def run(in_json: params.input_configuration_type, out_dir: str, epi_step: int = 30, region_size: int = 500, disparity_margin: float = 0.02, epipolar_error_upper_bound: float = 10., epipolar_error_maximum_bias: float = 0., elevation_delta_lower_bound: float = -1000., elevation_delta_upper_bound: float = 1000., mode: str = "local_dask", nb_workers: int = 4, walltime: str = "00:59:00", check_inputs: bool = False): """ Main function of the prepare subcommand This function will perform the following steps: 1. Compute stereo-rectification grids for the input pair 2. Compute all possible sift matches in epipolar geometry 3. Derive an optimal disparity range to explore from the matches 4. Derive a bilinear correction model of the stereo-rectification grid for right image in order to minimize epipolar error 5. Apply correction to right grid 6. Export left and corrected right grid :param in_json: dictionary describing input data (see README.md for format) :param out_dir: Directory where all outputs will be written, including a content.json file describing its content :param epi_step: Step of the epipolar grid to compute (in pixels in epipolar geometry) :param region_size: Size of regions used for sift matching :param disparity_margin: Percent of the disparity range width to add at each end as security margin :param epipolar_error_upper_bound: Upper bound of expected epipolar error (in pixels) :param epipolar_error_maximum_bias: Maximum bias for epipolar error (in pixels) :param elevation_delta_lower_bound: Lower bound for elevation delta with respect to initial MNT (in meters) :param elevation_delta_upper_bound: Upper bound for elevation delta with respect to initial MNT (in meters) :param mode: Parallelization mode :param nb_workers: Number of dask workers to use for the sift matching step :param walltime: Walltime of the dask workers :param check_inputs: activation of the inputs consistency checking """ out_dir = os.path.abspath(out_dir) # Ensure that outdir exists try: os.makedirs(out_dir) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(out_dir): pass else: raise utils.add_log_file(out_dir, 'prepare') if not check_inputs: logging.warning( 'The inputs consistency will not be checked. To enable the inputs checking, add \'--check_' 'inputs\' to your command line') # Check configuration dict config = utils.check_json(in_json, params.input_configuration_schema) # Retrieve static parameters (sift and low res dsm) static_params = static_cfg.get_cfg() # Initialize output json dict out_json = { params.input_section_tag: config, params.preprocessing_section_tag: { params.preprocessing_version_tag: utils.get_version(), params.preprocessing_parameters_section_tag: { params.epi_step_tag: epi_step, params.disparity_margin_tag: disparity_margin, params.epipolar_error_upper_bound_tag: epipolar_error_upper_bound, params.epipolar_error_maximum_bias_tag: epipolar_error_maximum_bias, params.elevation_delta_lower_bound_tag: elevation_delta_lower_bound, params.elevation_delta_upper_bound_tag: elevation_delta_upper_bound }, params.static_params_tag: static_params[static_cfg.prepare_tag], params.preprocessing_output_section_tag: {} } } # Read input parameters img1 = config[params.img1_tag] img2 = config[params.img2_tag] srtm_dir = config[params.srtm_dir_tag] nodata1 = config.get(params.nodata1_tag, None) nodata2 = config.get(params.nodata2_tag, None) mask1 = config.get(params.mask1_tag, None) mask2 = config.get(params.mask2_tag, None) color1 = config.get(params.color1_tag, None) if check_inputs: logging.info('Checking inputs consistency') if utils.rasterio_get_nb_bands( img1) != 1 or utils.rasterio_get_nb_bands(img2) != 1: raise Exception('{} and {} are not mono-band images'.format( img1, img2)) if mask1 is not None: if utils.rasterio_get_size(img1) != utils.rasterio_get_size(mask1): raise Exception( 'The image {} and the mask {} do not have the same size'. format(img1, mask1)) if mask2 is not None: if utils.rasterio_get_size(img2) != utils.rasterio_get_size(mask2): raise Exception( 'The image {} and the mask {} do not have the same size'. format(img2, mask2)) if not utils.otb_can_open(img1): raise Exception( 'Problem while opening image {} with the otb'.format(img1)) if not utils.otb_can_open(img2): raise Exception( 'Problem while opening image {} with the otb'.format(img1)) with rio.open(img1) as im: trans = im.transform if trans.e < 0: logging.warning( '{} seems to have an incoherent pixel size. ' 'Input images has to be in sensor geometry.'.format(img1)) with rio.open(img2) as im: trans = im.transform if trans.e < 0: logging.warning( '{} seems to have an incoherent pixel size. ' 'Input images has to be in sensor geometry.'.format(img2)) # Check that the envelopes intersect one another logging.info("Computing images envelopes and their intersection") shp1 = os.path.join(out_dir, "left_envelope.shp") shp2 = os.path.join(out_dir, "right_envelope.shp") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.left_envelope_tag] = shp1 out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.right_envelope_tag] = shp2 preprocessing.image_envelope(img1, shp1, srtm_dir) preprocessing.image_envelope(img2, shp2, srtm_dir) poly1, epsg1 = utils.read_vector(shp1) poly2, epsg2 = utils.read_vector(shp2) inter_poly, (inter_xmin, inter_ymin, inter_xmax, inter_ymax) = \ tiling.ground_polygon_from_envelopes(poly1, poly2, epsg1, epsg2, epsg1) out_envelopes_intersection = os.path.join(out_dir, 'envelopes_intersection.gpkg') utils.write_vector([inter_poly], out_envelopes_intersection, epsg1) conf_out_dict = out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag] conf_out_dict[ params.envelopes_intersection_tag] = out_envelopes_intersection conf_out_dict[params.envelopes_intersection_bb_tag] = [ inter_xmin, inter_ymin, inter_xmax, inter_ymax ] if check_inputs: logging.info('Checking DEM coverage') dem_useful_polygon, dem_coverage = projection.compute_dem_intersection_with_poly( srtm_dir, inter_poly, epsg1) if dem_coverage < 100.0: logging.warning( 'The input DEM covers {}% of the useful zone'.format( int(dem_coverage))) # Generate rectification grids logging.info("Generating epipolar rectification grid ...") grid1, grid2, epipolar_size_x, epipolar_size_y, alt_to_disp_ratio, stereogrid_pipeline = pipelines.build_stereorectification_grid_pipeline( img1, img2, srtm_dir, epi_step) # we want disp_to_alt_ratio = resolution/(B/H), in m.pixel^-1 disp_to_alt_ratio = 1 / alt_to_disp_ratio # Export grids to numpy left_grid_as_array = np.copy( stereogrid_pipeline["stereo_app"].GetVectorImageAsNumpyArray( "io.outleft")) right_grid_as_array = np.copy( stereogrid_pipeline["stereo_app"].GetVectorImageAsNumpyArray( "io.outright")) grid_origin = stereogrid_pipeline["stereo_app"].GetImageOrigin( "io.outleft") grid_spacing = stereogrid_pipeline["stereo_app"].GetImageSpacing( "io.outleft") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_size_x_tag] = epipolar_size_x out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_size_y_tag] = epipolar_size_y out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_origin_x_tag] = grid_origin[0] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_origin_y_tag] = grid_origin[1] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_spacing_x_tag] = grid_spacing[0] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.epipolar_spacing_y_tag] = grid_spacing[1] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.disp_to_alt_ratio_tag] = disp_to_alt_ratio logging.info("Size of epipolar images: {}x{} pixels".format( epipolar_size_x, epipolar_size_y)) logging.info( "Disparity to altitude factor: {} m/pixel".format(disp_to_alt_ratio)) logging.info("Sparse matching ...") nb_threads = int(os.environ.get('OMP_NUM_THREADS', '1')) # Compute the full range needed for sparse matching disp_lower_bound = elevation_delta_lower_bound / disp_to_alt_ratio disp_upper_bound = elevation_delta_upper_bound / disp_to_alt_ratio disparity_range_width = disp_upper_bound - disp_lower_bound logging.info( "Full disparity range width for sparse matching: {} pixels".format( disparity_range_width)) disparity_range_center = (elevation_delta_upper_bound + elevation_delta_lower_bound) / ( 2 * disp_to_alt_ratio) # Compute the number of offsets to consider in order to explore the full range nb_splits = 1 + int(math.floor(float(disparity_range_width) / region_size)) actual_region_size = int( math.ceil((region_size + disparity_range_width) / nb_splits)) actual_range = nb_splits * actual_region_size actual_range_start = disparity_range_center - actual_range / 2 + region_size / 2 logging.info( "Disparity range will be explored in {} regions of size {}, starting at {} pixels" .format(nb_splits, actual_region_size, actual_range_start)) regions = tiling.split(0, 0, epipolar_size_x, epipolar_size_y, region_size, region_size) logging.info("Number of splits to process for sparse matching: {}".format( len(regions))) cluster = None client = None # TODO: prepare mp mode # Use dask use_dask = {"local_dask": True, "pbs_dask": True} if mode not in use_dask.keys(): raise NotImplementedError('{} mode is not implemented'.format(mode)) if mode == "local_dask": cluster, client = start_local_cluster(nb_workers) else: cluster, client = start_cluster(nb_workers, walltime, out_dir) # Write temporary grid tmp1 = os.path.join(out_dir, "tmp1.tif") preprocessing.write_grid(left_grid_as_array, tmp1, grid_origin, grid_spacing) tmp2 = os.path.join(out_dir, "tmp2.tif") preprocessing.write_grid(right_grid_as_array, tmp2, grid_origin, grid_spacing) # Compute margins for right region margins = [ int( math.floor(epipolar_error_upper_bound + epipolar_error_maximum_bias)), int( math.floor(epipolar_error_upper_bound + epipolar_error_maximum_bias)), int( math.floor(epipolar_error_upper_bound + epipolar_error_maximum_bias)), int(math.ceil(epipolar_error_upper_bound + epipolar_error_maximum_bias)) ] logging.info( "Margins added to right region for matching: {}".format(margins)) # Matching tasks as delayed objects delayed_matches = [] for left_region in regions: for offset in range(nb_splits): offset_ = actual_range_start + offset * actual_region_size # Pad region to include margins for right image right_region = [ left_region[0] + offset_, left_region[1], left_region[0] + offset_ + actual_region_size, left_region[3] ] # Pad with margin and crop to largest region right_region = tiling.crop( tiling.pad(right_region, margins), [0, 0, epipolar_size_x, epipolar_size_y]) # Avoid empty regions if not tiling.empty(right_region): delayed_matches.append( dask.delayed(matching_wrapper)(left_region, right_region, img1, img2, tmp1, tmp2, mask1, mask2, nodata1, nodata2, epipolar_size_x, epipolar_size_y)) # Transform delayed tasks to future logging.info("Submitting {} tasks to dask".format(len(delayed_matches))) future_matches = client.compute(delayed_matches) # Initialize output matches array matches = np.empty((0, 4)) # Wait for all matching tasks to be completed for future, result in tqdm(as_completed(future_matches, with_results=True), total=len(future_matches), desc="Performing matching ..."): matches = np.concatenate((matches, result)) raw_nb_matches = matches.shape[0] logging.info( "Raw number of matches found: {} matches".format(raw_nb_matches)) # Export matches logging.info("Writing raw matches file") raw_matches_array_path = os.path.join(out_dir, "raw_matches.npy") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.raw_matches_tag] = raw_matches_array_path np.save(raw_matches_array_path, matches) # Filter matches that are out of margin if epipolar_error_maximum_bias == 0: epipolar_median_shift = 0 else: epipolar_median_shift = np.median(matches[:, 3] - matches[:, 1]) matches = matches[((matches[:, 3] - matches[:, 1]) - epipolar_median_shift) >= -epipolar_error_upper_bound] matches = matches[((matches[:, 3] - matches[:, 1]) - epipolar_median_shift) <= epipolar_error_upper_bound] matches_discarded_message = "{} matches discarded because their epipolar error is greater \ than --epipolar_error_upper_bound = {} pix".format( raw_nb_matches - matches.shape[0], epipolar_error_upper_bound) if epipolar_error_maximum_bias != 0: matches_discarded_message += " considering a shift of {} pix".format( epipolar_median_shift) logging.info(matches_discarded_message) filtered_nb_matches = matches.shape[0] matches = matches[matches[:, 2] - matches[:, 0] >= disp_lower_bound] matches = matches[matches[:, 2] - matches[:, 0] <= disp_upper_bound] logging.info( "{} matches discarded because they fall outside of disparity range defined by --elevation_delta_lower_bound = {} m and --elevation_delta_upper_bound = {} m : [{} pix., {} pix.]" .format(filtered_nb_matches - matches.shape[0], elevation_delta_lower_bound, elevation_delta_upper_bound, disp_lower_bound, disp_upper_bound)) # Retrieve number of matches nb_matches = matches.shape[0] # Check if we have enough matches # TODO: we could also make it a warning and continue with uncorrected grid # and default disparity range if nb_matches < 100: logging.critical( "Insufficient amount of matches found (< 100), can not safely estimate epipolar error correction and disparity range" ) # stop cluster stop_cluster(cluster, client) # Exit immediately return logging.info( "Number of matches kept for epipolar error correction: {} matches". format(nb_matches)) # Remove temporary files os.remove(tmp1) os.remove(tmp2) # Compute epipolar error epipolar_error = matches[:, 1] - matches[:, 3] logging.info( "Epipolar error before correction: mean = {:.3f} pix., standard deviation = {:.3f} pix., max = {:.3f} pix." .format(np.mean(epipolar_error), np.std(epipolar_error), np.max(np.fabs(epipolar_error)))) # Commpute correction for right grid logging.info("Generating correction for right epipolar grid ...") corrected_right_grid, corrected_matches, in_stats, out_stats = preprocessing.correct_right_grid( matches, right_grid_as_array, grid_origin, grid_spacing) corrected_epipolar_error = corrected_matches[:, 1] - corrected_matches[:, 3] logging.info( "Epipolar error after correction: mean = {:.3f} pix., standard deviation = {:.3f} pix., max = {:.3f} pix." .format(np.mean(corrected_epipolar_error), np.std(corrected_epipolar_error), np.max(np.fabs(corrected_epipolar_error)))) # TODO: add stats in content.json out_left_grid = os.path.join(out_dir, "left_epipolar_grid.tif") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.left_epipolar_grid_tag] = out_left_grid preprocessing.write_grid(left_grid_as_array, out_left_grid, grid_origin, grid_spacing) # Export corrected right grid out_right_grid = os.path.join(out_dir, "right_epipolar_grid.tif") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.right_epipolar_grid_tag] = out_right_grid preprocessing.write_grid(corrected_right_grid, out_right_grid, grid_origin, grid_spacing) # Export uncorrected right grid logging.info("Writing uncorrected right grid") out_right_grid_uncorrected = os.path.join( out_dir, "right_epipolar_grid_uncorrected.tif") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. right_epipolar_uncorrected_grid_tag] = out_right_grid_uncorrected preprocessing.write_grid(right_grid_as_array, out_right_grid_uncorrected, grid_origin, grid_spacing) # Compute the disparity range (we filter matches that are too off epipolar # lins after correction) corrected_std = np.std(corrected_epipolar_error) corrected_matches = corrected_matches[ np.fabs(corrected_epipolar_error) < 3 * corrected_std] logging.info( "{} matches discarded because their epipolar error is greater than 3*stdev of epipolar error after correction (3*stddev = {:.3f} pix.)" .format(nb_matches - corrected_matches.shape[0], 3 * corrected_std)) logging.info( "Number of matches kept for disparity range estimation: {} matches". format(corrected_matches.shape[0])) dmin, dmax = preprocessing.compute_disparity_range( corrected_matches, static_cfg.get_disparity_outliers_rejection_percent()) margin = abs(dmax - dmin) * disparity_margin dmin -= margin dmax += margin logging.info( "Disparity range with margin: [{:.3f} pix., {:.3f} pix.] (margin = {:.3f} pix.)" .format(dmin, dmax, margin)) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.minimum_disparity_tag] = dmin out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.maximum_disparity_tag] = dmax logging.info( "Equivalent range in meters: [{:.3f} m, {:.3f} m] (margin = {:.3f} m)". format(dmin * disp_to_alt_ratio, dmax * disp_to_alt_ratio, margin * disp_to_alt_ratio)) # Export matches logging.info("Writing matches file") matches_array_path = os.path.join(out_dir, "matches.npy") out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.matches_tag] = matches_array_path np.save(matches_array_path, corrected_matches) # Now compute low resolution DSM and its initial DEM counterpart # First, triangulate matches logging.info("Generating low resolution DSM from matches") points_cloud_from_matches = stereo.triangulate_matches( out_json, corrected_matches) # Then define the size of the lower res DSM to rasterize low_res_dsm_params = static_cfg.get_low_res_dsm_params() lowres_dsm_resolution = getattr( low_res_dsm_params, static_cfg.low_res_dsm_resolution_in_degree_tag) # Value in degree lowres_dsm_sizex = int( math.ceil((inter_xmax - inter_xmin) / lowres_dsm_resolution)) lowres_dsm_sizey = int( math.ceil((inter_ymax - inter_ymin) / lowres_dsm_resolution)) lowres_dsm = rasterization.simple_rasterization_dataset( [points_cloud_from_matches], lowres_dsm_resolution, 4326, color_list=None, xstart=inter_xmin, ystart=inter_ymax, xsize=lowres_dsm_sizex, ysize=lowres_dsm_sizey) lowres_dsm_file = os.path.join( out_dir, "lowres_dsm_from_matches.nc") # TODO add propoer crs info lowres_dsm.to_netcdf(lowres_dsm_file) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.lowres_dsm_tag] = lowres_dsm_file # Now read the exact same grid on initial DEM lowres_initial_dem = preprocessing.read_lowres_dem( srtm_dir, startx=inter_xmin, starty=inter_ymax, sizex=lowres_dsm_sizex, sizey=lowres_dsm_sizey, resolution=lowres_dsm_resolution) lowres_initial_dem_file = os.path.join(out_dir, "lowres_initial_dem.nc") lowres_initial_dem.to_netcdf(lowres_initial_dem_file) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.lowres_initial_dem_tag] = lowres_initial_dem_file # also write the difference lowres_elevation_difference_file = os.path.join( out_dir, "lowres_elevation_diff.nc") lowres_dsm_diff = lowres_initial_dem - lowres_dsm (lowres_dsm_diff).to_netcdf(lowres_elevation_difference_file) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. lowres_elevation_difference_tag] = lowres_elevation_difference_file # Now, estimate a correction to align DSM on the lowres initial DEM splines = None if lowres_dsm_sizex > getattr(low_res_dsm_params, static_cfg.low_res_dsm_min_sizex_for_align_tag) and \ lowres_dsm_sizey > getattr(low_res_dsm_params, static_cfg.low_res_dsm_min_sizey_for_align_tag): logging.info( "Estimating correction between low resolution DSM and initial DEM") # First, we estimate direction of acquisition time for both images vec1 = preprocessing.get_time_ground_direction(img1, dem=srtm_dir) vec2 = preprocessing.get_time_ground_direction(img2, dem=srtm_dir) time_direction_vector = (vec1 + vec2) / 2 display_angle = lambda x: 180 * math.atan2(x[1], x[0]) / math.pi logging.info( "Time direction average azimuth: {}° (img1: {}°, img2: {}°)". format(display_angle(time_direction_vector), display_angle(vec1), display_angle(vec2))) origin = [ float(lowres_dsm_diff.x[0].values), float(lowres_dsm_diff.y[0].values) ] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.time_direction_line_origin_x_tag] = origin[0] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params.time_direction_line_origin_y_tag] = origin[1] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. time_direction_line_vector_x_tag] = time_direction_vector[0] out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. time_direction_line_vector_y_tag] = time_direction_vector[1] # Then we estimate the correction splines splines = preprocessing.lowres_initial_dem_splines_fit( lowres_dsm, lowres_initial_dem, origin, time_direction_vector, ext=getattr(low_res_dsm_params, static_cfg.low_res_dsm_ext_tag), order=getattr(low_res_dsm_params, static_cfg.low_res_dsm_ext_tag)) else: logging.warning( "Low resolution DSM is not large enough (minimum size is 100x100) to estimate correction to fit initial DEM, skipping ..." ) if splines is not None: # Save model to file lowres_dem_splines_fit_file = os.path.join( out_dir, "lowres_dem_splines_fit.pck") with open(lowres_dem_splines_fit_file, 'wb') as f: pickle.dump(splines, f) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. lowres_dem_splines_fit_tag] = lowres_dem_splines_fit_file logging.info( "Generating corrected low resolution DSM from matches") # Estimate correction on point cloud from matches points_cloud_from_matches_z_correction = splines( preprocessing.project_coordinates_on_line( points_cloud_from_matches.x, points_cloud_from_matches.y, origin, time_direction_vector)) # Estimate disparity correction points_cloud_disp_correction = points_cloud_from_matches_z_correction / disp_to_alt_ratio # Correct matches disparity z_corrected_matches = corrected_matches z_corrected_matches[:, 2] = z_corrected_matches[:, 2] - points_cloud_disp_correction[:, 0] # Triangulate and rasterize again corrected_points_cloud_from_matches = stereo.triangulate_matches( out_json, z_corrected_matches) corrected_lowres_dsm = rasterization.simple_rasterization_dataset( [corrected_points_cloud_from_matches], lowres_dsm_resolution, corrected_points_cloud_from_matches.attrs['epsg'], xstart=inter_xmin, ystart=inter_ymax, xsize=lowres_dsm_sizex, ysize=lowres_dsm_sizey) # Write corrected lowres dsm corrected_lowres_dsm_file = os.path.join( out_dir, "corrected_lowres_dsm_from_matches.nc" ) # TODO add propoer crs info corrected_lowres_dsm.to_netcdf(corrected_lowres_dsm_file) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. corrected_lowres_dsm_tag] = corrected_lowres_dsm_file # also write the difference corrected_lowres_elevation_difference_file = os.path.join( out_dir, "corrected_lowres_elevation_diff.nc") corrected_lowres_dsm_diff = lowres_initial_dem - corrected_lowres_dsm (corrected_lowres_dsm_diff ).to_netcdf(corrected_lowres_elevation_difference_file) out_json[params.preprocessing_section_tag][ params.preprocessing_output_section_tag][ params. corrected_lowres_elevation_difference_tag] = corrected_lowres_elevation_difference_file # Write the output json try: utils.check_json(out_json, params.preprocessing_content_schema) except CheckerError as e: logging.warning( "content.json does not comply with schema: {}".format(e)) out_json_path = os.path.join(out_dir, "content.json") params.write_preprocessing_content_file(out_json, out_json_path) # stop cluster stop_cluster(cluster, client)
def test_write_geotiff_dsm(): """ Test to result tiles to GTiff file(s). """ with tempfile.TemporaryDirectory(dir=temporary_dir()) as directory: # Set variables and parameters for create dataset resolution = 0.5 epsg = 32630 dsm_no_data = -32768 hgt_no_data = dsm_no_data color_no_data = 0 msk_no_data = 255 xstart, ystart, xsize, ysize = [0, 10, 10, 10] raster = np.ndarray(shape=(10, 10, 2), dtype=np.float32) mean = np.ndarray(shape=(10, 10, 2), dtype=np.float32) stdev = np.ndarray(shape=(10, 10, 2), dtype=np.float32) n_pts = np.ndarray(shape=(10, 10), dtype=np.uint16) n_in_cell = np.ndarray(shape=(10, 10), dtype=np.uint16) msk = np.ndarray(shape=(10, 10), dtype=np.uint16) delayed_raster_datasets = list() delayed_raster_datasets.append( dask.delayed(rasterization.create_raster_dataset)( raster, xstart, ystart, xsize, ysize, resolution, hgt_no_data, color_no_data, epsg, mean, stdev, n_pts, n_in_cell, msk)) # Start cluster with a local cluster nb_workers = 4 cluster, client = start_local_cluster(nb_workers) future_dsm = client.compute(delayed_raster_datasets) # Write netcdf with raster_datasets bounds = [xstart, ystart, xsize, ysize] nb_bands = 1 dsm_file = os.path.join(directory, "dsm.tif") clr_file = os.path.join(directory, "clr.tif") msk_file = os.path.join(directory, "msk.tif") readwrite.write_geotiff_dsm(future_dsm, directory, xsize, ysize, bounds, resolution, epsg, nb_bands, dsm_no_data, color_no_data, write_msk=True, msk_no_data=msk_no_data) # stop cluster stop_local_cluster(cluster, client) width_ref = xsize height_ref = ysize crs = osr.SpatialReference() crs.ImportFromEPSG(epsg) crs_ref = crs.ExportToWkt() geotransform = (bounds[0], resolution, 0.0, bounds[3], 0.0, -resolution) transform_ref = Affine.from_gdal(*geotransform) # Compare DSM with rio.open(dsm_file) as rio_actual: np.testing.assert_equal(rio_actual.width, width_ref) np.testing.assert_equal(rio_actual.height, height_ref) assert rio_actual.transform == transform_ref assert rio_actual.crs == crs_ref assert rio_actual.nodata == hgt_no_data for i in range(rio_actual.width): for j in range(rio_actual.height): if np.isnan(raster[i][j][0]): assert rio_actual.read()[0][i][j] == dsm_no_data else: assert rio_actual.read()[0][i][j] == raster[i][j][0] # Compare CLR with rio.open(clr_file) as rio_actual: np.testing.assert_equal(rio_actual.width, width_ref) np.testing.assert_equal(rio_actual.height, height_ref) assert rio_actual.transform == transform_ref assert rio_actual.crs == crs_ref assert rio_actual.nodata == color_no_data for i in range(rio_actual.width): for j in range(rio_actual.height): if np.isnan(raster[i][j][1]): assert rio_actual.read()[0][i][j] == color_no_data else: assert rio_actual.read()[0][i][j] == raster[i][j][1] # Compare MSK with rio.open(msk_file) as rio_actual: np.testing.assert_equal(rio_actual.width, width_ref) np.testing.assert_equal(rio_actual.height, height_ref) assert rio_actual.transform == transform_ref assert rio_actual.crs == crs_ref assert rio_actual.nodata == msk_no_data for i in range(rio_actual.width): for j in range(rio_actual.height): if np.isnan(raster[i][j][1]): assert rio_actual.read()[0][i][j] == msk_no_data else: assert rio_actual.read()[0][i][j] == msk[i][j]
def test_local_cluster(): """ """ clus, client = cluster.start_local_cluster(4) cluster.stop_local_cluster(clus, client)
def run(in_jsons: List[params.preprocessing_content_type], out_dir: str, resolution: float = 0.5, min_elevation_offset: float = None, max_elevation_offset: float = None, epsg: int = None, sigma: float = None, dsm_radius: int = 1, dsm_no_data: int = -32768, color_no_data: int = 0, corr_config: Dict = None, output_stats: bool = False, mode: str = "local_dask", nb_workers: int = 4, walltime: str = "00:59:00", roi: Tuple[List[int], int] = None, use_geoid_alt: bool = False, use_sec_disp: bool = False, snap_to_img1: bool = False, align: bool = False, cloud_small_components_filter: bool = True, cloud_statistical_outliers_filter: bool = True, epi_tile_size: int = None): """ Main function for the compute_dsm subcommand This function will compute independent tiles of the final DSM, with the following steps: 1. Epipolar resampling (including mask) 2. Disparity map estimation 3. Triangulation of disparity map 4. Rasterization to DSM :param in_jsons: dictionaries describing the input pair (as produced by cars_preproc tool) :param out_dir: directory where output raster and color images will be written :param resolution: resolution of DSM to produce :param min_elevation_offset: Override minimum disparity from prepare step with this offset in meters :param max_elevation_offset: Override maximum disparity from prepare step with this offset in meters :param epsg: epsg code for the CRS of the output DSM :param sigma: width of gaussian weight for rasterization :param dsm_radius: Radius around a cell for gathering points for rasterization :param dsm_no_data: No data value to use in the final DSM file :param color_no_data: No data value to use in the final colored image :param corr_config: Correlator configuration :param output_stats: flag, if true, outputs dsm as a geotiff file with quality statistics. :param mode: Parallelization mode :param nb_workers: Number of dask workers to use for the sift matching step :param walltime: Walltime of the dask workers :param roi: DSM ROI in final projection with the corresponding epsg code ([xmin, ymin, xmax, ymax], roi_epsg)) (roi_epsg can be set to None if the ROI is in final projection) :param use_geoid_alt: Wheter altitude should be computed wrt geoid height or not. :param use_sec_disp: Boolean activating the use of the secondary disparity map :param snap_to_img1: If this is True, Lines of Sight of img2 are moved so as to cross those of img1 :param align: If this is True, use the correction estimated during prepare to align to lowres DEM (if available) :param cloud_small_components_filter: Boolean activating the points cloud small components filtering. The filter's parameters are set in the static configuration json. :param cloud_statistical_outliers_filter: Boolean activating the points cloud statistical outliers filtering. The filter's parameters are set in the static configuration json. :param epi_tile_size: Force the size of epipolar tiles (None by default) """ out_dir = os.path.abspath(out_dir) # Ensure that outdir exists try: os.makedirs(out_dir) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(out_dir): pass else: raise tmp_dir = os.path.join(out_dir, 'tmp') utils.add_log_file(out_dir, 'compute_dsm') logging.info("Received {} stereo pairs configurations".format( len(in_jsons))) # Retrieve static parameters (rasterization and cloud filtering) static_params = static_cfg.get_cfg() # Initiate ouptut json dictionary out_json = { params.stereo_inputs_section_tag: [], params.stereo_section_tag: { params.stereo_version_tag: utils.get_version(), params.stereo_parameters_section_tag: { params.resolution_tag: resolution, params.sigma_tag: sigma, params.dsm_radius_tag: dsm_radius }, params.static_params_tag: static_params[static_cfg.compute_dsm_tag], params.stereo_output_section_tag: {} } } if use_geoid_alt: geoid_data = utils.read_geoid_file() out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.alt_reference_tag] = 'geoid' else: geoid_data = None out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.alt_reference_tag] = 'ellipsoid' if epsg is not None: out_json[params.stereo_section_tag][ params.stereo_parameters_section_tag][params.epsg_tag] = epsg roi_epsg = None if roi is not None: (roi_xmin, roi_ymin, roi_xmax, roi_ymax), roi_epsg = roi roi_poly = Polygon([(roi_xmin, roi_ymin), (roi_xmax, roi_ymin), (roi_xmax, roi_ymax), (roi_xmin, roi_ymax), (roi_xmin, roi_ymin)]) # set the timeout for each job in multiprocessing mode (in seconds) perJobTimeout = 600 configurations_data = {} config_idx = 1 ref_left_image = None for in_json in in_jsons: # Build config id config_id = "config_{}".format(config_idx) # Check configuration with respect to schema configuration = utils.check_json(in_json, params.preprocessing_content_schema) preprocessing_output_config = configuration[ params.preprocessing_section_tag][ params.preprocessing_output_section_tag] # Append input configuration to output json out_json[params.stereo_inputs_section_tag].append(configuration) configurations_data[config_id] = {} configurations_data[config_id]['configuration'] = configuration # Check left image and raise a warning if different left images are used along with snap_to_img1 mpode if ref_left_image is None: ref_left_image = configuration[params.input_section_tag][ params.img1_tag] else: if snap_to_img1 and ref_left_image != configuration[ params.input_section_tag][params.img1_tag]: logging.warning( "--snap_to_left_image mode is used but input configurations have different images as their left image in pair. This may result in increasing registration discrepencies between pairs" ) # Get largest epipolar regions from configuration file largest_epipolar_region = [ 0, 0, preprocessing_output_config[params.epipolar_size_x_tag], preprocessing_output_config[params.epipolar_size_y_tag] ] configurations_data[config_id][ 'largest_epipolar_region'] = largest_epipolar_region disp_min = preprocessing_output_config[params.minimum_disparity_tag] disp_max = preprocessing_output_config[params.maximum_disparity_tag] disp_to_alt_ratio = preprocessing_output_config[ params.disp_to_alt_ratio_tag] # Check if we need to override disp_min if min_elevation_offset is not None: user_disp_min = min_elevation_offset / disp_to_alt_ratio if user_disp_min > disp_min: logging.warning(( 'Overriden disparity minimum = {:.3f} pix. (or {:.3f} m.) is greater ' 'than disparity minimum estimated in prepare step = {:.3f} pix. (or ' '{:.3f} m.) for configuration {}').format( user_disp_min, min_elevation_offset, disp_min, disp_min * disp_to_alt_ratio, config_id)) disp_min = user_disp_min # Check if we need to override disp_max if max_elevation_offset is not None: user_disp_max = max_elevation_offset / disp_to_alt_ratio if user_disp_max < disp_max: logging.warning(( 'Overriden disparity maximum = {:.3f} pix. (or {:.3f} m.) is lower ' 'than disparity maximum estimated in prepare step = {:.3f} pix. (or ' '{:.3f} m.) for configuration {}').format( user_disp_max, max_elevation_offset, disp_max, disp_max * disp_to_alt_ratio, config_id)) disp_max = user_disp_max logging.info( 'Disparity range for config {}: [{:.3f} pix., {:.3f} pix.] (or [{:.3f} m., {:.3f} m.])' .format(config_id, disp_min, disp_max, disp_min * disp_to_alt_ratio, disp_max * disp_to_alt_ratio)) configurations_data[config_id]['disp_min'] = disp_min configurations_data[config_id]['disp_max'] = disp_max origin = [ preprocessing_output_config[params.epipolar_origin_x_tag], preprocessing_output_config[params.epipolar_origin_y_tag] ] spacing = [ preprocessing_output_config[params.epipolar_spacing_x_tag], preprocessing_output_config[params.epipolar_spacing_y_tag] ] configurations_data[config_id]['origin'] = origin configurations_data[config_id]['spacing'] = spacing logging.info( "Size of epipolar image: {}".format(largest_epipolar_region)) logging.debug("Origin of epipolar grid: {}".format(origin)) logging.debug("Spacing of epipolar grid: {}".format(spacing)) # Warning if align is set but correction is missing if align and params.lowres_dem_splines_fit_tag not in preprocessing_output_config: logging.warning(( 'Align with low resolution DSM option is set but splines correction file ' 'is not available for configuration {}. Correction ' 'will not be applied for this configuration' ).format(config_id)) # Numpy array with corners of largest epipolar region. Order # does not matter here, since it will be passed to stereo.compute_epipolar_grid_min_max corners = np.array( [[[largest_epipolar_region[0], largest_epipolar_region[1]], [largest_epipolar_region[0], largest_epipolar_region[3]]], [[largest_epipolar_region[2], largest_epipolar_region[3]], [largest_epipolar_region[2], largest_epipolar_region[1]]]], dtype=np.float64) # get utm zone with the middle point of terrain_min if epsg is # None if epsg is None: # Compute terrain position of epipolar image corners for min and max disparity terrain_dispmin, terrain_dispmax = stereo.compute_epipolar_grid_min_max( corners, 4326, configuration, disp_min, disp_max) epsg = rasterization.get_utm_zone_as_epsg_code( *np.mean(terrain_dispmin, axis=0)) logging.info("EPSG code: {}".format(epsg)) # Compute terrain min and max again, this time using estimated epsg code terrain_dispmin, terrain_dispmax = stereo.compute_epipolar_grid_min_max( corners, epsg, configuration, disp_min, disp_max) if roi_epsg is not None: if roi_epsg != epsg: roi_poly = projection.polygon_projection( roi_poly, roi_epsg, epsg) # Compute bounds from epipolar image corners and dispmin/dispmax terrain_bounds = np.stack((terrain_dispmin, terrain_dispmax), axis=0) terrain_min = np.amin(terrain_bounds, axis=(0, 1)) terrain_max = np.amax(terrain_bounds, axis=(0, 1)) terrain_area = (terrain_max[0] - terrain_min[0]) * (terrain_max[1] - terrain_min[1]) configurations_data[config_id]['terrain_area'] = terrain_area logging.info( "Terrain area covered: {} square meters (or square degrees)". format(terrain_area)) # Retrieve bounding box of the ground intersection of the envelopes inter_poly, inter_epsg = utils.read_vector( preprocessing_output_config[params.envelopes_intersection_tag]) if epsg != inter_epsg: inter_poly = projection.polygon_projection(inter_poly, inter_epsg, epsg) (inter_xmin, inter_ymin, inter_xmax, inter_ymax) = inter_poly.bounds # Align bounding box to integer resolution steps xmin, ymin, xmax, ymax = tiling.snap_to_grid(inter_xmin, inter_ymin, inter_xmax, inter_ymax, resolution) logging.info("Terrain bounding box : [{}, {}] x [{}, {}]".format( xmin, xmax, ymin, ymax)) configurations_data[config_id]['terrain_bounding_box'] = [ xmin, ymin, xmax, ymax ] if roi is not None: if not roi_poly.intersects(inter_poly): logging.warning( "The pair composed of {} and {} does not intersect the requested ROI" .format( configuration[params.input_section_tag][ params.img1_tag], configuration[ params.input_section_tag][params.img2_tag])) # Get optimal tile size if epi_tile_size is not None: opt_epipolar_tile_size = epi_tile_size else: opt_epipolar_tile_size = stereo.optimal_tile_size( disp_min, disp_max) logging.info( "Optimal tile size for epipolar regions: {}x{} pixels".format( opt_epipolar_tile_size, opt_epipolar_tile_size)) configurations_data[config_id][ 'opt_epipolar_tile_size'] = opt_epipolar_tile_size # Split epipolar image in pieces epipolar_regions = tiling.split( 0, 0, preprocessing_output_config[params.epipolar_size_x_tag], preprocessing_output_config[params.epipolar_size_y_tag], opt_epipolar_tile_size, opt_epipolar_tile_size) epipolar_regions_grid = tiling.grid( 0, 0, preprocessing_output_config[params.epipolar_size_x_tag], preprocessing_output_config[params.epipolar_size_y_tag], opt_epipolar_tile_size, opt_epipolar_tile_size) configurations_data[config_id]['epipolar_regions'] = epipolar_regions configurations_data[config_id][ 'epipolar_regions_grid'] = epipolar_regions_grid logging.info("Epipolar image will be processed in {} splits".format( len(epipolar_regions))) # Increment config index config_idx += 1 xmin, ymin, xmax, ymax = tiling.union([ conf['terrain_bounding_box'] for config_id, conf in configurations_data.items() ]) if roi is not None: # terrain bounding box polygon terrain_poly = Polygon([(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax), (xmin, ymin)]) if not roi_poly.intersects(terrain_poly): raise Exception( 'None of the input pairs intersect the requested ROI') else: logging.info('Setting terrain bounding box to the requested ROI') xmin, ymin, xmax, ymax = roi_poly.bounds xmin, ymin, xmax, ymax = tiling.snap_to_grid( xmin, ymin, xmax, ymax, resolution) logging.info("Total terrain bounding box : [{}, {}] x [{}, {}]".format( xmin, xmax, ymin, ymax)) # Compute optimal terrain tile size optimal_terrain_tile_widths = [] for config_id, conf in configurations_data.items(): # Compute terrain area covered by a single epipolar tile terrain_area_covered_by_epipolar_tile = conf["terrain_area"] / len( epipolar_regions) # Compute tile width in pixels optimal_terrain_tile_widths.append( math.sqrt(terrain_area_covered_by_epipolar_tile)) # In case of multiple json configuration, take the average optimal size, # and align to multiple of resolution optimal_terrain_tile_width = int( math.ceil( np.mean(optimal_terrain_tile_widths) / resolution)) * resolution logging.info("Optimal terrain tile size: {}x{} pixels".format( int(optimal_terrain_tile_width / resolution), int(optimal_terrain_tile_width / resolution))) # Split terrain bounding box in pieces terrain_grid = tiling.grid(xmin, ymin, xmax, ymax, optimal_terrain_tile_width, optimal_terrain_tile_width) number_of_terrain_splits = (terrain_grid.shape[0] - 1) * (terrain_grid.shape[1] - 1) logging.info("Terrain bounding box will be processed in {} splits".format( number_of_terrain_splits)) # Start dask cluster cluster = None client = None # Use dask use_dask = {"local_dask": True, "pbs_dask": True, "mp": False} if mode not in use_dask.keys(): raise NotImplementedError('{} mode is not implemented'.format(mode)) if use_dask[mode]: if mode == "local_dask": cluster, client = start_local_cluster(nb_workers) else: cluster, client = start_cluster(nb_workers, walltime, out_dir) # Add plugin to monitor memory of workers plugin = ComputeDSMMemoryLogger(out_dir) client.register_worker_plugin(plugin) geoid_data_futures = None if geoid_data is not None: # Broadcast geoid data to all dask workers geoid_data_futures = client.scatter(geoid_data, broadcast=True) # Retrieve the epsg code which will be used for the triangulation's output points clouds # (ecef if filters are activated) if cloud_small_components_filter or cloud_statistical_outliers_filter: stereo_out_epsg = 4978 else: stereo_out_epsg = epsg # Submit all epipolar regions to be processed as delayed tasks, and # project terrain grid to epipolar for config_id, conf in configurations_data.items(): # This list will hold the different epipolar tiles to be # processed as points cloud delayed_point_clouds = [] if use_dask[mode]: # Use Dask delayed for region in conf['epipolar_regions']: delayed_point_clouds.append( dask.delayed(stereo.images_pair_to_3d_points)( conf['configuration'], region, corr_config, disp_min=conf['disp_min'], disp_max=conf['disp_max'], geoid_data=geoid_data_futures, out_epsg=stereo_out_epsg, use_sec_disp=use_sec_disp, snap_to_img1=snap_to_img1, align=align)) logging.info( "Submitted {} epipolar delayed tasks to dask for stereo configuration {}" .format(len(delayed_point_clouds), config_id)) else: # Use multiprocessing module # create progress bar with an update callback pbar = tqdm(total=len(conf['epipolar_regions'])) def update(args): pbar.update() # create a thread pool pool = multiprocessing.Pool(nb_workers) # launch several 'write_3d_points()' to process each epipolar region for region in conf['epipolar_regions']: delayed_point_clouds.append( pool.apply_async(write_3d_points, args=(conf['configuration'], region, corr_config, tmp_dir, config_id), kwds={ 'disp_min': conf['disp_min'], 'disp_max': conf['disp_max'], 'geoid_data': geoid_data, 'out_epsg': stereo_out_epsg, 'use_sec_disp': use_sec_disp }, callback=update)) # Wait computation results (timeout in seconds) and replace the # async objects by the actual output of write_3d_points(), meaning # the paths to cloud files delayed_point_clouds = [ delayed_pc.get(timeout=perJobTimeout) for delayed_pc in delayed_point_clouds ] # closing thread pool when computation is done pool.close() pool.join() configurations_data[config_id][ 'delayed_point_clouds'] = delayed_point_clouds # build list of epipolar region hashes configurations_data[config_id]['epipolar_regions_hash'] = [ region_hash_string(k) for k in conf['epipolar_regions'] ] # Compute disp_min and disp_max location for epipolar grid epipolar_grid_min, epipolar_grid_max = stereo.compute_epipolar_grid_min_max( conf['epipolar_regions_grid'], epsg, conf["configuration"], conf['disp_min'], conf['disp_max']) epipolar_regions_grid_flat = conf['epipolar_regions_grid'].reshape( -1, conf['epipolar_regions_grid'].shape[-1]) # in the following code a factor is used to increase the precision spatial_ref = osr.SpatialReference() spatial_ref.ImportFromEPSG(epsg) if spatial_ref.IsGeographic(): precision_factor = 1000.0 else: precision_factor = 1.0 # Build delaunay_triangulation delaunay_min = Delaunay(epipolar_grid_min * precision_factor) delaunay_max = Delaunay(epipolar_grid_max * precision_factor) # Build kdtrees tree_min = cKDTree(epipolar_grid_min * precision_factor) tree_max = cKDTree(epipolar_grid_max * precision_factor) # Look-up terrain_grid with Delaunay s_min = tsearch(delaunay_min, terrain_grid * precision_factor) s_max = tsearch(delaunay_max, terrain_grid * precision_factor) points_disp_min = epipolar_regions_grid_flat[ delaunay_min.simplices[s_min]] points_disp_max = epipolar_regions_grid_flat[ delaunay_max.simplices[s_max]] nn_disp_min = epipolar_regions_grid_flat[tree_min.query( terrain_grid * precision_factor)[1]] nn_disp_max = epipolar_regions_grid_flat[tree_max.query( terrain_grid * precision_factor)[1]] points_disp_min_min = np.min(points_disp_min, axis=2) points_disp_min_max = np.max(points_disp_min, axis=2) points_disp_max_min = np.min(points_disp_max, axis=2) points_disp_max_max = np.max(points_disp_max, axis=2) # Use either Delaunay search or NN search if delaunay search fails (point outside triangles) points_disp_min_min = np.where( np.stack((s_min, s_min), axis=-1) != -1, points_disp_min_min, nn_disp_min) points_disp_min_max = np.where( np.stack((s_min, s_min), axis=-1) != -1, points_disp_min_max, nn_disp_min) points_disp_max_min = np.where( np.stack((s_max, s_max), axis=-1) != -1, points_disp_max_min, nn_disp_max) points_disp_max_max = np.where( np.stack((s_max, s_max), axis=-1) != -1, points_disp_max_max, nn_disp_max) points = np.stack((points_disp_min_min, points_disp_min_max, points_disp_max_min, points_disp_max_max), axis=0) points_min = np.min(points, axis=0) points_max = np.max(points, axis=0) configurations_data[config_id]['epipolar_points_min'] = points_min configurations_data[config_id]['epipolar_points_max'] = points_max # Retrieve number of bands if params.color1_tag in configuration[params.input_section_tag]: nb_bands = utils.rasterio_get_nb_bands( configuration[params.input_section_tag][params.color1_tag]) else: logging.info( 'No color image has been given in input, {} will be used as the color image' .format(configuration[params.input_section_tag][params.img1_tag])) nb_bands = utils.rasterio_get_nb_bands( configuration[params.input_section_tag][params.img1_tag]) logging.info("Number of bands in color image: {}".format(nb_bands)) rank = [] # This list will contained the different raster tiles to be written by cars delayed_dsm_tiles = [] number_of_epipolar_tiles_per_terrain_tiles = [] if not use_dask[mode]: # create progress bar with update callback pbar = tqdm( total=number_of_terrain_splits, desc="Finding correspondences between terrain and epipolar tiles") def update(args): pbar.update() # initialize a thread pool for multiprocessing mode pool = multiprocessing.Pool(nb_workers) # Loop on terrain regions and derive dependency to epipolar regions for terrain_region_dix in tqdm(range(number_of_terrain_splits), total=number_of_terrain_splits, desc="Delaunay look-up"): j = int(terrain_region_dix / (terrain_grid.shape[1] - 1)) i = terrain_region_dix % (terrain_grid.shape[1] - 1) logging.debug("Processing tile located at {},{} in tile grid".format( i, j)) terrain_region = [ terrain_grid[j, i, 0], terrain_grid[j, i, 1], terrain_grid[j + 1, i + 1, 0], terrain_grid[j + 1, i + 1, 1] ] logging.debug( "Corresponding terrain region: {}".format(terrain_region)) # This list will hold the required points clouds for this terrain tile required_point_clouds = [] # For each stereo configuration for config_id, conf in configurations_data.items(): epipolar_points_min = conf['epipolar_points_min'] epipolar_points_max = conf['epipolar_points_max'] tile_min = np.minimum( np.minimum( np.minimum(epipolar_points_min[j, i], epipolar_points_min[j + 1, i]), np.minimum(epipolar_points_min[j + 1, i + 1], epipolar_points_min[j, i + 1])), np.minimum( np.minimum(epipolar_points_max[j, i], epipolar_points_max[j + 1, i]), np.minimum(epipolar_points_max[j + 1, i + 1], epipolar_points_max[j, i + 1]))) tile_max = np.maximum( np.maximum( np.maximum(epipolar_points_min[j, i], epipolar_points_min[j + 1, i]), np.maximum(epipolar_points_min[j + 1, i + 1], epipolar_points_min[j, i + 1])), np.maximum( np.maximum(epipolar_points_max[j, i], epipolar_points_max[j + 1, i]), np.maximum(epipolar_points_max[j + 1, i + 1], epipolar_points_max[j, i + 1]))) # Bouding region of corresponding cell epipolar_region_minx = tile_min[0] epipolar_region_miny = tile_min[1] epipolar_region_maxx = tile_max[0] epipolar_region_maxy = tile_max[1] # This mimics the previous code that was using # transform_terrain_region_to_epipolar epipolar_region = [ epipolar_region_minx, epipolar_region_miny, epipolar_region_maxx, epipolar_region_maxy ] # Crop epipolar region to largest region epipolar_region = tiling.crop(epipolar_region, conf['largest_epipolar_region']) logging.debug( "Corresponding epipolar region: {}".format(epipolar_region)) # Check if the epipolar region contains any pixels to process if tiling.empty(epipolar_region): logging.debug( "Skipping terrain region because corresponding epipolar region is empty" ) else: # Loop on all epipolar tiles covered by epipolar region for epipolar_tile in tiling.list_tiles( epipolar_region, conf['largest_epipolar_region'], conf['opt_epipolar_tile_size']): cur_hash = region_hash_string(epipolar_tile) # Look for corresponding hash in delayed point clouds # dictionnary if cur_hash in conf['epipolar_regions_hash']: # If hash can be found, append it to the required # clouds to compute for this terrain tile pos = conf['epipolar_regions_hash'].index(cur_hash) required_point_clouds.append( conf['delayed_point_clouds'][pos]) # start and size parameters for the rasterization function xstart, ystart, xsize, ysize = tiling.roi_to_start_and_size( terrain_region, resolution) # cloud filtering params if cloud_small_components_filter: small_cpn_filter_params = static_cfg.get_small_components_filter_params( ) else: small_cpn_filter_params = None if cloud_statistical_outliers_filter: statistical_filter_params = static_cfg.get_statistical_outliers_filter_params( ) else: statistical_filter_params = None # rasterization grid division factor rasterization_params = static_cfg.get_rasterization_params() grid_points_division_factor = getattr( rasterization_params, static_cfg.grid_points_division_factor_tag) if len(required_point_clouds) > 0: logging.debug( "Number of clouds to process for this terrain tile: {}".format( len(required_point_clouds))) if use_dask[mode]: # Delayed call to rasterization operations using all required # point clouds rasterized = dask.delayed(rasterization_wrapper)( required_point_clouds, resolution, epsg, xstart=xstart, ystart=ystart, xsize=xsize, ysize=ysize, radius=dsm_radius, sigma=sigma, dsm_no_data=dsm_no_data, color_no_data=color_no_data, small_cpn_filter_params=small_cpn_filter_params, statistical_filter_params=statistical_filter_params, grid_points_division_factor=grid_points_division_factor) # Keep track of delayed raster tiles delayed_dsm_tiles.append(rasterized) rank.append(i * i + j * j) else: # Launch asynchrone job for write_dsm_by_tile() delayed_dsm_tiles.append( pool.apply_async( write_dsm_by_tile, args=(required_point_clouds, resolution, epsg, tmp_dir, nb_bands, static_cfg.get_color_image_encoding(), output_stats), kwds={ 'xstart': xstart, 'ystart': ystart, 'xsize': xsize, 'ysize': ysize, 'radius': dsm_radius, 'sigma': sigma, 'dsm_no_data': dsm_no_data, 'color_no_data': color_no_data, 'small_cpn_filter_params': small_cpn_filter_params, 'statistical_filter_params': statistical_filter_params, 'grid_points_division_factor': grid_points_division_factor }, callback=update)) number_of_epipolar_tiles_per_terrain_tiles.append( len(required_point_clouds)) logging.info( "Average number of epipolar tiles for each terrain tile: {}".format( int(np.round( np.mean(number_of_epipolar_tiles_per_terrain_tiles))))) logging.info( "Max number of epipolar tiles for each terrain tile: {}".format( np.max(number_of_epipolar_tiles_per_terrain_tiles))) bounds = (xmin, ymin, xmax, ymax) # Derive output image files parameters to pass to rasterio xsize, ysize = tiling.roi_to_start_and_size([xmin, ymin, xmax, ymax], resolution)[2:] out_dsm = os.path.join(out_dir, "dsm.tif") out_clr = os.path.join(out_dir, "clr.tif") out_dsm_mean = os.path.join(out_dir, "dsm_mean.tif") out_dsm_std = os.path.join(out_dir, "dsm_std.tif") out_dsm_n_pts = os.path.join(out_dir, "dsm_n_pts.tif") out_dsm_points_in_cell = os.path.join(out_dir, "dsm_pts_in_cell.tif") if use_dask[mode]: # Sort tiles according to rank delayed_dsm_tiles = [ delayed for _, delayed in sorted(zip(rank, delayed_dsm_tiles), key=lambda pair: pair[0]) ] logging.info("Submitting {} tasks to dask".format( len(delayed_dsm_tiles))) # Transform all delayed raster tiles to futures (computation starts # immediatly on workers, assynchronously) future_dsm_tiles = client.compute(delayed_dsm_tiles) logging.info("DSM output image size: {}x{} pixels".format( xsize, ysize)) readwrite.write_geotiff_dsm( future_dsm_tiles, out_dir, xsize, ysize, bounds, resolution, epsg, nb_bands, dsm_no_data, color_no_data, color_dtype=static_cfg.get_color_image_encoding(), write_color=True, write_stats=output_stats) # stop cluster stop_cluster(cluster, client) else: logging.info("Computing DSM tiles ...") # Wait for asynchrone jobs (timeout in seconds) and replace them by # write_dsm_by_tile() output delayed_dsm_tiles = [ delayed_tile.get(timeout=perJobTimeout) for delayed_tile in delayed_dsm_tiles ] # closing the tread pool after computation pool.close() pool.join() # vrt to tif logging.info("Building VRT") vrt_options = gdal.BuildVRTOptions(resampleAlg='nearest') def vrt_mosaic(tiles_glob, vrt_name, vrt_options, output): vrt_file = os.path.join(out_dir, vrt_name) tiles_list = glob(os.path.join(out_dir, 'tmp', tiles_glob)) vrt = gdal.BuildVRT(vrt_file, tiles_list, options=vrt_options) vrt = None ds = gdal.Open(vrt_file) ds = gdal.Translate(output, ds) ds = None vrt_mosaic('*_dsm.tif', 'dsm.vrt', vrt_options, out_dsm) vrt_mosaic('*_clr.tif', 'clr.vrt', vrt_options, out_clr) if output_stats: vrt_mosaic('*_dsm_mean.tif', 'dsm_mean.vrt', vrt_options, out_dsm_mean) vrt_mosaic('*_dsm_std.tif', 'dsm_std.vrt', vrt_options, out_dsm_std) vrt_mosaic('*_dsm_n_pts.tif', 'dsm_n_pts.vrt', vrt_options, out_dsm_n_pts) vrt_mosaic('*_pts_in_cell.tif', 'dsm_pts_in_cell.vrt', vrt_options, out_dsm_points_in_cell) # Fill output json file out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.epsg_tag] = epsg out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_tag] = out_dsm out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_no_data_tag] = float(dsm_no_data) out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.color_no_data_tag] = float(color_no_data) out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.color_tag] = out_clr if output_stats: out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_mean_tag] = out_dsm_mean out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_std_tag] = out_dsm_std out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_n_pts_tag] = out_dsm_n_pts out_json[params.stereo_section_tag][params.stereo_output_section_tag][ params.dsm_points_in_cell_tag] = out_dsm_points_in_cell # Write the output json out_json_path = os.path.join(out_dir, "content.json") try: utils.check_json(out_json, params.stereo_content_schema) except CheckerError as e: logging.warning( "content.json does not comply with schema: {}".format(e)) params.write_stereo_content_file(out_json, out_json_path)
def test_local_cluster(): """ Simple start and stop local cluster test """ clus, client = cluster.start_local_cluster(4) cluster.stop_local_cluster(clus, client)