def print_low_accuracy(): ''' xyp -> latlon -> xyp: low accuracy ''' from cs_ll import latlon2xyp, xyp2latlon from cart_ll import latlon2xyz, xyz2latlon from cart_cs import xyp2xyz, xyz2xyp #------------------------------------------------ # at the panel border, low_accuracy #------------------------------------------------ xyp1 = (-0.57735026918962606, -0.53747283769483301, 1) xyp2 = (-0.57735026918962495, -0.53747283769483301, 1) latlon1 = xyp2latlon(*xyp1) latlon2 = xyp2latlon(*xyp2) xyp1_dict = latlon2xyp( *xyp2latlon(*xyp1) ) xyp2_dict = latlon2xyp( *xyp2latlon(*xyp2) ) print('') print(repr(latlon1)) print(repr(latlon2)) print(repr(xyp1_dict[1])) print(repr(xyp2_dict[1])) #a_equal(xyp1_dict.keys(), [1,4]) #a_equal(xyp2_dict.keys(), [1,4]) xyz1 = xyp2xyz(*xyp1) xyz2 = xyp2xyz(*xyp2) xyp1_list = xyz2xyp(*xyz1) xyp2_list = xyz2xyp(*xyz2) print('') print(repr(xyz1)) print(repr(xyz2)) print(repr(xyp1_dict[1]), xyp1_dict.keys()) print(repr(xyp2_dict[1]), xyp1_dict.keys()) a = 1/np.sqrt(3) at1, at2 = a*np.tan(-np.pi/4), a*np.tan(np.pi/4) print('') print(repr(at1), repr(at2))
def latlon2xyp(lat, lon, rotate_lat=RLAT, rotate_lon=RLON, R=1): """ (x,y,panel): gnomonic projection of rotated cubed-sphere coordinates with (rotate_lat, rorate_lon) return {panel:(x,y), ...} """ xyz = latlon2xyz(lat, lon, R) xr, yr, zr = xyz_rotate(xyz, rotate_lat, rotate_lon) xyp_dict = xyz2xyp(xr, yr, zr) return xyp_dict
def test_xyp2xyz_xyz2xyp(): ''' xyp2xyz() -> xyz2xyp() : check consistency, repeat 1000 times ''' from cart_cs import xyp2xyz, xyz2xyp N = 1000 R = 1 a = R/sqrt(3) for i in xrange(N): panel = randint(1,7) alpha, beta = (pi/2)*rand(2) - pi/4 x, y = a*tan(alpha), a*tan(beta) (X, Y, Z) = xyp2xyz(x, y, panel) xyp_dict = xyz2xyp(X,Y,Z) aa_equal((x,y), xyp_dict[panel], 15)
def test_xyz2xyp(): ''' xyz2xyp(): center of panel, at panel border ''' from cart_cs import xyz2xyp R = 1 a = R/sqrt(3) #------------------------------------------------ # center of panel #------------------------------------------------ xyp_dict = xyz2xyp(1, 0, 0) a_equal(xyp_dict, {1:(0.0,0)}) xyp_dict = xyz2xyp(0, 1, 0) a_equal(xyp_dict, {2:(0,0)}) xyp_dict = xyz2xyp(-1, 0, 0) a_equal(xyp_dict, {3:(0,0)}) xyp_dict = xyz2xyp(0, -1, 0) a_equal(xyp_dict, {4:(0,0)}) xyp_dict = xyz2xyp(0, 0, -1) a_equal(xyp_dict, {5:(0,0)}) xyp_dict = xyz2xyp(0, 0, 1) a_equal(xyp_dict, {6:(0,0)}) #------------------------------------------------ # at the panel border #------------------------------------------------ alpha = pi/4 at = a*tan(alpha) xyp_dict = xyz2xyp(R*cos(alpha), R*sin(alpha), 0) a_equal(xyp_dict.keys(), [1,2]) aa_equal(xyp_dict.values(), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(-R*sin(alpha), R*cos(alpha), 0) a_equal(xyp_dict.keys(), [2,3]) aa_equal(xyp_dict.values(), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(-R*cos(alpha), -R*sin(alpha), 0) a_equal(xyp_dict.keys(), [3,4]) aa_equal(xyp_dict.values(), [(at,0), (-at,0)], 15) xyp_dict = xyz2xyp(R*sin(alpha), -R*cos(alpha), 0) a_equal(xyp_dict.keys(), [1,4]) aa_equal(xyp_dict.values(), [(-at,0), (at,0)], 15) xyp_dict = xyz2xyp(0, R*sin(alpha), -R*cos(alpha)) a_equal(xyp_dict.keys(), [2,5]) aa_equal(xyp_dict.values(), [(0,-at), (at,0)], 15) xyp_dict = xyz2xyp(0, R*sin(alpha), R*cos(alpha)) a_equal(xyp_dict.keys(), [2,6]) aa_equal(xyp_dict.values(), [(0,at), (at,0)], 15)