth', PostProcessing='Depth') camera_rd.set_image_size(800, 600) camera_rd.set_position(1.30, 0.27, 1.50) settings.add_sensor(camera_rd) # RIGHT SEGMENTATION camera_rs = Camera('RightCameraSeg', PostProcessing='SemanticSegmentation') camera_rs.set_image_size(800, 600) camera_rs.set_position(1.30, 0.27, 1.50) settings.add_sensor(camera_rs) # LEFT 15 DEGREE RGB CAMERA camera_l_15 = Camera('15_LeftCameraRGB', PostProcessing='SceneFinal') camera_l_15.set_image_size(800, 600) camera_l_15.set_position(1.30, -0.7, 1.50) # [X, Y, Z] camera_l_15.set_rotation(0, -15.0, 0) # [pitch(Y), yaw(Z), roll(X)] settings.add_sensor(camera_l_15) # LEFT 15 DEGREE DEPTH camera_ld_15 = Camera('15_LeftCameraDepth', PostProcessing='Depth') camera_ld_15.set_image_size(800, 600) camera_ld_15.set_position(1.30, -0.7, 1.50) camera_ld_15.set_rotation(0, -15.0, 0) settings.add_sensor(camera_ld_15) # LEFT 15 DEGREE SEGMENTATION camera_ls_15 = Camera('15_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_ls_15.set_image_size(800, 600) camera_ls_15.set_position(1.30, -0.7, 1.50) camera_ls_15.set_rotation(0, -15.0, 0) settings.add_sensor(camera_ls_15) # Right 15 DEGREE RGB CAMERA camera_r_15 = Camera('15_RightCameraRGB', PostProcessing='SceneFinal') camera_r_15.set_image_size(800, 600) camera_r_15.set_position(1.30, 0.7, 1.50) camera_r_15.set_rotation(0, 15.0, 0) settings.add_sensor(camera_r_15) # Right 15 DEGREE DEPTH camera_rd_15 = Camera('15_RightCameraDepth', PostProcessing='Depth') camera_rd_15.set_image_size(800, 600) camera_rd_15.set_position(1.30, 0.7, 1.50) camera_rd_15.set_rotation(0, 15.0, 0) settings.add_sensor(camera_rd_15) # RIGHT 15 DEGREE SEGMENTATION camera_ls_15 = Camera('15_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_ls_15.set_image_size(800, 600) camera_ls_15.set_position(1.30, 0.7, 1.50) camera_ls_15.set_rotation(0, 15.0, 0) settings.add_sensor(camera_ls_15) # LEFT 30 DEGREE RGB CAMERA camera_l_30 = Camera('30_LeftCameraRGB', PostProcessing='SceneFinal') camera_l_30.set_image_size(800, 600) camera_l_30.set_position(1.30, -0.7, 1.50) camera_l_30.set_rotation(0, -30.0, 0) settings.add_sensor(camera_l_30) # LEFT 30 DEGREE DEPTH camera_ld_30 = Camera('30_LeftCameraDepth', PostProcessing='Depth') camera_ld_30.set_image_size(800, 600) camera_ld_30.set_position(1.30, -0.7, 1.50) camera_ld_30.set_rotation(0, -30.0, 0) settings.add_sensor(camera_ld_30) # LEFT 30 DEGREE SEGMENTATION camera_ls_30 = Camera('30_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_ls_30.set_image_size(800, 600) camera_ls_30.set_position(1.30, -0.7, 1.50) camera_ls_30.set_rotation(0, -30.0, 0) settings.add_sensor(camera_ls_30) # RIGHT 30 DEGREE RGB CAMERA camera_r_30 = Camera('30_RightCameraRGB', PostProcessing='SceneFinal') camera_r_30.set_image_size(800, 600) camera_r_30.set_position(1.30, 0.7, 1.50) camera_r_30.set_rotation(0, 30.0, 0) settings.add_sensor(camera_r_30) # RIGHT 30 DEGREE DEPTH camera_rd_30 = Camera('30_RightCameraDepth', PostProcessing='Depth') camera_rd_30.set_image_size(800, 600) camera_rd_30.set_position(1.30, 0.7, 1.50) camera_rd_30.set_rotation(0, 30.0, 0) settings.add_sensor(camera_rd_30) # RIGHT 30 DEGREE SEGMENTATION camera_rs_30 = Camera('30_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_rs_30.set_image_size(800, 600) camera_rs_30.set_position(1.30, 0.7, 1.50) camera_rs_30.set_rotation(0, 30.0, 0) settings.add_sensor(camera_rs_30) else: # Alternatively, we can load these settings from a file. with open(args.settings_filepath, 'r') as fp: settings = fp.read() # Now we load these settings into the server. The server replies # with a scene description containing the available start spots for # the player. Here we can provide a CarlaSettings object or a # CarlaSettings.ini file as string. scene = client.load_settings(settings) # Choose one player start at random. number_of_player_starts = len(scene.player_start_spots) player_start = random.randint(0, max(0, number_of_player_starts - 1)) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode...') client.start_episode(player_start) camera_l_to_car_transform = camera_l.get_unreal_transform() camera_r_to_car_transform = camera_r.get_unreal_transform() camera_l_15_to_car_transform = camera_l_15.get_unreal_transform() camera_r_15_to_car_transform = camera_r_15.get_unreal_transform() camera_l_30_to_car_transform = camera_l_30.get_unreal_transform() camera_r_30_to_car_transform = camera_r_30.get_unreal_transform() if not os.path.isdir(args.dataset_path + "/episode_{:0>4d}".format(episode)): os.makedirs(args.dataset_path + "/episode_{:0>4d}".format(episode)) # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() #image = sensor_data.get('LeftCameraSeg', None) # array = image_converter.depth_to_logarithmic_grayscale(image) #array = image_converter.labels_to_cityscapes_palette(image) #filename = '{:0>6d}'.format(frame) #filename += '.png' #cv2.imwrite(filename, array) #image.save_to_disk("/data/khoshhal/Dataset/episode_{:0>4d}/{:s}/{:0>6d}".format(episode, "LeftCameraSeg", frame)) # Print some of the measurements. # print_measurements(measurements) #player_measurements = measurements.player_measurements world_transform = Transform( measurements.player_measurements.transform) # Compute the final transformation matrix. camera_l_to_world_transform = world_transform * camera_l_to_car_transform camera_r_to_world_transform = world_transform * camera_r_to_car_transform camera_l_15_to_world_transform = world_transform * camera_l_15_to_car_transform camera_r_15_to_world_transform = world_transform * camera_r_15_to_car_transform camera_l_30_to_world_transform = world_transform * camera_l_30_to_car_transform camera_r_30_to_world_transform = world_transform * camera_r_30_to_car_transform args.out_filename_format = dataset_path + '/episode_{:0>4d}/{:s}/{:0>6d}' # Save the images to disk if requested. if frame >= 30: if args.save_images_to_disk: for name, measurement in sensor_data.items(): filename = args.out_filename_format.format( episode, name, frame - 30) measurement.save_to_disk(filename) # Save Transform matrix of each camera to separated files line = "" filename = "{}/episode_{:0>4d}/LeftCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as LeftCamera: for x in np.asarray(camera_l_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" LeftCamera.write(line) line = "" filename = "{}/episode_{:0>4d}/RightCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as RightCamera: for x in np.asarray(camera_r_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" RightCamera.write(line) line = "" filename = "{}/episode_{:0>4d}/15_LeftCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_l_15_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}/episode_{:0>4d}/15_RightCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_r_15_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}/episode_{:0>4d}/30_LeftCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_l_30_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}/episode_{:0>4d}/30_RightCamera".format( args.dataset_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_r_30_to_world_transform. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" # We can access the encoded data of a given image as numpy # array using its "data" property. For instance, to get the # depth value (normalized) at pixel X, Y # # depth_array = sensor_data['CameraDepth'].data # value_at_pixel = depth_array[Y, X] # # Now we have to send the instructions to control the vehicle. # If we are in synchronous mode the server will pause the # simulation until we send this control. if not args.autopilot: client.send_control(steer=random.uniform(-1.0, 1.0), throttle=0.5, brake=0.0, hand_brake=False, reverse=False) else: # Together with the measurements, the server has sent the # control that the in-game autopilot would do this frame. We # can enable autopilot by sending back this control to the # server. We can modify it if wanted, here for instance we # will add some noise to the steer. control = measurements.player_measurements.autopilot_control #control.steer += random.uniform(-0.1, 0.1) client.send_control(control) #time.sleep(1) myfile.close() LeftCamera.close() RightCamera.close()
def _on_loop(self): self._timer.tick() measurements, sensor_data = self.client.read_data() # logging.info("Frame no: {}, = {}".format(self.captured_frame_no, # (self.captured_frame_no + 1) % NUM_RECORDINGS_BEFORE_RESET)) # Reset the environment if the agent is stuck or can't find any agents or if we have captured enough frames in this one is_stuck = self._frames_since_last_capture >= NUM_EMPTY_FRAMES_BEFORE_RESET is_enough_datapoints = (self._captured_frames_since_restart + 1) % NUM_RECORDINGS_BEFORE_RESET == 0 if (is_stuck or is_enough_datapoints) and GEN_DATA: logging.warning("Is stucK: {}, is_enough_datapoints: {}".format( is_stuck, is_enough_datapoints)) self._on_new_episode() # If we dont sleep, the client will continue to render return True # (Extrinsic) Rt Matrix # (Camera) local 3d to world 3d. # Get the transform from the player protobuf transformation. world_transform = Transform(measurements.player_measurements.transform) # Compute the final transformation matrix. self._extrinsic = world_transform * self._camera_to_car_transform self._measurements = measurements self._last_player_location = measurements.player_measurements.transform.location self._main_image = sensor_data.get('CameraRGB', None) self._lidar_measurement = sensor_data.get('Lidar32', None) self._depth_image = sensor_data.get('DepthCamera', None) # Print measurements every second. if self._timer.elapsed_seconds_since_lap() > 1.0: if self._city_name is not None: # Function to get car position on map. map_position = self._map.convert_to_pixel([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) # Function to get orientation of the road car is in. lane_orientation = self._map.get_lane_orientation([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) MeasurementsDisplayHelper.print_player_measurements_map( measurements.player_measurements, map_position, lane_orientation, self._timer) else: MeasurementsDisplayHelper.print_player_measurements( measurements.player_measurements, self._timer) # Plot position on the map as well. self._timer.lap() control = self._get_keyboard_control(pygame.key.get_pressed()) # Set the player position if self._city_name is not None: self._position = self._map.convert_to_pixel([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) self._agent_positions = measurements.non_player_agents if control is None: self._on_new_episode() elif self._enable_autopilot: self.client.send_control( measurements.player_measurements.autopilot_control) else: self.client.send_control(control)
def run_carla_client(args): # Here we will run 3 episodes with 300 frames each. number_of_episodes = 15 frames_per_episode = 10050 # [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7, 8 , 9 , 10, 11, 12, 13, 14] # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50] vehicles_num = [35, 35, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35] # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50] # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') # list_of_episodes = [11] # list_of_episodes = [9, 11, 14] list_of_episodes = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14] # list_of_episodes = [6, 7, 9, 11, 14] # list_of_episodes = [2, 3, 4, 5, 6, 7, 9, 11, 14] # list_of_episodes = [2, 7] # list_of_episodes = [5, 6, 7, 11, 14] # list_of_episodes = [6, 11] # list_of_episodes = [7] #list(range(0, number_of_episodes)) #list_of_episodes.pop(13) #list_of_episodes.pop(12) #list_of_episodes.pop(10) #list_of_episodes.pop(8) for episode in list_of_episodes: # Start a new episode. if args.settings_filepath is None: # Create a CarlaSettings object. This object is a wrapper around # the CarlaSettings.ini file. Here we set the configuration we # want for the new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles=vehicles_num[ episode], #random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25, NumberOfPedestrians=4, DisableTwoWheeledVehicles=False, WeatherId=episode, #1, #random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. #### Cameras aligned across the y-axis #### Horizontally shifted in the following Range # [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62] # LEFT RGB CAMERA # y_locs = [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62] # z_locs = [1.3, 1.84, 2.38, 2.92, 3.46, 4.0, 4.54] # y_locs_left = [-1.08, -0.54, 0.0, 0.54, 1.08] z_locs = [ i.item() - 7 * 0.5 for i in np.linspace(0, 14 * 0.5, 15) ] # Up y_locs = [ i.item() - 7 * 0.5 for i in np.linspace(0, 14 * 0.5, 15) ] # Right rotation_y = 0 CameraArray = {} for j, y_position in enumerate(y_locs): for i, z_position in enumerate(z_locs): # COLOR camera_rgb = Camera('RGB_{:0>2d}_{:0>2d}'.format(j, i), PostProcessing='SceneFinal') camera_rgb.set_image_size(800, 600) camera_rgb.set_position(2.0, y_position, 2.00 - z_position) camera_rgb.set_rotation(0, rotation_y, 0) CameraArray['RGB_{:0>2d}_{:0>2d}'.format( j, i)] = camera_rgb settings.add_sensor(camera_rgb) # DEPTH camera_depth = Camera('Depth_{:0>2d}_{:0>2d}'.format( j, i), PostProcessing='Depth') camera_depth.set_image_size(800, 600) camera_depth.set_position(2.0, y_position, 2.0 - z_position) camera_depth.set_rotation(0, rotation_y, 0) CameraArray['Depth_{:0>2d}_{:0>2d}'.format( j, i)] = camera_depth settings.add_sensor(camera_depth) # SEGMENTATION camera_seg = Camera( 'SEM_{:0>2d}_{:0>2d}'.format(j, i), PostProcessing='SemanticSegmentation') camera_seg.set_image_size(800, 600) camera_seg.set_position(2.0, y_position, 2.0 - z_position) camera_seg.set_rotation(0, rotation_y, 0) CameraArray['SEM_{:0>2d}_{:0>2d}'.format( j, i)] = camera_seg settings.add_sensor(camera_seg) else: with open(args.settings_filepath, 'r') as fp: settings = fp.read() scene = client.load_settings(settings) # Choose one player start at random. number_of_player_starts = len(scene.player_start_spots) player_start = random.randint(0, max(0, number_of_player_starts - 1)) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode...') client.start_episode(player_start) print('Created a new episode...') Cameras_to_car = [] for j in range(len(y_locs)): for i in range(len(z_locs)): Cameras_to_car.append( CameraArray['RGB_{:0>2d}_{:0>2d}'.format( j, i)].get_transform()) print('created a camera array') # Create a folder for saving episode data episode_dir = "{}/Town{:0>2d}/episode_{:0>5d}".format( args.data_path, args.town_id, episode) if not os.path.isdir(episode_dir): os.makedirs(episode_dir) print('created destination folder') # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. time.sleep(1) measurements, sensor_data = client.read_data() print('got measurements') # player_measurements = measurements.player_measurements world_transform = Transform( measurements.player_measurements.transform) # Compute the final transformation matrix. print('debug point 1') Cameras_to_world = [world_transform*cam_to_car \ for cam_to_car in Cameras_to_car] if frame >= 50 and (frame % 100 == 0): print('debug point 2') if args.save_images_to_disk: output_dir = os.path.join( episode_dir, "{:0>6d}".format((frame - 50) / 100)) if not os.path.isdir(output_dir): os.makedirs(output_dir) for name, measurement in sensor_data.items(): # filename = args.out_filename_format.format(episode, name, (frame-50)/100) filename = os.path.join(output_dir, name) print('writing:', filename) measurement.save_to_disk(filename) cam_2_world_file = os.path.join( output_dir, 'cam_2_world.txt') with open(cam_2_world_file, 'w') as myfile: for cam_num in range(len(Cameras_to_world)): line = "" for x in np.asarray(Cameras_to_world[cam_num]. matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) if not args.autopilot: client.send_control(steer=random.uniform(-1.0, 1.0), throttle=0.5, brake=0.0, hand_brake=False, reverse=False) else: # Together with the measurements, the server has sent the # control that the in-game autopilot would do this frame. We # can enable autopilot by sending back this control to the # server. We can modify it if wanted, here for instance we # will add some noise to the steer. control = measurements.player_measurements.autopilot_control #control.steer += random.uniform(-0.1, 0.1) client.send_control(control)
def run_carla_client(args): # Here we will run 3 episodes with 300 frames each. number_of_episodes = 15 frames_per_episode = 10030 # [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7, 8 , 9 , 10, 11, 12, 13, 14] # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50] vehicles_num = [35, 35, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35] # vehicles_num = [60, 60, 70, 50, 60, 60, 80, 60, 60, 60, 50, 70, 60, 50, 50] # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') # list_of_episodes = [11] list_of_episodes = [9, 11, 14] # list_of_episodes = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14] # list_of_episodes = [6, 7, 9, 11, 14] # list_of_episodes = [2, 3, 4, 5, 6, 7, 9, 11, 14] # list_of_episodes = [2, 7] # list_of_episodes = [5, 6, 7, 11, 14] # list_of_episodes = [6, 11] # list_of_episodes = [7] #list(range(0, number_of_episodes)) #list_of_episodes.pop(13) #list_of_episodes.pop(12) #list_of_episodes.pop(10) #list_of_episodes.pop(8) for episode in list_of_episodes: # Start a new episode. if args.settings_filepath is None: # Create a CarlaSettings object. This object is a wrapper around # the CarlaSettings.ini file. Here we set the configuration we # want for the new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles= vehicles_num[episode],#random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25, NumberOfPedestrians=25, DisableTwoWheeledVehicles=False, WeatherId= episode, #1, #random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. #### Cameras aligned across the y-axis #### Horizontally shifted in the following Range # [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62] # LEFT RGB CAMERA # y_locs = [-1.62, -1.08, -0.54, 0.0, 0.54, 1.08, 1.62] # x_locs = [1.3, 1.84, 2.38, 2.92, 3.46, 4.0, 4.54] # y_locs_left = [-1.08, -0.54, 0.0, 0.54, 1.08] y_locs_left = -1.08 x_locs_left = [1.84, 2.38, 2.92] LeftSideCameras = {} for i,x_position in enumerate(x_locs_left): # COLOR camera_rgb = Camera('LeftSideCameras{0}RGB'.format(i), PostProcessing='SceneFinal') camera_rgb.set_image_size(800, 600) camera_rgb.set_position(x_position, y_locs_left, 1.50) camera_rgb.set_rotation(0, -90.0, 0) LeftSideCameras['LeftSideCameras{0}RGB'.format(i)] = camera_rgb settings.add_sensor(camera_rgb) # DEPTH camera_depth = Camera('LeftSideCameras{0}Depth'.format(i), PostProcessing='Depth') camera_depth.set_image_size(800, 600) camera_depth.set_position(x_position, y_locs_left, 1.50) camera_depth.set_rotation(0, -90.0, 0) LeftSideCameras['LeftSideCameras{0}Depth'.format(i)] = camera_depth settings.add_sensor(camera_depth) # SEGMENTATION camera_seg = Camera('LeftSideCameras{0}Seg'.format(i), PostProcessing='SemanticSegmentation') camera_seg.set_image_size(800, 600) camera_seg.set_position(x_position, y_locs_left, 1.50) camera_seg.set_rotation(0, -90.0, 0) LeftSideCameras['LeftSideCameras{0}Seg'.format(i)] = camera_seg settings.add_sensor(camera_seg) y_locs_right = 1.08 x_locs_right = [1.84, 2.38, 2.92] RightSideCameras = {} for i,x_position in enumerate(x_locs_right): # COLOR camera_rgb = Camera('RightSideCameras{0}RGB'.format(i), PostProcessing='SceneFinal') camera_rgb.set_image_size(800, 600) camera_rgb.set_position(x_position, y_locs_right, 1.50) camera_rgb.set_rotation(0, 90.0, 0) RightSideCameras['RightSideCameras{0}RGB'.format(i)] = camera_rgb settings.add_sensor(camera_rgb) # DEPTH camera_depth = Camera('RightSideCameras{0}Depth'.format(i), PostProcessing='Depth') camera_depth.set_image_size(800, 600) camera_depth.set_position(x_position, y_locs_right, 1.50) camera_depth.set_rotation(0, 90.0, 0) RightSideCameras['RightSideCameras{0}Depth'.format(i)] = camera_depth settings.add_sensor(camera_depth) # SEGMENTATION camera_seg = Camera('RightSideCameras{0}Seg'.format(i), PostProcessing='SemanticSegmentation') camera_seg.set_image_size(800, 600) camera_seg.set_position(x_position, y_locs_right, 1.50) camera_seg.set_rotation(0, 90.0, 0) RightSideCameras['RightSideCameras{0}Seg'.format(i)] = camera_seg settings.add_sensor(camera_seg) else: with open(args.settings_filepath, 'r') as fp: settings = fp.read() scene = client.load_settings(settings) # Choose one player start at random. number_of_player_starts = len(scene.player_start_spots) player_start = random.randint(0, max(0, number_of_player_starts - 1)) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode...') client.start_episode(player_start) LeftSideCameras_to_car = [] for i in range(len(x_locs_right)): LeftSideCameras_to_car.append(LeftSideCameras['LeftSideCameras{0}RGB'.format(i)].get_transform()) RightSideCameras_to_car = [] for i in range(len(x_locs_right)): RightSideCameras_to_car.append(RightSideCameras['RightSideCameras{0}RGB'.format(i)].get_transform()) # camera_90_p_l_to_car_transform = camera_90_p_l.get_transform() # camera_90_p_r_to_car_transform = camera_90_p_r.get_transform() # Create a folder for saving episode data if not os.path.isdir("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode)): os.makedirs("/data/teddy/Datasets/carla_left_and_right/Town2/episode_{:0>5d}".format(episode)) # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # player_measurements = measurements.player_measurements world_transform = Transform(measurements.player_measurements.transform) # Compute the final transformation matrix. LeftSideCameras_to_world = [world_transform*cam_to_car \ for cam_to_car in LeftSideCameras_to_car] RightSideCameras_to_world = [world_transform*cam_to_car \ for cam_to_car in RightSideCameras_to_car] # for i in range(len()): # LeftSideCameras_to_world.append() # RightSideCameras_to_world.append(world_transform * RightSideCameras_to_car[i]) # Save the images to disk if requested. if frame >= 30 and (frame % 2 == 0): if args.save_images_to_disk: for name, measurement in sensor_data.items(): filename = args.out_filename_format.format(episode, name, (frame-30)/2) measurement.save_to_disk(filename) # Save Transform matrix of each camera to separated files for cam_num in range(len(x_locs_left)): line = "" filename = "{}episode_{:0>5d}/LeftSideCameras{}".format(args.root_path, episode, cam_num) + ".txt" with open(filename, 'a+') as myfile: for x in np.asarray(LeftSideCameras_to_world[cam_num].matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" # Forward Cameras # forward_cam_ids = list(range(len(x_locs_right))) # forward_cam_ids.pop(mid_cam) for i, cam_num in enumerate(x_locs_right): line = "" filename = "{}episode_{:0>5d}/RightSideCameras{}".format(args.root_path, episode, cam_num) + ".txt" with open(filename, 'a+') as myfile: for x in np.asarray(RightSideCameras_to_world[i].matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" if not args.autopilot: client.send_control( steer=random.uniform(-1.0, 1.0), throttle=0.5, brake=0.0, hand_brake=False, reverse=False) else: # Together with the measurements, the server has sent the # control that the in-game autopilot would do this frame. We # can enable autopilot by sending back this control to the # server. We can modify it if wanted, here for instance we # will add some noise to the steer. control = measurements.player_measurements.autopilot_control #control.steer += random.uniform(-0.1, 0.1) client.send_control(control)
def read_carla_data(self): read_start_time = time.time() measurements, sensor_data = self.client.read_data() measure_time = time.time() self._logger.info( 'Got readings for game time {} and platform time {}'.format( measurements.game_timestamp, measurements.platform_timestamp)) # Send measurements player_measurements = measurements.player_measurements vehicle_pos = ((player_measurements.transform.location.x, player_measurements.transform.location.y, player_measurements.transform.location.z), (player_measurements.transform.orientation.x, player_measurements.transform.orientation.y, player_measurements.transform.orientation.z)) world_transform = Transform(player_measurements.transform) timestamp = Timestamp( coordinates=[measurements.game_timestamp, self.message_num]) self.message_num += 1 ray.register_custom_serializer(Message, use_pickle=True) ray.register_custom_serializer(WatermarkMessage, use_pickle=True) watermark = WatermarkMessage(timestamp) self.get_output_stream('world_transform').send( Message(world_transform, timestamp)) self.get_output_stream('world_transform').send(watermark) self.get_output_stream('vehicle_pos').send( Message(vehicle_pos, timestamp)) self.get_output_stream('vehicle_pos').send(watermark) acceleration = (player_measurements.acceleration.x, player_measurements.acceleration.y, player_measurements.acceleration.z) self.get_output_stream('acceleration').send( Message(acceleration, timestamp)) self.get_output_stream('acceleration').send(watermark) self.get_output_stream('forward_speed').send( Message(player_measurements.forward_speed, timestamp)) self.get_output_stream('forward_speed').send(watermark) self.get_output_stream('vehicle_collisions').send( Message(player_measurements.collision_vehicles, timestamp)) self.get_output_stream('vehicle_collisions').send(watermark) self.get_output_stream('pedestrian_collisions').send( Message(player_measurements.collision_pedestrians, timestamp)) self.get_output_stream('pedestrian_collisions').send(watermark) self.get_output_stream('other_collisions').send( Message(player_measurements.collision_other, timestamp)) self.get_output_stream('other_collisions').send(watermark) self.get_output_stream('other_lane').send( Message(player_measurements.intersection_otherlane, timestamp)) self.get_output_stream('other_lane').send(watermark) self.get_output_stream('offroad').send( Message(player_measurements.intersection_offroad, timestamp)) self.get_output_stream('offroad').send(watermark) vehicles = [] pedestrians = [] traffic_lights = [] speed_limit_signs = [] for agent in measurements.non_player_agents: if agent.HasField('vehicle'): pos = messages.Transform(agent.vehicle.transform) bb = messages.BoundingBox(agent.vehicle.bounding_box) forward_speed = agent.vehicle.forward_speed vehicle = messages.Vehicle(pos, bb, forward_speed) vehicles.append(vehicle) elif agent.HasField('pedestrian'): if not self.agent_id_map.get(agent.id): self.pedestrian_count += 1 self.agent_id_map[agent.id] = self.pedestrian_count pedestrian_index = self.agent_id_map[agent.id] pos = messages.Transform(agent.pedestrian.transform) bb = messages.BoundingBox(agent.pedestrian.bounding_box) forward_speed = agent.pedestrian.forward_speed pedestrian = messages.Pedestrian(pedestrian_index, pos, bb, forward_speed) pedestrians.append(pedestrian) elif agent.HasField('traffic_light'): transform = messages.Transform(agent.traffic_light.transform) traffic_light = messages.TrafficLight( transform, agent.traffic_light.state) traffic_lights.append(traffic_light) elif agent.HasField('speed_limit_sign'): transform = messages.Transform( agent.speed_limit_sign.transform) speed_sign = messages.SpeedLimitSign( transform, agent.speed_limit_sign.speed_limit) speed_limit_signs.append(speed_sign) vehicles_msg = Message(vehicles, timestamp) self.get_output_stream('vehicles').send(vehicles_msg) self.get_output_stream('vehicles').send(watermark) pedestrians_msg = Message(pedestrians, timestamp) self.get_output_stream('pedestrians').send(pedestrians_msg) self.get_output_stream('pedestrians').send(watermark) traffic_lights_msg = Message(traffic_lights, timestamp) self.get_output_stream('traffic_lights').send(traffic_lights_msg) self.get_output_stream('traffic_lights').send(watermark) traffic_sings_msg = Message(speed_limit_signs, timestamp) self.get_output_stream('traffic_signs').send(traffic_sings_msg) self.get_output_stream('traffic_signs').send(watermark) # Send sensor data for name, measurement in sensor_data.items(): data_stream = self.get_output_stream(name) if data_stream.get_label('camera_type') == 'SceneFinal': # Transform the Carla RGB images to BGR. data_stream.send( Message( pylot_utils.bgra_to_bgr(to_bgra_array(measurement)), timestamp)) else: data_stream.send(Message(measurement, timestamp)) data_stream.send(watermark) self.client.send_control(**self.control) end_time = time.time() measurement_runtime = (measure_time - read_start_time) * 1000 total_runtime = (end_time - read_start_time) * 1000 self._logger.info('Carla measurement time {}; total time {}'.format( measurement_runtime, total_runtime)) self._csv_logger.info('{},{},{},{}'.format(time_epoch_ms(), self.name, measurement_runtime, total_runtime))
def exec_waypoint_nav_demo(args): """ Executes waypoint navigation demo. """ with make_carla_client(args.host, args.port) as client: print('Carla client connected.') settings, camera2 = make_carla_settings(args) # Now we load these settings into the server. The server replies # with a scene description containing the available start spots for # the player. Here we can provide a CarlaSettings object or a # CarlaSettings.ini file as string. scene = client.load_settings(settings) # Refer to the player start folder in the WorldOutliner to see the # player start information player_start = PLAYER_START_INDEX # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode at %r...' % scene.map_name) client.start_episode(player_start) ############################################# # Load Configurations ############################################# # Load configuration file (options.cfg) and then parses for the various # options. Here we have two main options: # live_plotting and live_plotting_period, which controls whether # live plotting is enabled or how often the live plotter updates # during the simulation run. config = configparser.ConfigParser() config.read( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'options.cfg')) demo_opt = config['Demo Parameters'] # Get options enable_live_plot = demo_opt.get('live_plotting', 'true').capitalize() enable_live_plot = enable_live_plot == 'True' live_plot_period = float(demo_opt.get('live_plotting_period', 0)) # Set options live_plot_timer = Timer(live_plot_period) ############################################# # Load Waypoints ############################################# # Opens the waypoint file and stores it to "waypoints" camera_to_car_transform = camera2.get_unreal_transform() carla_utils_obj = segmentationobj.carla_utils(intrinsic) measurement_data, sensor_data = client.read_data() measurements = measurement_data image_RGB = to_rgb_array(sensor_data['CameraRGB']) image_depth = to_rgb_array(sensor_data['CameraDepth']) world_transform = Transform(measurements.player_measurements.transform) im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR) pos_vector = ([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) fdfd = str(world_transform) sdsd = fdfd[1:-1].split('\n') new = [] for i in sdsd: dd = i[:-1].lstrip('[ ') ff = re.sub("\s+", ",", dd.strip()) gg = ff.split(',') new.append([float(i) for i in gg]) newworld = np.array(new) fdfd = str(camera_to_car_transform) sdsd = fdfd[1:-1].split('\n') new = [] for i in sdsd: dd = i[:-1].lstrip('[ ') ff = re.sub("\s+", ",", dd.strip()) gg = ff.split(',') new.append([float(i) for i in gg]) newcam = np.array(new) extrinsic = np.matmul(newworld, newcam) #print("dfjdfjkjfdkf",extrinsic) get_2d_point, pointsmid, res_img = carla_utils_obj.run_seg( im_bgr, extrinsic, pos_vector) #print(get_2d_point) #dis1=((get_2d_point[1]-pointsmid[0][1]),(get_2d_point[0]-pointsmid[0][0])) #dis2=((get_2d_point[1]-pointsmid[1][1]),(get_2d_point[0]-pointsmid[1][0])) #dis3=((get_2d_point[1]-pointsmid[2][1]),(get_2d_point[0]-pointsmid[2][0])) #dis4=((get_2d_point[1]-pointsmid[3][1]),(get_2d_point[0]-pointsmid[3][0])) #flagbox=darknet_proper_fps.performDetect(im_bgr,thresh,configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly,pointsmid) depth1 = image_depth[int(pointsmid[0][0]), int(pointsmid[0][1])] depth2 = image_depth[int(pointsmid[1][0]), int(pointsmid[1][1])] depth3 = image_depth[int(pointsmid[2][0]), int(pointsmid[2][1])] depth4 = image_depth[int(pointsmid[3][0]), int(pointsmid[3][1])] scale1 = depth1[0] + depth1[1] * 256 + depth1[2] * 256 * 256 scale1 = scale1 / ((256 * 256 * 256) - 1) depth1 = scale1 * 1000 pos2d1 = np.array([(WINDOW_WIDTH - pointsmid[0][1]) * depth1, (WINDOW_HEIGHT - pointsmid[0][0]) * depth1, depth1]) first1 = np.dot(np.linalg.inv(intrinsic), pos2d1) first1 = np.append(first1, 1) sec1 = np.matmul((extrinsic), first1) scale2 = depth2[0] + depth2[1] * 256 + depth2[2] * 256 * 256 scale2 = scale2 / ((256 * 256 * 256) - 1) depth2 = scale2 * 1000 pos2d2 = np.array([(WINDOW_WIDTH - pointsmid[1][1]) * depth2, (WINDOW_HEIGHT - pointsmid[1][0]) * depth2, depth2]) first2 = np.dot(np.linalg.inv(intrinsic), pos2d2) first2 = np.append(first2, 1) sec2 = np.matmul((extrinsic), first2) scale3 = depth3[0] + depth3[1] * 256 + depth3[2] * 256 * 256 scale3 = scale3 / ((256 * 256 * 256) - 1) depth3 = scale3 * 1000 pos2d3 = np.array([(WINDOW_WIDTH - pointsmid[2][1]) * depth3, (WINDOW_HEIGHT - pointsmid[2][0]) * depth3, depth3]) first3 = np.dot(np.linalg.inv(intrinsic), pos2d3) first3 = np.append(first3, 1) sec3 = np.matmul((extrinsic), first3) scale4 = depth4[0] + depth4[1] * 256 + depth4[2] * 256 * 256 scale4 = scale4 / ((256 * 256 * 256) - 1) depth4 = scale4 * 1000 pos2d4 = np.array([(WINDOW_WIDTH - pointsmid[3][1]) * depth4, (WINDOW_HEIGHT - pointsmid[3][0]) * depth4, depth4]) first4 = np.dot(np.linalg.inv(intrinsic), pos2d4) first4 = np.append(first4, 1) sec4 = np.matmul((extrinsic), first4) depth = image_depth[int(get_2d_point[0]), int(get_2d_point[1])] scale = depth[0] + depth[1] * 256 + depth[2] * 256 * 256 scale = scale / ((256 * 256 * 256) - 1) depth = scale * 1000 pos2d = np.array([(WINDOW_WIDTH - get_2d_point[1]) * depth, (WINDOW_HEIGHT - get_2d_point[0]) * depth, depth]) first = np.dot(np.linalg.inv(intrinsic), pos2d) first = np.append(first, 1) sec = np.matmul((extrinsic), first) print("present", pos_vector) print('goal-', sec) pos_vector[2] = 4.0 ini = pos_vector goal = list(sec) goal[2] = 1.08 aa = ini[0] dec = abs(ini[1] - goal[1]) / abs(aa - (goal[0])) f1 = open(WAYPOINTS_FILENAME, 'a+') for i in range(int(goal[0]), int(aa)): # print(int(goal[0])-i) if abs((int(aa) - i)) < 10: ini = [ini[0] - 1, ini[1] + dec, ini[2] - 0.03] else: ini = [ini[0] - 1, ini[1] + dec, ini[2]] #if i<int(aa)-1: f1.write( str(ini[0]) + ',' + str(ini[1]) + ',' + str(ini[2]) + '\n') #else: #f1.write(str(ini[0])+','+str(ini[1])+','+str(ini[2])) waypoints_file = WAYPOINTS_FILENAME waypoints_np = None with open(waypoints_file) as waypoints_file_handle: waypoints = list( csv.reader(waypoints_file_handle, delimiter=',', quoting=csv.QUOTE_NONNUMERIC)) waypoints_np = np.array(waypoints) #print("dfjdjfhjdhfjdfhjdfdjdfdufh",waypoints_np) print((waypoints_np)) # Because the waypoints are discrete and our controller performs better # with a continuous path, here we will send a subset of the waypoints # within some lookahead distance from the closest point to the vehicle. # Interpolating between each waypoint will provide a finer resolution # path and make it more "continuous". A simple linear interpolation # is used as a preliminary method to address this issue, though it is # better addressed with better interpolation methods (spline # interpolation, for example). # More appropriate interpolation methods will not be used here for the # sake of demonstration on what effects discrete paths can have on # the controller. It is made much more obvious with linear # interpolation, because in a way part of the path will be continuous # while the discontinuous parts (which happens at the waypoints) will # show just what sort of effects these points have on the controller. # Can you spot these during the simulation? If so, how can you further # reduce these effects? # Linear interpolation computations # Compute a list of distances between waypoints wp_distance = [] # distance array for i in range(1, waypoints_np.shape[0]): wp_distance.append( np.sqrt((waypoints_np[i, 0] - waypoints_np[i - 1, 0])**2 + (waypoints_np[i, 1] - waypoints_np[i - 1, 1])**2)) wp_distance.append(0) # last distance is 0 because it is the distance # from the last waypoint to the last waypoint # Linearly interpolate between waypoints and store in a list wp_interp = [] # interpolated values # (rows = waypoints, columns = [x, y, v]) wp_interp_hash = [] # hash table which indexes waypoints_np # to the index of the waypoint in wp_interp interp_counter = 0 # counter for current interpolated point index for i in range(waypoints_np.shape[0] - 1): # Add original waypoint to interpolated waypoints list (and append # it to the hash table) wp_interp.append(list(waypoints_np[i])) wp_interp_hash.append(interp_counter) interp_counter += 1 # Interpolate to the next waypoint. First compute the number of # points to interpolate based on the desired resolution and # incrementally add interpolated points until the next waypoint # is about to be reached. num_pts_to_interp = int(np.floor(wp_distance[i] /\ float(INTERP_DISTANCE_RES)) - 1) wp_vector = waypoints_np[i + 1] - waypoints_np[i] wp_uvector = wp_vector / np.linalg.norm(wp_vector) for j in range(num_pts_to_interp): next_wp_vector = INTERP_DISTANCE_RES * float(j + 1) * wp_uvector wp_interp.append(list(waypoints_np[i] + next_wp_vector)) interp_counter += 1 # add last waypoint at the end wp_interp.append(list(waypoints_np[-1])) wp_interp_hash.append(interp_counter) interp_counter += 1 ############################################# # Controller 2D Class Declaration ############################################# # This is where we take the controller2d.py class # and apply it to the simulator controller = controller2d.Controller2D(waypoints) ############################################# # Determine simulation average timestep (and total frames) ############################################# # Ensure at least one frame is used to compute average timestep num_iterations = ITER_FOR_SIM_TIMESTEP if (ITER_FOR_SIM_TIMESTEP < 1): num_iterations = 1 # Gather current data from the CARLA server. This is used to get the # simulator starting game time. Note that we also need to # send a command back to the CARLA server because synchronous mode # is enabled. sim_start_stamp = measurement_data.game_timestamp / 1000.0 # Send a control command to proceed to next iteration. #print("dddddddddddddddddddddddddddddddddddddddddddddd",sim_start_stamp) # This mainly applies for simulations that are in synchronous mode. send_control_command(client, throttle=0.0, steer=0, brake=1.0) # Computes the average timestep based on several initial iterations sim_duration = 0 for i in range(num_iterations): # Gather current data measurement_data, sensor_data = client.read_data() # Send a control command to proceed to next iteration send_control_command(client, throttle=0.0, steer=0, brake=1.0) # Last stamp if i == num_iterations - 1: sim_duration = measurement_data.game_timestamp / 1000.0 -\ sim_start_stamp # Outputs average simulation timestep and computes how many frames # will elapse before the simulation should end based on various # parameters that we set in the beginning. SIMULATION_TIME_STEP = sim_duration / float(num_iterations) print("SERVER SIMULATION STEP APPROXIMATION: " + \ str(SIMULATION_TIME_STEP)) TOTAL_EPISODE_FRAMES = int((TOTAL_RUN_TIME + WAIT_TIME_BEFORE_START) /\ SIMULATION_TIME_STEP) + TOTAL_FRAME_BUFFER ############################################# # Frame-by-Frame Iteration and Initialization ############################################# # Store pose history starting from the start position measurement_data, sensor_data = client.read_data() start_x, start_y, start_yaw = get_current_pose(measurement_data) send_control_command(client, throttle=0.0, steer=0, brake=1.0) x_history = [start_x] y_history = [start_y] yaw_history = [start_yaw] time_history = [0] speed_history = [0] ############################################# # Vehicle Trajectory Live Plotting Setup ############################################# # Uses the live plotter to generate live feedback during the simulation # The two feedback includes the trajectory feedback and # the controller feedback (which includes the speed tracking). lp_traj = lv.LivePlotter(tk_title="Trajectory Trace") lp_1d = lv.LivePlotter(tk_title="Controls Feedback") ### # Add 2D position / trajectory plot ### trajectory_fig = lp_traj.plot_new_dynamic_2d_figure( title='Vehicle Trajectory', figsize=(FIGSIZE_X_INCHES, FIGSIZE_Y_INCHES), edgecolor="black", rect=[PLOT_LEFT, PLOT_BOT, PLOT_WIDTH, PLOT_HEIGHT]) trajectory_fig.set_invert_x_axis() # Because UE4 uses left-handed # coordinate system the X # axis in the graph is flipped trajectory_fig.set_axis_equal() # X-Y spacing should be equal in size # Add waypoint markers trajectory_fig.add_graph("waypoints", window_size=waypoints_np.shape[0], x0=waypoints_np[:, 0], y0=waypoints_np[:, 1], linestyle="-", marker="", color='g') # Add trajectory markers trajectory_fig.add_graph("trajectory", window_size=TOTAL_EPISODE_FRAMES, x0=[start_x] * TOTAL_EPISODE_FRAMES, y0=[start_y] * TOTAL_EPISODE_FRAMES, color=[1, 0.5, 0]) # Add lookahead path trajectory_fig.add_graph("lookahead_path", window_size=INTERP_MAX_POINTS_PLOT, x0=[start_x] * INTERP_MAX_POINTS_PLOT, y0=[start_y] * INTERP_MAX_POINTS_PLOT, color=[0, 0.7, 0.7], linewidth=4) # Add starting position marker trajectory_fig.add_graph("start_pos", window_size=1, x0=[start_x], y0=[start_y], marker=11, color=[1, 0.5, 0], markertext="Start", marker_text_offset=1) # Add end position marker trajectory_fig.add_graph("end_pos", window_size=1, x0=[waypoints_np[-1, 0]], y0=[waypoints_np[-1, 1]], marker="D", color='r', markertext="End", marker_text_offset=1) # Add car marker trajectory_fig.add_graph("car", window_size=1, marker="s", color='b', markertext="Car", marker_text_offset=1) ### # Add 1D speed profile updater ### forward_speed_fig =\ lp_1d.plot_new_dynamic_figure(title="Forward Speed (m/s)") forward_speed_fig.add_graph("forward_speed", label="forward_speed", window_size=TOTAL_EPISODE_FRAMES) forward_speed_fig.add_graph("reference_signal", label="reference_Signal", window_size=TOTAL_EPISODE_FRAMES) # Add throttle signals graph throttle_fig = lp_1d.plot_new_dynamic_figure(title="Throttle") throttle_fig.add_graph("throttle", label="throttle", window_size=TOTAL_EPISODE_FRAMES) # Add brake signals graph brake_fig = lp_1d.plot_new_dynamic_figure(title="Brake") brake_fig.add_graph("brake", label="brake", window_size=TOTAL_EPISODE_FRAMES) # Add steering signals graph steer_fig = lp_1d.plot_new_dynamic_figure(title="Steer") steer_fig.add_graph("steer", label="steer", window_size=TOTAL_EPISODE_FRAMES) # live plotter is disabled, hide windows if not enable_live_plot: lp_traj._root.withdraw() lp_1d._root.withdraw() # Iterate the frames until the end of the waypoints is reached or # the TOTAL_EPISODE_FRAMES is reached. The controller simulation then # ouptuts the results to the controller output directory. reached_the_end = False skip_first_frame = True closest_index = 0 # Index of waypoint that is currently closest to # the car (assumed to be the first index) closest_distance = 0 # Closest distance of closest waypoint to car counter = 0 #print("dssssssssssssssssssssssssssssssssssssssssssssssssssssssss",TOTAL_EPISODE_FRAMES) for frame in range(TOTAL_EPISODE_FRAMES): # Gather current data from the CARLA server measurement_data, sensor_data = client.read_data() #print("lllllllllllllllllllllllllll",len(waypoints_np),waypoints_np[-1]) #update_pts=list(waypoints_np[-1]) # Update pose, timestamp current_x, current_y, current_yaw = \ get_current_pose(measurement_data) current_speed = measurement_data.player_measurements.forward_speed current_timestamp = float(measurement_data.game_timestamp) / 1000.0 #print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",current_timestamp) # Wait for some initial time before starting the demo if current_timestamp <= WAIT_TIME_BEFORE_START: send_control_command(client, throttle=0.0, steer=0, brake=1.0) counter += 1 #flagbox=darknet_proper_fps.performDetect(res_img,thresh,configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly,pointsmid) continue else: current_timestamp = current_timestamp - WAIT_TIME_BEFORE_START #print("sdmskdkfjdkfjdjksf",counter) #for i in range(1,5): update_pts = [list(sec1), list(sec2), list(sec3), list(sec4)] pts_2d_ls = [] for i in range(len(update_pts)): world_coord = np.asarray(update_pts[i]).reshape(4, -1) # print("world_coord.shape",world_coord.shape) # world_coord = np.array([[250.0 ,129.0 ,38.0 ,1.0]]).reshape(4,-1) world_transform = Transform( measurement_data.player_measurements.transform) fdfd = str(world_transform) sdsd = fdfd[1:-1].split('\n') new = [] for i in sdsd: dd = i[:-1].lstrip('[ ') ff = re.sub("\s+", ",", dd.strip()) gg = ff.split(',') new.append([float(i) for i in gg]) newworld = np.array(new) extrinsic = np.matmul(newworld, newcam) cam_coord = np.linalg.inv(extrinsic) @ world_coord img_coord = intrinsic @ cam_coord[:3] img_coord = np.array([ img_coord[0] / img_coord[2], img_coord[1] / img_coord[2], img_coord[2] ]) if (img_coord[2] > 0): x_2d = WINDOW_WIDTH - img_coord[0] y_2d = WINDOW_HEIGHT - img_coord[1] pts_2d_ls.append([x_2d, y_2d]) #x_diff=(pts_2d_ls[0]-get_2d_point[1]) #y_diff=(pts_2d_ls[1]-get_2d_point[0]) #print("sdsdjsdsjdksjdskdjk",x_diff,y_diff,pts_2d_ls,get_2d_point) #get_2d_point=[pts_2d_ls[1],pts_2d_ls[0]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR) image_depth = to_rgb_array(sensor_data['CameraDepth']) counter += 1 if counter == 0: flagbox = False else: #pointsmid[0][1]=pointsmid[0][1]+x_diff #pointsmid[0][0]=pointsmid[0][0]+y_diff #pointsmid[1][1]=pointsmid[1][1]+x_diff #pointsmid[1][0]=pointsmid[1][0]+y_diff #pointsmid[2][1]=pointsmid[2][1]+x_diff #pointsmid[2][0]=pointsmid[2][0]+y_diff #pointsmid[3][1]=pointsmid[3][1]+x_diff #pointsmid[3][0]=pointsmid[3][0]+y_diff try: pointsmid[0][1] = pts_2d_ls[0][0] pointsmid[0][0] = pts_2d_ls[0][1] pointsmid[1][1] = pts_2d_ls[1][0] pointsmid[1][0] = pts_2d_ls[1][1] pointsmid[2][1] = pts_2d_ls[2][0] pointsmid[2][0] = pts_2d_ls[2][1] pointsmid[3][1] = pts_2d_ls[3][0] pointsmid[3][0] = pts_2d_ls[3][1] disbox = False flagbox = darknet_proper_fps.performDetect( im_bgr, thresh, configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly, pointsmid, disbox) except Exception as e: disbox = True flagbox = darknet_proper_fps.performDetect( im_bgr, thresh, configPath, weightPath, metaPath, showImage, makeImageOnly, initOnly, pointsmid, disbox) if flagbox != False: midofpts = [(pointsmid[1][1] + pointsmid[0][1]) / 2, (pointsmid[1][0] + pointsmid[0][0]) / 2] depthflag = image_depth[int(flagbox[1]), int(flagbox[0])] depthpts = image_depth[int(midofpts[1]), int(midofpts[0])] print(depthflag, depthpts) #cv2.circle(im_bgr,(int(flagbox[0]),int(flagbox[1])), 5, (255,0,255), -1) #cv2.circle(im_bgr,(int(midofpts[0]),int(midofpts[1])), 5, (0,0,255), -1) cv2.imwrite('./seg_out/{}_zz.jpg'.format(frame), im_bgr) scalenew = depthflag[ 0] + depthflag[1] * 256 + depthflag[2] * 256 * 256 scalenew = scalenew / ((256 * 256 * 256) - 1) depthflag = scalenew * 1000 scalenew = depthpts[ 0] + depthpts[1] * 256 + depthpts[2] * 256 * 256 scalenew = scalenew / ((256 * 256 * 256) - 1) depthpts = scalenew * 1000 diff = abs(depthflag - depthpts) print("entereeeeeeeeeeeeeeeeeeeeeeeeeeeeherree", diff) if diff < 10: flagbox = True else: flagbox = False print(e) print("fffffffffffffffffff", flagbox) x_history.append(current_x) y_history.append(current_y) yaw_history.append(current_yaw) speed_history.append(current_speed) time_history.append(current_timestamp) if flagbox == False: # Store history ### # Controller update (this uses the controller2d.py implementation) ### # To reduce the amount of waypoints sent to the controller, # provide a subset of waypoints that are within some # lookahead distance from the closest point to the car. Provide # a set of waypoints behind the car as well. # Find closest waypoint index to car. First increment the index # from the previous index until the new distance calculations # are increasing. Apply the same rule decrementing the index. # The final index should be the closest point (it is assumed that # the car will always break out of instability points where there # are two indices with the same minimum distance, as in the # center of a circle) closest_distance = np.linalg.norm( np.array([ waypoints_np[closest_index, 0] - current_x, waypoints_np[closest_index, 1] - current_y ])) new_distance = closest_distance new_index = closest_index while new_distance <= closest_distance: closest_distance = new_distance closest_index = new_index new_index += 1 if new_index >= waypoints_np.shape[0]: # End of path break new_distance = np.linalg.norm( np.array([ waypoints_np[new_index, 0] - current_x, waypoints_np[new_index, 1] - current_y ])) new_distance = closest_distance new_index = closest_index while new_distance <= closest_distance: closest_distance = new_distance closest_index = new_index new_index -= 1 if new_index < 0: # Beginning of path break new_distance = np.linalg.norm( np.array([ waypoints_np[new_index, 0] - current_x, waypoints_np[new_index, 1] - current_y ])) # Once the closest index is found, return the path that has 1 # waypoint behind and X waypoints ahead, where X is the index # that has a lookahead distance specified by # INTERP_LOOKAHEAD_DISTANCE waypoint_subset_first_index = closest_index - 1 if waypoint_subset_first_index < 0: waypoint_subset_first_index = 0 waypoint_subset_last_index = closest_index total_distance_ahead = 0 while total_distance_ahead < INTERP_LOOKAHEAD_DISTANCE: total_distance_ahead += wp_distance[ waypoint_subset_last_index] waypoint_subset_last_index += 1 if waypoint_subset_last_index >= waypoints_np.shape[0]: waypoint_subset_last_index = waypoints_np.shape[0] - 1 break # Use the first and last waypoint subset indices into the hash # table to obtain the first and last indicies for the interpolated # list. Update the interpolated waypoints to the controller # for the next controller update. new_waypoints = \ wp_interp[wp_interp_hash[waypoint_subset_first_index]:\ wp_interp_hash[waypoint_subset_last_index] + 1] controller.update_waypoints(new_waypoints) # Update the other controller values and controls controller.update_values(current_x, current_y, current_yaw, current_speed, current_timestamp, frame) controller.update_controls() cmd_throttle, cmd_steer, cmd_brake = controller.get_commands() # Skip the first frame (so the controller has proper outputs) if skip_first_frame and frame == 0: pass else: # Update live plotter with new feedback trajectory_fig.roll("trajectory", current_x, current_y) trajectory_fig.roll("car", current_x, current_y) # When plotting lookahead path, only plot a number of points # (INTERP_MAX_POINTS_PLOT amount of points). This is meant # to decrease load when live plotting new_waypoints_np = np.array(new_waypoints) path_indices = np.floor( np.linspace(0, new_waypoints_np.shape[0] - 1, INTERP_MAX_POINTS_PLOT)) trajectory_fig.update( "lookahead_path", new_waypoints_np[path_indices.astype(int), 0], new_waypoints_np[path_indices.astype(int), 1], new_colour=[0, 0.7, 0.7]) forward_speed_fig.roll("forward_speed", current_timestamp, current_speed) forward_speed_fig.roll("reference_signal", current_timestamp, controller._desired_speed) throttle_fig.roll("throttle", current_timestamp, cmd_throttle) brake_fig.roll("brake", current_timestamp, cmd_brake) steer_fig.roll("steer", current_timestamp, cmd_steer) # Refresh the live plot based on the refresh rate # set by the options if enable_live_plot and \ live_plot_timer.has_exceeded_lap_period(): lp_traj.refresh() lp_1d.refresh() live_plot_timer.lap() # Output controller command to CARLA server send_control_command(client, throttle=cmd_throttle, steer=cmd_steer, brake=cmd_brake) # Find if reached the end of waypoint. If the car is within # DIST_THRESHOLD_TO_LAST_WAYPOINT to the last waypoint, # the simulation will end. dist_to_last_waypoint = np.linalg.norm( np.array([ waypoints[-1][0] - current_x, ###########changed waypoints[-1] waypoints[-1][1] - current_y ])) if dist_to_last_waypoint < DIST_THRESHOLD_TO_LAST_WAYPOINT: reached_the_end = True if reached_the_end: break else: send_control_command(client, throttle=0.0, steer=0.0, brake=1.0) break # End of demo - Stop vehicle and Store outputs to the controller output # directory. if reached_the_end: print("Reached the end of path. Writing to controller_output...") send_control_command(client, throttle=0.0, steer=0.0, brake=1.0) else: print("stop!!!!.") # Stop the car #send_control_command(client, throttle=0.0, steer=0.0, brake=1.0) # Store the various outputs store_trajectory_plot(trajectory_fig.fig, 'trajectory.png') store_trajectory_plot(forward_speed_fig.fig, 'forward_speed.png') store_trajectory_plot(throttle_fig.fig, 'throttle_output.png') store_trajectory_plot(brake_fig.fig, 'brake_output.png') store_trajectory_plot(steer_fig.fig, 'steer_output.png') write_trajectory_file(x_history, y_history, speed_history, time_history)
def run_carla_client(host, port, far): # Here we will run a single episode with 300 frames. number_of_frames = 3000 frame_step = 100 # Save one image every 100 frames output_folder = '_out' image_size = [800, 600] camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z] camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)] fov = 70 # Connect with the server with make_carla_client(host, port) as client: print('CarlaClient connected') # Here we load the settings. settings = CarlaSettings() settings.set(SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles=20, NumberOfPedestrians=40, WeatherId=random.choice([1, 3, 7, 8, 14])) settings.randomize_seeds() camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov) camera1.set_image_size(*image_size) camera1.set_position(*camera_local_pos) camera1.set_rotation(*camera_local_rotation) settings.add_sensor(camera1) camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov) camera2.set_image_size(*image_size) camera2.set_position(*camera_local_pos) camera2.set_rotation(*camera_local_rotation) settings.add_sensor(camera2) client.load_settings(settings) # Start at location index id '0' client.start_episode(0) # Compute the camera transform matrix camera_to_car_transform = camera2.get_unreal_transform() # Iterate every frame in the episode except for the first one. for frame in range(1, number_of_frames): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # Save one image every 'frame_step' frames if not frame % frame_step: # Start transformations time mesure. timer = StopWatch() # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) # 2d to (camera) local 3d # We use the image_RGB to colorize each 3D point, this is optional. # "max_depth" is used to keep only the points that are near to the # camera, meaning 1.0 the farest points (sky) point_cloud = depth_to_local_point_cloud( sensor_data['CameraDepth'], image_RGB, max_depth=far) # (Camera) local 3d to world 3d. # Get the transform from the player protobuf transformation. world_transform = Transform( measurements.player_measurements.transform) # Compute the final transformation matrix. car_to_world_transform = world_transform * camera_to_car_transform # Car to World transformation given the 3D points and the # transformation matrix. point_cloud.apply_transform(car_to_world_transform) # End transformations time mesure. timer.stop() # Save PLY to disk # This generates the PLY string with the 3D points and the RGB colors # for each row of the file. point_cloud.save_to_disk( os.path.join(output_folder, '{:0>5}.ply'.format(frame))) print_message(timer.milliseconds(), len(point_cloud), frame) client.send_control( measurements.player_measurements.autopilot_control)
def run_carla_client(args): number_of_episodes = 15 frames_per_episode = 5030 # [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10, 11, 12, 13, 14] vehicles_num = [25, 20, 30, 20, 15, 45, 45, 50, 25, 25, 25, 20, 25, 25, 25] # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') for episode in [1, 4, 11]: # Start a new episode. if args.settings_filepath is None: # Create a CarlaSettings object. This object is a wrapper around # the CarlaSettings.ini file. Here we set the configuration we # want for the new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles= vehicles_num[episode],#random.choice([0, 20, 15, 20, 25, 21, 24, 18, 40, 35, 25, 30]), #25, NumberOfPedestrians=50, DisableTwoWheeledVehicles=False, WeatherId= episode, #1, #random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. #### FRONT STEREO #### # LEFT RGB CAMERA camera_l = Camera('LeftCameraRGB', PostProcessing='SceneFinal') camera_l.set_image_size(800, 600) camera_l.set_position(1.50, -0.27, 1.50) settings.add_sensor(camera_l) # LEFT DEPTH camera_ld = Camera('LeftCameraDepth', PostProcessing='Depth') camera_ld.set_image_size(800, 600) camera_ld.set_position(1.50, -0.27, 1.50) settings.add_sensor(camera_ld) # LEFT SEGMENTATION camera_ls = Camera('LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_ls.set_image_size(800, 600) camera_ls.set_position(1.50, -0.27, 1.50) settings.add_sensor(camera_ls) # RIGHT RGB CAMERA camera_r = Camera('RightCameraRGB', PostProcessing='SceneFinal') camera_r.set_image_size(800, 600) camera_r.set_position(1.50, 0.27, 1.50) settings.add_sensor(camera_r) # RIGHT DEPTH camera_rd = Camera('RightCameraDepth', PostProcessing='Depth') camera_rd.set_image_size(800, 600) camera_rd.set_position(1.50, 0.27, 1.50) settings.add_sensor(camera_rd) # RIGHT SEGMENTATION camera_rs = Camera('RightCameraSeg', PostProcessing='SemanticSegmentation') camera_rs.set_image_size(800, 600) camera_rs.set_position(1.50, 0.27, 1.50) settings.add_sensor(camera_rs) #### -45 DEGREE STEREO CAMERA #### # LEFT STEREO -45 DEGREE RGB camera_45_n_l = Camera('45_N_LeftCameraRGB', PostProcessing='SceneFinal') camera_45_n_l.set_image_size(800, 600) camera_45_n_l.set_position(0.8, -1.0, 1.50) # [X, Y, Z] camera_45_n_l.set_rotation(0, -45.0, 0) # [pitch(Y), yaw(Z), roll(X)] settings.add_sensor(camera_45_n_l) # RIGHT STEREO -45 DEGREE RGB camera_45_n_r = Camera('45_N_RightCameraRGB', PostProcessing='SceneFinal') camera_45_n_r.set_image_size(800, 600) camera_45_n_r.set_position(1.2, -0.6, 1.50) camera_45_n_r.set_rotation(0, -45.0, 0) settings.add_sensor(camera_45_n_r) # LEFT STEREO -45 DEGREE DEPTH camera_45_n_ld = Camera('45_N_LeftCameraDepth', PostProcessing='Depth') camera_45_n_ld.set_image_size(800, 600) camera_45_n_ld.set_position(0.8, -1.0, 1.50) camera_45_n_ld.set_rotation(0, -45.0, 0) settings.add_sensor(camera_45_n_ld) # RIGHT STEREO -45 DEGREE DEPTH camera_45_n_rd = Camera('45_N_RightCameraDepth', PostProcessing='Depth') camera_45_n_rd.set_image_size(800, 600) camera_45_n_rd.set_position(1.2, -0.6, 1.50) camera_45_n_rd.set_rotation(0, -45.0, 0) settings.add_sensor(camera_45_n_rd) # LEFT STEREO -45 DEGREE SEGMENTATION camera_45_n_ls = Camera('45_N_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_45_n_ls.set_image_size(800, 600) camera_45_n_ls.set_position(0.8, -1.0, 1.50) camera_45_n_ls.set_rotation(0, -45.0, 0) settings.add_sensor(camera_45_n_ls) # RIGHT STEREO -45 DEGREE SEGMENTATION camera_45_n_rs = Camera('45_N_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_45_n_rs.set_image_size(800, 600) camera_45_n_rs.set_position(1.2, -0.6, 1.50) camera_45_n_rs.set_rotation(0, -45.0, 0) settings.add_sensor(camera_45_n_rs) #### +45 DEGREE STEREO CAMERA #### # LEFT STEREO +45 DEGREE RGB camera_45_p_l = Camera('45_P_LeftCameraRGB', PostProcessing='SceneFinal') camera_45_p_l.set_image_size(800, 600) camera_45_p_l.set_position(1.2, 0.6, 1.50) # [X, Y, Z] camera_45_p_l.set_rotation(0, 45.0, 0) # [pitch(Y), yaw(Z), roll(X)] settings.add_sensor(camera_45_p_l) # RIGHT STEREO +45 DEGREE RGB camera_45_p_r = Camera('45_P_RightCameraRGB', PostProcessing='SceneFinal') camera_45_p_r.set_image_size(800, 600) camera_45_p_r.set_position(0.8, 1.0, 1.50) camera_45_p_r.set_rotation(0, 45.0, 0) settings.add_sensor(camera_45_p_r) # LEFT STEREO +45 DEGREE DEPTH camera_45_p_ld = Camera('45_P_LeftCameraDepth', PostProcessing='Depth') camera_45_p_ld.set_image_size(800, 600) camera_45_p_ld.set_position(1.2, 0.6, 1.50) camera_45_p_ld.set_rotation(0, 45.0, 0) settings.add_sensor(camera_45_p_ld) # RIGHT STEREO +45 DEGREE DEPTH camera_45_p_rd = Camera('45_P_RightCameraDepth', PostProcessing='Depth') camera_45_p_rd.set_image_size(800, 600) camera_45_p_rd.set_position(0.8, 1.0, 1.50) camera_45_p_rd.set_rotation(0, 45.0, 0) settings.add_sensor(camera_45_p_rd) # LEFT STEREO +45 DEGREE SEGMENTATION camera_45_p_ls = Camera('45_P_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_45_p_ls.set_image_size(800, 600) camera_45_p_ls.set_position(1.2, 0.6, 1.50) camera_45_p_ls.set_rotation(0, 45.0, 0) settings.add_sensor(camera_45_p_ls) # RIGHT STEREO +45 DEGREE SEGMENTATION camera_45_p_rs = Camera('45_P_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_45_p_rs.set_image_size(800, 600) camera_45_p_rs.set_position(0.8, 1.0, 1.50) camera_45_p_rs.set_rotation(0, 45.0, 0) settings.add_sensor(camera_45_p_rs) ''' #### -90 DEGREE STEREO CAMERA #### # LEFT STEREO -90 DEGREE RGB camera_90_n_l = Camera('90_N_LeftCameraRGB', PostProcessing='SceneFinal') camera_90_n_l.set_image_size(800, 600) camera_90_n_l.set_position(-0.27, -1.0, 1.50) # [X, Y, Z] camera_90_n_l.set_rotation(0, -90.0, 0) # [pitch(Y), yaw(Z), roll(X)] settings.add_sensor(camera_90_n_l) # RIGHT STEREO -90 DEGREE RGB camera_90_n_r = Camera('90_N_RightCameraRGB', PostProcessing='SceneFinal') camera_90_n_r.set_image_size(800, 600) camera_90_n_r.set_position(0.27, -1.0, 1.50) camera_90_n_r.set_rotation(0, -90.0, 0) settings.add_sensor(camera_90_n_r) # LEFT STEREO -90 DEGREE DEPTH camera_90_n_ld = Camera('90_N_LeftCameraDepth', PostProcessing='Depth') camera_90_n_ld.set_image_size(800, 600) camera_90_n_ld.set_position(-0.27, -1.0, 1.50) camera_90_n_ld.set_rotation(0, -90.0, 0) settings.add_sensor(camera_90_n_ld) # RIGHT STEREO -90 DEGREE DEPTH camera_90_n_rd = Camera('90_N_RightCameraDepth', PostProcessing='Depth') camera_90_n_rd.set_image_size(800, 600) camera_90_n_rd.set_position(0.27, -1.0, 1.50) camera_90_n_rd.set_rotation(0, -90.0, 0) settings.add_sensor(camera_90_n_rd) # LEFT STEREO -90 DEGREE SEGMENTATION camera_90_n_ls = Camera('90_N_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_90_n_ls.set_image_size(800, 600) camera_90_n_ls.set_position(-0.27, -1.0, 1.50) camera_90_n_ls.set_rotation(0, -90.0, 0) settings.add_sensor(camera_90_n_ls) # RIGHT STEREO -90 DEGREE SEGMENTATION camera_90_n_rs = Camera('90_N_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_90_n_rs.set_image_size(800, 600) camera_90_n_rs.set_position(0.27, -1.0, 1.50) camera_90_n_rs.set_rotation(0, -90.0, 0) settings.add_sensor(camera_90_n_rs) #### +90 DEGREE STEREO CAMERA #### # LEFT STEREO +90 DEGREE RGB camera_90_p_l = Camera('90_P_LeftCameraRGB', PostProcessing='SceneFinal') camera_90_p_l.set_image_size(800, 600) camera_90_p_l.set_position(0.27, 1.0, 1.50) # [X, Y, Z] camera_90_p_l.set_rotation(0, 90.0, 0) # [pitch(Y), yaw(Z), roll(X)] settings.add_sensor(camera_90_p_l) # RIGHT STEREO +90 DEGREE RGB camera_90_p_r = Camera('90_P_RightCameraRGB', PostProcessing='SceneFinal') camera_90_p_r.set_image_size(800, 600) camera_90_p_r.set_position(-0.27, 1.0, 1.50) camera_90_p_r.set_rotation(0, 90.0, 0) settings.add_sensor(camera_90_p_r) # LEFT STEREO +90 DEGREE DEPTH camera_90_p_ld = Camera('90_P_LeftCameraDepth', PostProcessing='Depth') camera_90_p_ld.set_image_size(800, 600) camera_90_p_ld.set_position(0.27, 1.0, 1.50) camera_90_p_ld.set_rotation(0, 90.0, 0) settings.add_sensor(camera_90_p_ld) # RIGHT STEREO +90 DEGREE DEPTH camera_90_p_rd = Camera('90_P_RightCameraDepth', PostProcessing='Depth') camera_90_p_rd.set_image_size(800, 600) camera_90_p_rd.set_position(-0.27, 1.0, 1.50) camera_90_p_rd.set_rotation(0, 90.0, 0) settings.add_sensor(camera_90_p_rd) # LEFT STEREO +90 DEGREE SEGMENTATION camera_90_p_ls = Camera('90_P_LeftCameraSeg', PostProcessing='SemanticSegmentation') camera_90_p_ls.set_image_size(800, 600) camera_90_p_ls.set_position(0.27, 1.0, 1.50) camera_90_p_ls.set_rotation(0, 90.0, 0) settings.add_sensor(camera_90_p_ls) # RIGHT STEREO +90 DEGREE SEGMENTATION camera_90_p_rs = Camera('90_P_RightCameraSeg', PostProcessing='SemanticSegmentation') camera_90_p_rs.set_image_size(800, 600) camera_90_p_rs.set_position(-0.27, 1.0, 1.50) camera_90_p_rs.set_rotation(0, 90.0, 0) settings.add_sensor(camera_90_p_rs) ''' ''' if args.lidar: lidar = Lidar('Lidar32') lidar.set_position(0, 0, 2.50) lidar.set_rotation(0, 0, 0) lidar.set( Channels=32, Range=50, PointsPerSecond=100000, RotationFrequency=10, UpperFovLimit=10, LowerFovLimit=-30) settings.add_sensor(lidar) ''' else: # Alternatively, we can load these settings from a file. with open(args.settings_filepath, 'r') as fp: settings = fp.read() # Now we load these settings into the server. The server replies # with a scene description containing the available start spots for # the player. Here we can provide a CarlaSettings object or a # CarlaSettings.ini file as string. scene = client.load_settings(settings) # Choose one player start at random. number_of_player_starts = len(scene.player_start_spots) player_start = random.randint(0, max(0, number_of_player_starts - 1)) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode...') client.start_episode(player_start) camera_l_to_car_transform = camera_l.get_unreal_transform() camera_r_to_car_transform = camera_r.get_unreal_transform() camera_45_n_l_to_car_transform = camera_45_n_l.get_unreal_transform() camera_45_n_r_to_car_transform = camera_45_n_r.get_unreal_transform() camera_45_p_l_to_car_transform = camera_45_p_l.get_unreal_transform() camera_45_p_r_to_car_transform = camera_45_p_r.get_unreal_transform() ''' camera_90_n_l_to_car_transform = camera_90_n_l.get_unreal_transform() camera_90_n_r_to_car_transform = camera_90_n_r.get_unreal_transform() camera_90_p_l_to_car_transform = camera_90_p_l.get_unreal_transform() camera_90_p_r_to_car_transform = camera_90_p_r.get_unreal_transform() ''' # Create a folder for saving episode data if not os.path.isdir("/data/khoshhal/Dataset/episode_{:0>4d}".format(episode)): os.makedirs("/data/khoshhal/Dataset/episode_{:0>4d}".format(episode)) # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # player_measurements = measurements.player_measurements world_transform = Transform(measurements.player_measurements.transform) # Compute the final transformation matrix. camera_l_to_world_transform = world_transform * camera_l_to_car_transform camera_r_to_world_transform = world_transform * camera_r_to_car_transform camera_45_n_l_to_world_transform = world_transform * camera_45_n_l_to_car_transform camera_45_n_r_to_world_transform = world_transform * camera_45_n_r_to_car_transform camera_45_p_l_to_world_transform = world_transform * camera_45_p_l_to_car_transform camera_45_p_r_to_world_transform = world_transform * camera_45_p_r_to_car_transform ''' camera_90_n_l_to_world_transform = world_transform * camera_90_n_l_to_car_transform camera_90_n_r_to_world_transform = world_transform * camera_90_n_r_to_car_transform camera_90_p_l_to_world_transform = world_transform * camera_90_p_l_to_car_transform camera_90_p_r_to_world_transform = world_transform * camera_90_p_r_to_car_transform ''' # Save the images to disk if requested. if frame >= 30:# and (frame % 2 == 0): if args.save_images_to_disk: for name, measurement in sensor_data.items(): filename = args.out_filename_format.format(episode, name, (frame-30)) measurement.save_to_disk(filename) # Save Transform matrix of each camera to separated files line = "" filename = "{}episode_{:0>4d}/LeftCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_l_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/RightCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_r_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/45_N_LeftCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_45_n_l_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/45_N_RightCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_45_n_r_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/45_P_LeftCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_45_p_l_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/45_P_RightCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_45_p_r_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" ''' filename = "{}episode_{:0>4d}/90_N_LeftCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_90_n_l_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/90_N_RightCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_90_n_r_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/90_P_LeftCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_90_p_l_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" filename = "{}episode_{:0>4d}/90_P_RightCamera".format(args.root_path, episode) + ".txt" with open(filename, 'a') as myfile: for x in np.asarray(camera_90_p_r_to_world_transform.matrix[:3, :]).reshape(-1): line += "{:.8e} ".format(x) line = line[:-1] line += "\n" myfile.write(line) line = "" ''' # We can access the encoded data of a given image as numpy # array using its "data" property. For instance, to get the # depth value (normalized) at pixel X, Y # # depth_array = sensor_data['CameraDepth'].data # value_at_pixel = depth_array[Y, X] # # Now we have to send the instructions to control the vehicle. # If we are in synchronous mode the server will pause the # simulation until we send this control. if not args.autopilot: client.send_control( steer=random.uniform(-1.0, 1.0), throttle=0.5, brake=0.0, hand_brake=False, reverse=False) else: # Together with the measurements, the server has sent the # control that the in-game autopilot would do this frame. We # can enable autopilot by sending back this control to the # server. We can modify it if wanted, here for instance we # will add some noise to the steer. control = measurements.player_measurements.autopilot_control #control.steer += random.uniform(-0.1, 0.1) client.send_control(control)
def get_bbox(self, measurement, seg): global width = WIDTH height = HEIGHT extrinsic = Transform(measurement.player_measurements.transform) * self.obs_to_car_transform bbox_list = [] orientation_list = [] distance_list = [] # main_rotation = measurement.player_measurements.transform.rotation player_location = measurement.player_measurements.transform.location player_location = np.array([player_location.x, player_location.y, player_location.z]) # collect the 2bbox generated from the 3d-bbox of non-player agents for agent in measurement.non_player_agents: if agent.HasField("vehicle"): # veh_id = agent.id # idx = self.nonplayer_ids[veh_id] vehicle_transform = Transform(agent.vehicle.transform) bbox_transform = Transform(agent.vehicle.bounding_box.transform) ext = agent.vehicle.bounding_box.extent bbox = np.array([ [ ext.x, ext.y, ext.z], [- ext.x, ext.y, ext.z], [ ext.x, - ext.y, ext.z], [- ext.x, - ext.y, ext.z], [ ext.x, ext.y, - ext.z], [- ext.x, ext.y, - ext.z], [ ext.x, - ext.y, - ext.z], [- ext.x, - ext.y, - ext.z] ]) bbox = bbox_transform.transform_points(bbox) bbox = vehicle_transform.transform_points(bbox) orientation = agent.vehicle.transform.orientation vehicle_location = agent.vehicle.transform.location cur_location = np.array([vehicle_location.x, vehicle_location.y, vehicle_location.z]) distance = np.linalg.norm(player_location - cur_location) vertices = [] for vertex in bbox: pos_vector = np.array([ [vertex[0,0]], # [[X, [vertex[0,1]], # Y, [vertex[0,2]], # Z, [1.0] # 1.0]] ]) transformed_3d_pos = np.dot(inv(extrinsic.matrix), pos_vector) pos2d = np.dot(self.intrinsic, transformed_3d_pos[:3]) pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) if pos2d[2] > 0: x_2d = width - pos2d[0] y_2d = height - pos2d[1] vertices.append([x_2d, y_2d]) if len(vertices) > 1: # vehicle_rotation = agent.vehicle.transform.rotation vertices = np.array(vertices) bbox_list.append([np.min(vertices[:, 0]), np.min(vertices[:, 1]), np.max(vertices[:, 0]), np.max(vertices[:, 1])]) orientation_list.append(orientation) distance_list.append(distance) seg_bboxes = seg_to_bbox(seg) final_bboxes = [] final_directions = [] final_distances = [] assert(len(bbox_list) == len(orientation_list)) for i in range(len(bbox_list)): bbox = bbox_list[i] direction = orientation_list[i] xmin, ymin, xmax, ymax = bbox x1, y1, x2, y2 = width, height, 0, 0 for segbbox in seg_bboxes: xmin0, ymin0, xmax0, ymax0 = segbbox if xmin0 >= xmin - 5 and ymin0 >= ymin - 5 and xmax0 < xmax + 5 and ymax0 < ymax + 5: x1 = min(x1, xmin0) y1 = min(y1, ymin0) x2 = max(x2, xmax0) y2 = max(y2, ymax0) if x2 > x1 and y2 > y1 and [int(x1), int(y1), int(x2), int(y2)] not in final_bboxes: final_bboxes.append([int(x1), int(y1), int(x2), int(y2)]) relative_orientation = get_angle(direction.x, direction.y, self.orientation.x, self.orientation.y) final_directions.append(relative_orientation) final_distances.append(distance_list[i]) # for angle in final_directions: # self.angle_logger.write("timestep {}: {}\n".format(self.timestep, angle)) # self.angle_logger.flush() final_distances = np.array(final_distances) visible_coll_num = min(coll_veh_num, final_distances.size) coll_idx = np.argpartition(final_distances, visible_coll_num - 1)[:visible_coll_num] final_colls = [1 if i in coll_idx else 0 for i in range(final_distances.size)] return final_bboxes, final_directions, final_colls
def run_carla_client( args): # Here we will run 3 episodes with 300 frames each. number_of_episodes = 150 frames_per_episode = 500 # for start_i in range(150): # if start_i%4==0: # output_folder = 'Packages/CARLA_0.8.2/PythonClient/new_data-viz/test_' + str(start_i) # if not os.path.exists(output_folder): # os.mkdir(output_folder) # print( "make "+str(output_folder)) # ./CarlaUE4.sh -carla-server -benchmark -fps=17 -windowed # carla-server "/usr/local/carla/Unreal/CarlaUE4/CarlaUE4.uproject" /usr/local/carla/Maps/Town03 -benchmark -fps=10 -windowed # We assume the CARLA server is already waiting for a client to connect at # host:port. To create a connection we can use the `make_carla_client` # context manager, it creates a CARLA client object and starts the # connection. It will throw an exception if something goes wrong. The # context manager makes sure the connection is always cleaned up on exit. with make_carla_client(args.host, args.port) as client: print('CarlaClient connected') global episode_nbr print (episode_nbr) for episode in range(0,number_of_episodes): if episode % 1 == 0: output_folder = 'Datasets/carla-sync/train/test_' + str(episode) if not os.path.exists(output_folder+"/cameras.p"): # Start a new episode. episode_nbr=episode frame_step = 1 # Save one image every 100 frames pointcloud_step=50 image_size = [800, 600] camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z] camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)] fov = 70 # Create a CarlaSettings object. This object is a wrapper around # the CarlaSettings.ini file. Here we set the configuration we # want for the new episode. settings = CarlaSettings() settings.set( SynchronousMode=True, SendNonPlayerAgentsInfo=True, NumberOfVehicles=50, NumberOfPedestrians=200, WeatherId=random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() # Now we want to add a couple of cameras to the player vehicle. # We will collect the images produced by these cameras every # frame. camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov) camera1.set_image_size(*image_size) camera1.set_position(*camera_local_pos) camera1.set_rotation(*camera_local_rotation) settings.add_sensor(camera1) camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov) camera2.set_image_size(*image_size) camera2.set_position(*camera_local_pos) camera2.set_rotation(*camera_local_rotation) settings.add_sensor(camera2) camera3 = Camera('CameraSeg', PostProcessing='SemanticSegmentation', FOV=fov) camera3.set_image_size(*image_size) camera3.set_position(*camera_local_pos) camera3.set_rotation(*camera_local_rotation) settings.add_sensor(camera3) # Now we load these settings into the server. The server replies # with a scene description containing the available start spots for # the player. Here we can provide a CarlaSettings object or a # CarlaSettings.ini file as string. scene = client.load_settings(settings) # Choose one player start at random. number_of_player_starts = len(scene.player_start_spots) player_start = episode#random.randint(0, max(0, number_of_player_starts - 1)) output_folder = 'Datasets/carla-sync/train/test_' + str(episode) # Notify the server that we want to start the episode at the # player_start index. This function blocks until the server is ready # to start the episode. print('Starting new episode...') client.start_episode(player_start) cameras_dict = {} pedestrians_dict = {} cars_dict = {} # Compute the camera transform matrix camera_to_car_transform = camera2.get_unreal_transform() # (Intrinsic) (3, 3) K Matrix K = np.identity(3) K[0, 2] = image_size[0] / 2.0 K[1, 2] = image_size[1] / 2.0 K[0, 0] = K[1, 1] = image_size[0] / (2.0 * np.tan(fov * np.pi / 360.0)) with open(output_folder + '/camera_intrinsics.p', 'w') as camfile: pickle.dump(K, camfile) # Iterate every frame in the episode. for frame in range(0, frames_per_episode): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # Print some of the measurements. #print_measurements(measurements) if not frame % frame_step: # Save the images to disk if requested. for name, measurement in sensor_data.items(): filename = args.out_filename_format.format(episode, name, frame) print (filename) measurement.save_to_disk(filename) # We can access the encoded data of a given image as numpy # array using its "data" property. For instance, to get the # depth value (normalized) at pixel X, Y # # depth_array = sensor_data['CameraDepth'].data # value_at_pixel = depth_array[Y, X] # # Now we have to send the instructions to control the vehicle. # If we are in synchronous mode the server will pause the # simulation until we send this control. # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) labels=labels_to_array(sensor_data['CameraSeg'])[:,:,np.newaxis] image_seg = np.tile(labels, (1, 1, 3)) depth_array = sensor_data['CameraDepth'].data*1000 # 2d to (camera) local 3d # We use the image_RGB to colorize each 3D point, this is optional. # "max_depth" is used to keep only the points that are near to the # camera, meaning 1.0 the farest points (sky) if not frame % pointcloud_step: point_cloud = depth_to_local_point_cloud( sensor_data['CameraDepth'], image_RGB, max_depth=args.far ) point_cloud_seg = depth_to_local_point_cloud( sensor_data['CameraDepth'], segmentation=image_seg, max_depth=args.far ) # (Camera) local 3d to world 3d. # Get the transform from the player protobuf transformation. world_transform = Transform( measurements.player_measurements.transform ) # Compute the final transformation matrix. car_to_world_transform = world_transform * camera_to_car_transform # Car to World transformation given the 3D points and the # transformation matrix. point_cloud.apply_transform(car_to_world_transform) point_cloud_seg.apply_transform(car_to_world_transform) Rt = car_to_world_transform.matrix Rt_inv = car_to_world_transform.inverse().matrix # R_inv=world_transform.inverse().matrix cameras_dict[frame] = {} cameras_dict[frame]['inverse_rotation'] = Rt_inv[:] cameras_dict[frame]['rotation'] = Rt[:] cameras_dict[frame]['translation'] = Rt_inv[0:3, 3] cameras_dict[frame]['camera_to_car'] = camera_to_car_transform.matrix # Get non-player info vehicles = {} pedestrians = {} for agent in measurements.non_player_agents: # check if the agent is a vehicle. if agent.HasField('vehicle'): pos = agent.vehicle.transform.location pos_vector = np.array([[pos.x], [pos.y], [pos.z], [1.0]]) trnasformed_3d_pos = np.dot(Rt_inv, pos_vector) pos2d = np.dot(K, trnasformed_3d_pos[:3]) # Normalize the point norm_pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2]]) # Now, pos2d contains the [x, y, d] values of the image in pixels (where d is the depth) # You can use the depth to know the points that are in front of the camera (positive depth). x_2d = image_size[0] - norm_pos2d[0] y_2d = image_size[1] - norm_pos2d[1] vehicles[agent.id] = {} vehicles[agent.id]['transform'] = [agent.vehicle.transform.location.x, agent.vehicle.transform.location.y, agent.vehicle.transform.location.z] vehicles[agent.id][ 'bounding_box.transform'] = agent.vehicle.bounding_box.transform.location.z vehicles[agent.id]['yaw'] = agent.vehicle.transform.rotation.yaw vehicles[agent.id]['bounding_box'] = [agent.vehicle.bounding_box.extent.x, agent.vehicle.bounding_box.extent.y, agent.vehicle.bounding_box.extent.z] vehicle_transform = Transform(agent.vehicle.bounding_box.transform) pos = agent.vehicle.transform.location bbox3d = agent.vehicle.bounding_box.extent # Compute the 3D bounding boxes # f contains the 4 points that corresponds to the bottom f = np.array([[pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z - bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z], [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z + agent.vehicle.bounding_box.transform.location.z]]) f_rotated = vehicle_transform.transform_points(f) f_2D_rotated = [] vehicles[agent.id]['bounding_box_coord'] = f_rotated for i in range(f.shape[0]): point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]]) transformed_2d_pos = np.dot(Rt_inv, point) pos2d = np.dot(K, transformed_2d_pos[:3]) norm_pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2]]) # print([image_size[0] - (pos2d[0] / pos2d[2]), image_size[1] - (pos2d[1] / pos2d[2])]) f_2D_rotated.append( np.array([image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1]])) vehicles[agent.id]['bounding_box_2D'] = f_2D_rotated elif agent.HasField('pedestrian'): pedestrians[agent.id] = {} pedestrians[agent.id]['transform'] = [agent.pedestrian.transform.location.x, agent.pedestrian.transform.location.y, agent.pedestrian.transform.location.z] pedestrians[agent.id]['yaw'] = agent.pedestrian.transform.rotation.yaw pedestrians[agent.id]['bounding_box'] = [agent.pedestrian.bounding_box.extent.x, agent.pedestrian.bounding_box.extent.y, agent.pedestrian.bounding_box.extent.z] # get the needed transformations # remember to explicitly make it Transform() so you can use transform_points() pedestrian_transform = Transform(agent.pedestrian.transform) bbox_transform = Transform(agent.pedestrian.bounding_box.transform) # get the box extent ext = agent.pedestrian.bounding_box.extent # 8 bounding box vertices relative to (0,0,0) bbox = np.array([ [ ext.x, ext.y, ext.z], [- ext.x, ext.y, ext.z], [ ext.x, - ext.y, ext.z], [- ext.x, - ext.y, ext.z], [ ext.x, ext.y, - ext.z], [- ext.x, ext.y, - ext.z], [ ext.x, - ext.y, - ext.z], [- ext.x, - ext.y, - ext.z] ]) # transform the vertices respect to the bounding box transform bbox = bbox_transform.transform_points(bbox) # the bounding box transform is respect to the pedestrian transform # so let's transform the points relative to it's transform bbox = pedestrian_transform.transform_points(bbox) # pedestrian's transform is relative to the world, so now, # bbox contains the 3D bounding box vertices relative to the world pedestrians[agent.id]['bounding_box_coord'] =copy.deepcopy(bbox) # Additionally, you can print these vertices to check that is working f_2D_rotated=[] ys=[] xs=[] zs=[] for vertex in bbox: pos_vector = np.array([ [vertex[0,0]], # [[X, [vertex[0,1]], # Y, [vertex[0,2]], # Z, [1.0] # 1.0]] ]) # transform the points to camera transformed_3d_pos =np.dot(Rt_inv, pos_vector)# np.dot(inv(self._extrinsic.matrix), pos_vector) zs.append(transformed_3d_pos[2]) # transform the points to 2D pos2d =np.dot(K, transformed_3d_pos[:3]) #np.dot(self._intrinsic, transformed_3d_pos[:3]) # normalize the 2D points pos2d = np.array([ pos2d[0] / pos2d[2], pos2d[1] / pos2d[2], pos2d[2] ]) # print the points in the screen if pos2d[2] > 0: # if the point is in front of the camera x_2d = image_size[0]-pos2d[0]#WINDOW_WIDTH - pos2d[0] y_2d = image_size[1]-pos2d[1]#WINDOW_HEIGHT - pos2d[1] ys.append(y_2d) xs.append(x_2d) f_2D_rotated.append( (y_2d, x_2d)) if len(xs)>1: bbox=[[int(min(xs)), int(max(xs))],[int(min(ys)), int(max(ys))]] clipped_seg=labels[bbox[1][0]:bbox[1][1],bbox[0][0]:bbox[0][1]] recounted = Counter(clipped_seg.flatten()) if 4 in recounted.keys() and recounted[4]>0.1*len(clipped_seg.flatten()): clipped_depth=depth_array[bbox[1][0]:bbox[1][1],bbox[0][0]:bbox[0][1]] #print (clipped_depth.shape) people_indx=np.where(clipped_seg==4) masked_depth=[] for people in zip(people_indx[0],people_indx[1] ): #print(people) masked_depth.append(clipped_depth[people]) #masked_depth=clipped_depth[np.where(clipped_seg==4)] #print (masked_depth) #print ("Depth "+ str(min(zs))+" "+ str(max(zs))) #recounted = Counter(masked_depth) #print(recounted) avg_depth=np.mean(masked_depth) if avg_depth<700 and avg_depth>=min(zs)-10 and avg_depth<= max(zs)+10: #print("Correct depth") pedestrians[agent.id]['bounding_box_2D'] = f_2D_rotated pedestrians[agent.id]['bounding_box_2D_size']=recounted[4] pedestrians[agent.id]['bounding_box_2D_avg_depth']=avg_depth pedestrians[agent.id]['bounding_box_2D_depths']=zs #print ( pedestrians[agent.id].keys()) #else: # print(recounted) # print ("Depth "+ str(min(zs))+" "+ str(max(zs))) #if sum(norm(depth_array-np.mean(zs))<1.0): # pedestrians[agent.id] = {} # pedestrians[agent.id]['transform'] = [agent.pedestrian.transform.location.x, # agent.pedestrian.transform.location.y, # agent.pedestrian.transform.location.z] # pedestrians[agent.id]['yaw'] = agent.pedestrian.transform.rotation.yaw # pedestrians[agent.id]['bounding_box'] = [agent.pedestrian.bounding_box.extent.x, # agent.pedestrian.bounding_box.extent.y, # agent.pedestrian.bounding_box.extent.z] # vehicle_transform = Transform(agent.pedestrian.bounding_box.transform) # pos = agent.pedestrian.transform.location # # bbox3d = agent.pedestrian.bounding_box.extent # # # Compute the 3D bounding boxes # # f contains the 4 points that corresponds to the bottom # f = np.array([[pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z- bbox3d.z ], # [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z- bbox3d.z ], # [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z- bbox3d.z ], # [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z- bbox3d.z ], # [pos.x + bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z], # [pos.x + bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z], # [pos.x - bbox3d.x, pos.y + bbox3d.y, pos.z + bbox3d.z], # [pos.x - bbox3d.x, pos.y - bbox3d.y, pos.z + bbox3d.z]]) # # f_rotated = pedestrian_transform.transform_points(f) # pedestrians[agent.id]['bounding_box_coord'] = f_rotated # f_2D_rotated = [] # # for i in range(f.shape[0]): # point = np.array([[f_rotated[i, 0]], [f_rotated[i, 1]], [f_rotated[i, 2]], [1]]) # transformed_2d_pos = np.dot(Rt_inv, point) # pos2d = np.dot(K, transformed_2d_pos[:3]) # norm_pos2d = np.array([ # pos2d[0] / pos2d[2], # pos2d[1] / pos2d[2], # pos2d[2]]) # f_2D_rotated.append([image_size[0] - norm_pos2d[0], image_size[1] - norm_pos2d[1]]) # pedestrians[agent.id]['bounding_box_2D'] = f_2D_rotated cars_dict[frame] = vehicles pedestrians_dict[frame] = pedestrians #print("End of Episode") #print(len(pedestrians_dict[frame])) # Save PLY to disk # This generates the PLY string with the 3D points and the RGB colors # for each row of the file. if not frame % pointcloud_step: point_cloud.save_to_disk(os.path.join( output_folder, '{:0>5}.ply'.format(frame)) ) point_cloud_seg.save_to_disk(os.path.join( output_folder, '{:0>5}_seg.ply'.format(frame)) ) if not args.autopilot: client.send_control( hand_brake=True) else: # Together with the measurements, the server has sent the # control that the in-game autopilot would do this frame. We # can enable autopilot by sending back this control to the # server. We can modify it if wanted, here for instance we # will add some noise to the steer. control = measurements.player_measurements.autopilot_control control.steer += random.uniform(-0.1, 0.1) client.send_control(control) print ("Start pickle save") with open(output_folder + '/cameras.p', 'w') as camerafile: pickle.dump(cameras_dict, camerafile) with open(output_folder + '/people.p', 'w') as peoplefile: pickle.dump(pedestrians_dict, peoplefile) with open(output_folder + '/cars.p', 'w') as carfile: pickle.dump(cars_dict, carfile) print ("Episode done")
def run_carla_client(host, port, far): # Here we will run a single episode with 300 frames. number_of_frames = 3000 frame_step = 10 # Save one image every 100 frames output_folder = '_out' image_size = [1280, 720] camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z] camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)] fov = 59 # Connect with the server with make_carla_client(host, port) as client: print('CarlaClient connected') # Here we load the settings. settings = CarlaSettings() settings.set(SynchronousMode=True, SendNonPlayerAgentsInfo=False, NumberOfVehicles=20, NumberOfPedestrians=40, WeatherId=7) settings.randomize_seeds() camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov) camera1.set_image_size(*image_size) camera1.set_position(*camera_local_pos) camera1.set_rotation(*camera_local_rotation) settings.add_sensor(camera1) camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov) camera2.set_image_size(*image_size) camera2.set_position(*camera_local_pos) camera2.set_rotation(*camera_local_rotation) settings.add_sensor(camera2) client.load_settings(settings) # Start at location index id '0' client.start_episode(0) # Compute the camera transform matrix camera_to_car_transform = camera2.get_unreal_transform() print("camera_to_car_transform", camera_to_car_transform) # Iterate every frame in the episode except for the first one. for frame in range(1, number_of_frames): # Read the data produced by the server this frame. measurements, sensor_data = client.read_data() # Save one image every 'frame_step' frames if not frame % frame_step: # Start transformations time mesure. # RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]] image_RGB = to_rgb_array(sensor_data['CameraRGB']) world_transform = Transform( measurements.player_measurements.transform) # Compute the final transformation matrix. car_to_world_transform = world_transform * camera_to_car_transform print("{}.png".format(str(frame))) print([ measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, measurements.player_measurements.transform.location.z ]) print("world_transform\n", world_transform) #print("car_to_world_transform\n",car_to_world_transform) print('\n') im_bgr = cv2.cvtColor(image_RGB, cv2.COLOR_RGB2BGR) cv2.imwrite("./{}/{}.png".format(output_folder, str(frame)), im_bgr) # 2d to (camera) local 3d # We use the image_RGB to colorize each 3D point, this is optional. # "max_depth" is used to keep only the points that are near to the # camera, meaning 1.0 the farest points (sky) # Save PLY to disk # This generates the PLY string with the 3D points and the RGB colors # for each row of the file. client.send_control( measurements.player_measurements.autopilot_control)