def testCar1Defaults(self): cppSample = carmcmc.run_mcmc_car1(self.nSample, self.nBurnin, self.xdata, self.ydata, self.dydata) cppSample = carmcmc.run_mcmc_car1(self.nSample, self.nBurnin, self.xdata, self.ydata, self.dydata, self.nThin) guess = cppSample.getSamples()[0] cppSample = carmcmc.run_mcmc_car1(self.nSample, self.nBurnin, self.xdata, self.ydata, self.dydata, self.nThin, guess)
def doit(args): pModel = int(args[0]) x, y, dy = args[1] nSample = 10000 nBurnin = 1000 nThin = 1 nWalkers = 10 # Should not have to do this... xv = carmcmc.vecD() xv.extend(x) yv = carmcmc.vecD() yv.extend(y) dyv = carmcmc.vecD() dyv.extend(dy) if pModel == 1: sampler = carmcmc.run_mcmc_car1(nSample, nBurnin, xv, yv, dyv, nWalkers, nThin) samplep = carmcmc.CarSample1(x, y, dy, sampler) else: sampler = carmcmc.run_mcmc_carma(nSample, nBurnin, xv, yv, dyv, pModel, 0, nWalkers, False, nThin) samplep = carmcmc.CarmaSample(x, y, dy, sampler) dic = samplep.DIC() print "DIC", pModel, dic return samplep
def testCar1(self): cppSample = carmcmc.run_mcmc_car1(self.nSample, self.nBurnin, self.xdata, self.ydata, self.dydata, self.nThin) psampler = carmcmc.Car1Sample(self.x, self.y, self.dy, cppSample) self.assertEqual(psampler.p, 1) psamples = np.array(cppSample.getSamples()) ploglikes = np.array(cppSample.GetLogLikes()) sample0 = carmcmc.vecD() sample0.extend(psamples[0]) logprior0 = cppSample.getLogPrior(sample0) loglike0 = cppSample.getLogDensity(sample0) self.assertAlmostEqual(ploglikes[0], loglike0)