예제 #1
0
# In[12]:

import mplleaflet
#geodetic = ccrs.Geodetic(globe=ccrs.Globe(datum='WGS84'))
#fig, ax = make_map(projection=geodetic)
fig, ax = make_map()

kw = dict(marker='.', linestyle='-', alpha=0.85, color='darkgray')
kw = dict(linestyle='-', color='red')
ax.triplot(triang, **kw)  # or lon, lat, triangules;
ax.set_extent([-87.5, -82.5, 29.4, 31])

# In[ ]:

from cartopy.io.img_tiles import MapQuestOpenAerial, MapQuestOSM, OSM
geodetic = ccrs.Geodetic(globe=ccrs.Globe(datum='WGS84'))

fig = plt.figure(figsize=(12, 8))
tiler = MapQuestOpenAerial()
ax = plt.axes(projection=tiler.crs)

bbox = [-71, -69.3, 42, 42.8]
#ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent(bbox)
ax.add_image(tiler, 8)

#ax.coastlines()
kw = dict(marker='.',
          linestyle='-',
          alpha=0.85,
          color='darkgray',
예제 #2
0
파일: test1.py 프로젝트: ruedadavid/pyeo
ax2 = plt.axes(rect, projection=ccrs.PlateCarree(), )
ax2.set_extent((110, 160, -45, -10))
#  ax2.set_global()  will show the whole world as context

ax2.coastlines(resolution='110m', zorder=2)
ax2.add_feature(cfeature.LAND)
ax2.add_feature(cfeature.OCEAN)

ax2.gridlines()

lon0, lon1, lat0, lat1 = ax.get_extent()
box_x = [lon0, lon1, lon1, lon0, lon0]
box_y = [lat0, lat0, lat1, lat1, lat0]

plt.plot(box_x, box_y, color='red', transform=ccrs.Geodetic())

# -------------------------------- Title -----------------------------
# set up map title top 4% of figure, right 80% of figure

left = 0.2
bottom = 0.95
width = 0.8
height = 0.04
rect = [left, bottom, width, height]
ax6 = plt.axes(rect)
ax6.text(0.5, 0.0, 'Multi-Axes Map Example', ha='center', fontsize=20)
blank_axes(ax6)

# ---------------------------------North Arrow  ----------------------------
#
예제 #3
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches

import cartopy.crs as ccrs
import cartopy.io.img_tiles as cimgt
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

from seisnn.io import read_hyp, read_event_list
from seisnn.utils import get_config

W, E, S, N = 119, 123, 21.5, 25.7
stamen_terrain = cimgt.Stamen('terrain-background')
fig = plt.figure(figsize=(8, 10))
ax = fig.add_subplot(1, 1, 1, projection=stamen_terrain.crs)
ax.set_extent([W, E, S, N], crs=ccrs.Geodetic())
ax.add_image(stamen_terrain, 11)

events = read_event_list('HL201718')
HL_eq = []
for event in events:
    HL_eq.append([event.origins[0].longitude, event.origins[0].latitude])
HL_eq = np.array(HL_eq).T
ax.scatter(HL_eq[0],
           HL_eq[1],
           label='Earthquake',
           transform=ccrs.Geodetic(),
           color='#333333',
           edgecolors='k',
           linewidth=0.3,
           marker='o',
예제 #4
0
#for tick in ax.xaxis.get_major_ticks():
#    tick.label.set_fontsize(SMFONT) 
# Label the end-points of the gridlines using the custom tick makers:
#ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) 
#ax.yaxis.set_major_formatter(LATITUDE_FORMATTER)
#mct_xticks(ax, xticks)
#mct_yticks(ax, yticks)


# Set the map bounds
ax.set_xlim(cartopy_xlim(lsmask))
ax.set_ylim(cartopy_ylim(lsmask))


ax.plot(df_hko_obv['lon']/10., df_hko_obv['lat']/10.,
        color='black', marker='o', linewidth=2, markersize=5, transform=ccrs.Geodetic(), label='HKO bestTrack')
ax.plot(df_cma_obv['lon']/10., df_cma_obv['lat']/10.,
        color='dimgray', marker='*', linewidth=2, linestyle='dashed', markersize=8, transform=ccrs.Geodetic(), label='CMA bestTrack')

dateparse = lambda x: datetime.datetime.strptime(x, '%Y%m%d%H%M%S')
for (line_type,casename) in zip(line_libs,cases):
    sen_path='/home/metctm1/array/data/1911-COAWST/'+casename+'/trck.'+casename+'.d02'
    df_sen=pd.read_csv(sen_path,parse_dates=True,index_col='timestamp', sep='\s+', date_parser=dateparse)
    df_sen_period=df_sen
    df_sen_period.replace(0, np.nan, inplace=True) # replace 0 by nan
    df_sen_period=df_sen_period.dropna()
    
    ax.plot(df_sen_period['lon'], df_sen_period['lat'],
        line_type, linewidth=1, markersize=3, transform=ccrs.Geodetic(), label=casename)

예제 #5
0
def plot_map(gf, snwe, vectorFile=None, zoom=8):
    """Plot dinosar inventory on a static map.

    Parameters
    ----------
    gf :  GeoDataFrame
        A geopandas GeoDataFrame
    snwe : list
        bounding coordinates [south, north, west, east].
    vectorFile: str
        path to region of interest polygon
    zoom: int
        zoom level for WMTS

    """
    pad = 1
    S, N, W, E = snwe
    plot_CRS = ccrs.PlateCarree()
    geodetic_CRS = ccrs.Geodetic()
    x0, y0 = plot_CRS.transform_point(W - pad, S - pad, geodetic_CRS)
    x1, y1 = plot_CRS.transform_point(E + pad, N + pad, geodetic_CRS)

    fig, ax = plt.subplots(figsize=(8, 8),
                           dpi=100,
                           subplot_kw=dict(projection=plot_CRS))

    ax.set_xlim((x0, x1))
    ax.set_ylim((y0, y1))
    url = 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png'
    tiler = GoogleTiles(url=url)
    # NOTE: going higher than zoom=8 is slow...
    ax.add_image(tiler, zoom)

    states_provinces = cfeature.NaturalEarthFeature(
        category='cultural',
        name='admin_1_states_provinces_lines',
        scale='110m',
        facecolor='none')
    ax.add_feature(states_provinces, edgecolor='k', linestyle=':')
    ax.coastlines(resolution='10m', color='black', linewidth=2)
    ax.add_feature(cfeature.BORDERS)

    # Add region of interest polygon in specified
    if vectorFile:
        tmp = gpd.read_file(vectorFile)
        ax.add_geometries(tmp.geometry.values,
                          ccrs.PlateCarree(),
                          facecolor='none',
                          edgecolor='m',
                          lw=2,
                          linestyle='dashed')

    orbits = gf.relativeOrbit.unique()
    colors = plt.cm.jet(np.linspace(0, 1, orbits.size))

    for orbit, color in zip(orbits, colors):
        df = gf.query('relativeOrbit == @orbit')
        poly = df.geometry.cascaded_union

        if df.flightDirection.iloc[0] == 'ASCENDING':
            linestyle = '--'
            xpos, ypos = poly.centroid.x, poly.bounds[3]
        else:
            linestyle = '-'
            xpos, ypos = poly.centroid.x, poly.bounds[1]

        ax.add_geometries([poly],
                          ccrs.PlateCarree(),
                          facecolor='none',
                          edgecolor=color,
                          lw=2,
                          linestyle=linestyle)
        ax.text(xpos,
                ypos,
                orbit,
                color=color,
                fontsize=16,
                fontweight='bold',
                transform=geodetic_CRS)

    gl = ax.gridlines(plot_CRS,
                      draw_labels=True,
                      linewidth=0.5,
                      color='gray',
                      alpha=0.5,
                      linestyle='-')
    gl.xlabels_top = False
    gl.ylabels_left = False
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER

    plt.title('Orbital Footprints')
    plt.savefig('map.pdf', bbox_inches='tight')
예제 #6
0

###############################################################################
# Create plot

# Create plot figure
fig = plt.figure(figsize=(8, 8))

# Add axes for lambert conformal map
# Set dimensions of axes with [X0, Y0, width, height] argument. Each value is a fraction of total figure size.
ax = plt.axes([.05, -.05, .9, 1],
              projection=ccrs.LambertConformal(),
              frameon=False)

# Set latitude and longitude extent of map
ax.set_extent([-119, -74, 18, 50], ccrs.Geodetic())

# Set shape name of map (which depicts the United States)
shapename = 'admin_1_states_provinces_lakes_shp'
states_shp = shpreader.natural_earth(resolution='110m',
                                     category='cultural',
                                     name=shapename)

# Set title and title fontsize of plot using gvutil function instead of matplotlib function call
gvutil.set_titles_and_labels(
    ax,
    maintitle=
    "Average Annual Precipiation \n Computed for the period 1899-1999 \n NCDC climate division data \n",
    maintitlefontsize=18)

# Add outlines of each state within the United States
예제 #7
0
def studyarea(path_plot):
    '''Create a plot of the study area used in the Smartmove paper

    Args
    ----
    path_plot: str
        Path and filename for plot to be saved. If 'None', no plot will be
        saved (Defualt: None)
    '''
    def plot_coords(ax, proj, lon, lat, marker='o', color='black'):
        '''Plot points at specified lon(s) and lat(s)'''
        import cartopy.crs as ccrs
        import numpy

        lon = numpy.asarray(lon)
        lat = numpy.asarray(lat)
        points = proj.transform_points(ccrs.Geodetic(), lon, lat)

        ax.scatter(points[:, 0], points[:, 1], marker='.', color=color)

        return ax

    import cartopy.crs as ccrs
    from io import BytesIO
    import matplotlib.pyplot as plt
    from matplotlib import rcParams
    import numpy
    import os
    from owslib.wms import WebMapService
    import PIL
    import seaborn

    from . import maps

    # Plotting configuration
    rcParams.update({'figure.autolayout': True})
    seaborn.set_context('paper')
    sns_config = {
        'axes.linewidth': 0.1,
        'xtick.color': 'black',
        'xtick.major.size': 4.0,
        'xtick.direction': 'out',
        'ytick.color': 'black',
        'ytick.major.size': 4.0,
        'ytick.direction': 'out'
    }
    seaborn.set_style('white', sns_config)

    # Bounding box
    lon0 = 18.565148  # BL
    lat0 = 69.618893  # BL
    lon1 = 19.071205  # TR
    lat1 = 69.768302  # TR

    layer = 'Vannflate'
    srs = 'EPSG:32634'

    # Create wms object for handling WMS calls
    url = 'http://openwms.statkart.no/skwms1/wms.topo3?'
    wms = WebMapService(url)

    # Project bounding box
    bbox = maps.project_bbox(srs, lon0, lat0, lon1, lat1)

    owslib_img = maps.get_wms_png(wms,
                                  bbox,
                                  layer,
                                  srs,
                                  width=1600,
                                  transparent=True)

    # Convert binary png data to PIL Image data

    color_land = (131, 196, 146, 255
                  )  #(230, 230, 230, 255) # Hex color #f2f2f2
    color_water = (237, 239, 242, 255)  # Hex color #cccccc

    # https://stackoverflow.com/a/43514640/943773

    img = PIL.Image.open(BytesIO(owslib_img.read()))
    land = PIL.Image.new('RGB', img.size, color_land)
    water = PIL.Image.new('RGBA', img.size, color_water)
    land.paste(water, mask=img.split()[3])

    proj = ccrs.epsg(srs.split(':')[1])

    # Create project axis and set extent to bounding box
    ax = plt.axes(projection=proj)
    extent = (bbox[0], bbox[2], bbox[1], bbox[3])
    ax.set_extent(extent, proj)

    # Plot projected image
    ax.imshow(land, origin='upper', extent=extent, transform=proj)

    # Project and plot Tromsø and study area positions
    wgs84 = ccrs.Geodetic()

    # Tromso
    plot_coords(ax, proj, 18.955364, 69.649197, marker='o', color='#262626')
    # Study area
    plot_coords(ax, proj, 18.65125, 69.69942, marker='^', color='#a35d61')
    # CTD
    plot_coords(ax, proj, 18.65362, 69.70214, marker='o', color='#42a4f4')

    # Create WGS84 axes labels with WGS84 axes positions
    ticks_lon, xlabels = maps.map_ticks(lon0, lon1, 4)
    ticks_lat, ylabels = maps.map_ticks(lat0, lat1, 4)

    # Create list of lons/lats at axis edge for projecting ticks_lon/lats
    lat_iter = numpy.array([lat0] * len(ticks_lon))

    # Project ticks_lon/lats and set to axis labels
    xpos = proj.transform_points(ccrs.Geodetic(), ticks_lon, lat_iter)[:, 0]
    ypos = proj.transform_points(ccrs.Geodetic(), ticks_lon, ticks_lat)[:, 1]

    ax.set_xticks(xpos)
    ax.set_xticklabels(xlabels, ha='right', rotation=45)
    ax.xaxis.tick_bottom()

    ax.set_yticks(ypos)
    ax.set_yticklabels(ylabels)
    ax.yaxis.tick_right()

    # Turn off grid for seaborn styling
    ax.grid(False)

    # Write image data if `path_plot` passed
    if path_plot:
        import pickle
        # Save png of WMS data
        filename_png = os.path.join(path_plot, '{}.png'.format(layer))
        with open(filename_png, 'wb') as f:
            f.write(owslib_img.read())
        # Convert png to GEOTIFF data
        maps.png2geotiff(filename_png, srs, bbox)
        # Save pickle of `PIL` image data
        file_pickle_img = os.path.join(path_plot, '{}_img.p'.format(layer))
        pickle.dump(img, open(file_pickle_img, 'wb'))
        # Save Cartopy plot
        file_plot = os.path.join(path_plot, 'study_area.eps')
        plt.savefig(file_plot, dpi=600)

    plt.show()

    return None
예제 #8
0
def add_inset(fig,extent,pos,bounds,label=None,polygon=None,anom=None,draw_cmap_y=None,hillshade=True,markup_sub=None,sub_pos=None,sub_adj=None):


    sub_ax = fig.add_axes(pos,
                          projection=ccrs.Robinson(), label=label)
    sub_ax.set_extent(extent, ccrs.Geodetic())

    sub_ax.add_feature(cfeature.NaturalEarthFeature('physical', 'ocean', '50m', facecolor='gainsboro'))
    sub_ax.add_feature(cfeature.NaturalEarthFeature('physical', 'land', '50m', facecolor='dimgrey'))
    # if anom is not None:
    #     shape_feature = ShapelyFeature(Reader(shp_buff).geometries(), ccrs.PlateCarree(), edgecolor='black', alpha=0.5,
    #                                    facecolor='black', linewidth=1)
    #     sub_ax.add_feature(shape_feature)

    if polygon is None and bounds is not None:
        polygon = poly_from_extent(bounds)

    if bounds is not None:
        verts = mpath.Path(latlon_extent_to_robinson_axes_verts(polygon))
        sub_ax.set_boundary(verts, transform=sub_ax.transAxes)

    if hillshade:
        def out_of_poly_mask(geoimg, poly_coords):

            poly = ot.poly_from_coords(inter_poly_coords(poly_coords))
            srs = osr.SpatialReference()
            srs.ImportFromEPSG(54030)

            # put in a memory vector
            ds_shp = ot.create_mem_shp(poly, srs)

            return ot.geoimg_mask_on_feat_shp_ds(ds_shp, geoimg)

        def inter_poly_coords(polygon_coords):
            list_lat_interp = []
            list_lon_interp = []
            for i in range(len(polygon_coords) - 1):
                lon_interp = np.linspace(polygon_coords[i][0], polygon_coords[i + 1][0], 50)
                lat_interp = np.linspace(polygon_coords[i][1], polygon_coords[i + 1][1], 50)

                list_lon_interp.append(lon_interp)
                list_lat_interp.append(lat_interp)

            all_lon_interp = np.concatenate(list_lon_interp)
            all_lat_interp = np.concatenate(list_lat_interp)

            return np.array(list(zip(all_lon_interp, all_lat_interp)))

        img = GeoImg(fn_hs)
        hs_tmp = hs_land.copy()
        hs_tmp_nl = hs_notland.copy()
        mask = out_of_poly_mask(img, polygon)

        hs_tmp[~mask] = 0
        hs_tmp_nl[~mask] = 0

        sub_ax.imshow(np.flip(hs_tmp[:, :], axis=0), extent=ext, transform=ccrs.Robinson(), cmap=cmap2, zorder=2)
        sub_ax.imshow(np.flip(hs_tmp_nl[:, :], axis=0), extent=ext, transform=ccrs.Robinson(), cmap=cmap22, zorder=2)

    sub_ax.outline_patch.set_edgecolor('white')

    if anom is not None:

        if anom == 'dh':

            col_bounds = np.array([-0.8, -0.4, 0, 0.2, 0.4])
            cb = []
            cb_val = np.linspace(0, 1, len(col_bounds))
            for j in range(len(cb_val)):
                cb.append(mpl.cm.RdYlBu(cb_val[j]))
            cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
                zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)

            vals = dhs

            lab = 'Decadal difference in mean elevation change rate (m yr$^{-1}$)'

        elif anom == 'dt':
            col_bounds = np.array([-0.3, -0.15, 0, 0.3, 0.6])
            cb = []
            cb_val = np.linspace(0, 1, len(col_bounds))
            for j in range(len(cb_val)):
                cb.append(mpl.cm.RdBu_r(cb_val[j]))
            cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
                zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)

            vals = dts
            lab = 'Decadal difference in temperature (K)'

        elif anom == 'dp':
            col_bounds = np.array([-0.2, -0.1, 0, 0.1, 0.2])
            cb = []
            cb_val = np.linspace(0, 1, len(col_bounds))
            for j in range(len(cb_val)):
                cb.append(mpl.cm.BrBG(cb_val[j]))
            cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
                zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)

            vals = dps
            lab = 'Decadal difference in precipitation (m)'

        # elif anom == 'du':
        #     col_bounds = np.array([-1, -0.5, 0, 0.5, 1])
        #     cb = []
        #     cb_val = np.linspace(0, 1, len(col_bounds))
        #     for j in range(len(cb_val)):
        #         cb.append(mpl.cm.RdBu_r(cb_val[j]))
        #     cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
        #         zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)
        #
        #     vals = dus
        #     lab = 'Wind speed anomaly (m s$^{-1}$)'
        #
        # elif anom == 'dz':
        #
        #     col_bounds = np.array([-100, -50, 0, 50, 100])
        #     cb = []
        #     cb_val = np.linspace(0, 1, len(col_bounds))
        #     for j in range(len(cb_val)):
        #         cb.append(mpl.cm.RdBu_r(cb_val[j]))
        #     cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
        #         zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)
        #
        #     vals = dzs
        #     lab = 'Geopotential height anomaly at 500 hPa (m)'
        #
        # elif anom =='dk':
        #
        #     col_bounds = np.array([-200000, -100000, 0, 100000, 200000])
        #     cb = []
        #     cb_val = np.linspace(0, 1, len(col_bounds))
        #     for j in range(len(cb_val)):
        #         cb.append(mpl.cm.RdBu_r(cb_val[j]))
        #     cmap_cus = mpl.colors.LinearSegmentedColormap.from_list('my_cb', list(
        #         zip((col_bounds - min(col_bounds)) / (max(col_bounds - min(col_bounds))), cb)), N=1000)
        #
        #     vals = dks
        #     lab = 'Net clear-sky downwelling SW surface radiation anomaly (J m$^{-2}$)'

        if draw_cmap_y is not None:

            sub_ax_2 = fig.add_axes([0.2, draw_cmap_y, 0.6, 0.05])
            sub_ax_2.set_xticks([])
            sub_ax_2.set_yticks([])
            sub_ax_2.spines['top'].set_visible(False)
            sub_ax_2.spines['left'].set_visible(False)
            sub_ax_2.spines['right'].set_visible(False)
            sub_ax_2.spines['bottom'].set_visible(False)

            cbaxes = sub_ax_2.inset_axes([0,0.85,1,0.2],label='legend_'+label)
            norm = mpl.colors.Normalize(vmin=min(col_bounds), vmax=max(col_bounds))
            sm = plt.cm.ScalarMappable(cmap=cmap_cus, norm=norm)
            sm.set_array([])
            cb = plt.colorbar(sm, cax=cbaxes, ticks=col_bounds, orientation='horizontal', extend='both', shrink=0.9)
            # cb.ax.tick_params(labelsize=12)
            cb.set_label(lab)

        for i in range(len(tiles)):
            lat, lon = SRTMGL1_naming_to_latlon(tiles[i])
            if group_by_spec:
                lat, lon, s = latlon_to_spec_center(lat, lon)
            else:
                lat = lat + 0.5
                lon = lon + 0.5
                s = (1,1)
            # fac = 0.02
            fac = 7000000.
            rad = 10000. + np.nanmax((0.,0.2-errs[i]))**3*fac

            div=(1+max(0,errs[i]-0.2)*10)**2

            if ~np.isnan(vals[i]) and areas[i] > 0.2:
                val = vals[i]
                val_col = max(0.0001, min(0.9999, (val - min(col_bounds)) / (max(col_bounds) - min(col_bounds))))
                col = cmap_cus(val_col)
            elif areas[i] <= 5:
                continue
            else:
                col = plt.cm.Greys(0.7)

            # xy = [lon,lat]
            xy = coordXform(ccrs.PlateCarree(), ccrs.Robinson(), np.array([lon]), np.array([lat]))[0][0:2]

            rw = rad
            rh = rad
            x,y=xy
            # sub_ax.add_patch(
            #     mpatches.Circle(xy=xy, radius=rad, color=col, alpha=1, transform=ccrs.Robinson(), zorder=30))
            xl = 0.1*s[0] + 0.9*s[0]/div
            yl =0.1*s[1] + 0.9*s[1]/div
            sub_ax.add_patch(mpatches.Rectangle((lon-xl/2,lat-yl/2),xl,yl,facecolor=col,alpha=1,transform=ccrs.PlateCarree(),zorder=30))

    if markup_sub is not None and anom == 'dh':

        lon_min = np.min(list(zip(*polygon))[0])
        lon_max = np.max(list(zip(*polygon))[0])
        lon_mid = 0.5*(lon_min+lon_max)

        lat_min = np.min(list(zip(*polygon))[1])
        lat_max = np.max(list(zip(*polygon))[1])
        lat_mid = 0.5*(lat_min+lat_max)

        robin = np.array(list(zip([lon_min,lon_min,lon_min,lon_mid,lon_mid,lon_max,lon_max,lon_max],[lat_min,lat_mid,lat_max,lat_min,lat_max,lat_min,lat_mid,lat_max])))

        if sub_pos=='lb':
            rob_x = robin[0][0]
            rob_y = robin[0][1]
            ha='left'
            va='bottom'
        elif sub_pos=='lm':
            rob_x = robin[1][0]
            rob_y = robin[1][1]
            ha='left'
            va='center'
        elif sub_pos=='lt':
            rob_x = robin[2][0]
            rob_y = robin[2][1]
            ha='left'
            va='top'
        elif sub_pos=='mb':
            rob_x = robin[3][0]
            rob_y = robin[3][1]
            ha='center'
            va='bottom'
        elif sub_pos=='mt':
            rob_x = robin[4][0]
            rob_y = robin[4][1]
            ha='center'
            va='top'
        elif sub_pos=='rb':
            rob_x = robin[5][0]
            rob_y = robin[5][1]
            ha='right'
            va='bottom'
        elif sub_pos=='rm':
            rob_x = robin[6][0]
            rob_y = robin[6][1]
            ha='right'
            va='center'
        elif sub_pos=='rt':
            rob_x = robin[7][0]
            rob_y = robin[7][1]
            ha='right'
            va='top'

        if sub_pos[0] == 'r':
            rob_x = rob_x - 100000
        elif sub_pos[0] == 'l':
            rob_x = rob_x + 100000

        if sub_pos[1] == 'b':
            rob_y = rob_y + 100000
        elif sub_pos[1] == 't':
            rob_y = rob_y - 100000

        if sub_adj is not None:
            rob_x += sub_adj[0]
            rob_y += sub_adj[1]

        sub_ax.text(rob_x,rob_y,markup_sub,
                 horizontalalignment=ha, verticalalignment=va,
                 transform=ccrs.Robinson(), color='black',fontsize=10,bbox=dict(facecolor='white', alpha=1),fontweight='bold',zorder=25)
예제 #9
0
],
                                     dtype=int),
                             coords=[
                                 ds_force_yearly[start_year]['lat'],
                                 ds_force_yearly[start_year]['lon']
                             ],
                             dims=['lat', 'lon'])
# --- Plot VIC and GPM domain to check --- #
fig = plt.figure(figsize=(16, 8))
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([
    float(da_gpm_domain['lon'].min().values) - 0.5,
    float(da_gpm_domain['lon'].max().values) + 0.5,
    float(da_gpm_domain['lat'].min().values) - 0.5,
    float(da_gpm_domain['lat'].max().values) + 0.5
], ccrs.Geodetic())
gl = add_gridlines(ax,
                   xlocs=np.arange(
                       float(da_gpm_domain['lon'].min().values) - 0.5,
                       float(da_gpm_domain['lon'].max().values) + 0.5, 1),
                   ylocs=np.arange(
                       float(da_gpm_domain['lat'].min().values) - 0.5,
                       float(da_gpm_domain['lat'].max().values) + 0.5, 1),
                   alpha=0)
# Plot GPM grids
lon_edges = edges_from_centers(da_gpm_domain['lon'].values)
lat_edges = edges_from_centers(da_gpm_domain['lat'].values)
lonlon, latlat = np.meshgrid(lon_edges, lat_edges)
cs = plt.pcolormesh(lonlon,
                    latlat,
                    da_gpm_domain.values,
예제 #10
0
        inds.append(i)
    else:
        daily_mean_speed.append(np.mean(data.speed_2d[inds]))
        next_day += 1
        inds = []

plt.figure(figsize=(8, 6))
plt.plot(daily_mean_speed)
plt.xlabel("Day")
plt.ylabel("Mean Speed (m/s)")

import cartopy.crs as ccrs
import cartopy.feature as cfeature

proj = ccrs.Mercator()
plt.figure(figsize=(10, 10))
ax = plt.axes(projection=proj)
ax.set_extent((-25.0, 20.0, 52.0, 10.0))
ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.OCEAN)
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=':')
for name in bird_names:
    ix = birddata["bird_name"] == name
    x, y = birddata.longitude[ix], birddata.latitude[ix]
    ax.plot(x, y, ".", transform=ccrs.Geodetic(), label=name)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend(loc="upper left")
plt.savefig("map.pdf")
예제 #11
0
               norm=wv_norm)

# Add the text, complete with outline
text = ax.text(0.99,
               0.01,
               timestamp.strftime('%d %B %Y %H%MZ'),
               horizontalalignment='right',
               transform=ax.transAxes,
               color='white',
               fontsize='x-large',
               weight='bold')
text.set_path_effects(
    [patheffects.withStroke(linewidth=2, foreground='black')])

# PLOT 300-hPa Geopotential Heights and Wind Barbs
ax.set_extent([-132, -95, 25, 47], ccrs.Geodetic())
cs = ax.contour(lon, lat, Z_300, colors='black', transform=ccrs.PlateCarree())
ax.clabel(cs,
          fontsize=12,
          colors='k',
          inline=1,
          inline_spacing=8,
          fmt='%i',
          rightside_up=True,
          use_clabeltext=True)

ax.barbs(lon,
         lat,
         U_300.to('knots').m,
         V_300.to('knots').m,
         color='tab:red',
예제 #12
0
2 35946  98.4729 183.8200 0001770 165.0632 195.0663 14.37587360447041'''

s = '''ISS (ZARYA)             
1 25544U 98067A   18107.44763100  .00001858  00000-0  35119-4 0  9997
2 25544  51.6430 321.5086 0002048   0.7561  69.2289 15.54271367109073'''

xtle = TwoLineElement(s)
msat = Satellite.Satellite(xtle)
#t = Tracker(msat)
#t.plot_position()
#t.plot_position(datetime.strptime('May 22 2018  12:20AM', '%b %d %Y %I:%M%p'))
#t.show_footprint()

plt.figure(figsize=(15, 25))
plt.axes(projection=ccrs.PlateCarree()).stock_img()
fig = plt.gcf()
fig.show()
fig.canvas.draw()
flag = True
color = ['r', 'g', 'b', 'y', 'm']
i = 0
t = datetime.utcnow()
while flag:
    pos = msat.get_position(t)
    plt.plot(pos[1], pos[0], 'ro', transform=ccrs.Geodetic())
    t += timedelta(minutes=1)
    plt.pause(1)
    i = (i + 1) % len(color)
    break
plt.show()
# fig = plt.figure(figsize = (20, 20))
# ax = fig.add_subplot(1, 1, 1, projection=ccrs.Orthographic(ortho_trans[0], ortho_trans[1])) #(long, lat)
ax.add_feature(cfeature.OCEAN, zorder=0)
ax.add_feature(cfeature.LAND, zorder=0, edgecolor='grey')
ax.add_feature(cfeature.BORDERS, zorder=0, edgecolor='grey')
ax.add_feature(cfeature.LAKES, zorder=0)
ax.set_global()
ax.gridlines()

num_sta = len(list_of_stations)
longs = np.zeros(num_sta)
lats = np.zeros(num_sta)
for i in range(num_sta):
    longs[i] = station_coords.longitude.loc[dict(station = list_of_stations[i])]
    lats[i] = station_coords.latitude.loc[dict(station = list_of_stations[i])]
ax.scatter(longs, lats, transform = ccrs.Geodetic())

line, = ax.quiver(np.array([]), np.array([]), np.array([]), np.array([]), transform = ccrs.PlateCarree(), width = 0.002, color = "g")



def init():
    # plswork = yz.plot_stations(list_of_stations, ortho_trans)



    station_coords = csv_to_coords("First Pass/20190420-12-15-supermag-stations.csv")
    # fig = plt.figure(figsize = (20, 20))
    # ax = fig.add_subplot(1, 1, 1, projection=ccrs.Orthographic(ortho_trans[0], ortho_trans[1])) #(long, lat)
    ax.add_feature(cfeature.OCEAN, zorder=0)
    ax.add_feature(cfeature.LAND, zorder=0, edgecolor='grey')
예제 #14
0
def main():
    fig = plt.figure()
    ax = fig.add_axes([0, 0, 1, 1], projection=ccrs.LambertConformal())

    ax.set_extent([-125, -66.5, 20, 50], ccrs.Geodetic())

    shapename = 'admin_1_states_provinces_lakes_shp'
    states_shp = shpreader.natural_earth(resolution='110m',
                                         category='cultural',
                                         name=shapename)

    lons, lats = sample_data()

    # to get the effect of having just the states without a map "background"
    # turn off the outline and background patches
    ax.background_patch.set_visible(False)
    ax.outline_patch.set_visible(False)

    ax.set_title('US States which intersect the track of '
                 'Hurricane Katrina (2005)')

    # turn the lons and lats into a shapely LineString
    track = sgeom.LineString(zip(lons, lats))

    # buffer the linestring by two degrees (note: this is a non-physical
    # distance)
    track_buffer = track.buffer(2)

    for state in shpreader.Reader(states_shp).geometries():
        # pick a default color for the land with a black outline,
        # this will change if the storm intersects with our track
        facecolor = [0.9375, 0.9375, 0.859375]
        edgecolor = 'black'

        if state.intersects(track):
            facecolor = 'red'
        elif state.intersects(track_buffer):
            facecolor = '#FF7E00'

        ax.add_geometries([state],
                          ccrs.PlateCarree(),
                          facecolor=facecolor,
                          edgecolor=edgecolor)

    ax.add_geometries([track_buffer],
                      ccrs.PlateCarree(),
                      facecolor='#C8A2C8',
                      alpha=0.5)
    ax.add_geometries([track],
                      ccrs.PlateCarree(),
                      facecolor='none',
                      edgecolor='k')

    # make two proxy artists to add to a legend
    direct_hit = mpatches.Rectangle((0, 0), 1, 1, facecolor="red")
    within_2_deg = mpatches.Rectangle((0, 0), 1, 1, facecolor="#FF7E00")
    labels = [
        'State directly intersects\nwith track',
        'State is within \n2 degrees of track'
    ]
    ax.legend([direct_hit, within_2_deg],
              labels,
              loc='lower left',
              bbox_to_anchor=(0.025, -0.1),
              fancybox=True)

    plt.show()
예제 #15
0
ax.add_feature(feat.LAKES, zorder=-1)
ax.coastlines(resolution='110m', zorder=2, color='black')
ax.add_feature(state_boundaries, edgecolor='black')
ax.add_feature(feat.BORDERS, linewidth=2, edgecolor='black')

# Set plot bounds
ax.set_extent((-109.9, -101.8, 36.5, 41.3))

# Plot each station, labeling based on departure
for stn in range(len(pcpn)):
    if pcpn_dep[stn] >= 0 and pcpn_dep[stn] < 2:
        ax.plot(lon[stn],
                lat[stn],
                'g+',
                markersize=7,
                transform=ccrs.Geodetic())
        ax.text(lon[stn], lat[stn], pcpn[stn], transform=ccrs.Geodetic())
    elif pcpn_dep[stn] >= 2:
        ax.plot(lon[stn],
                lat[stn],
                'm+',
                markersize=7,
                transform=ccrs.Geodetic())
        ax.text(lon[stn], lat[stn], pcpn[stn], transform=ccrs.Geodetic())
    elif pcpn_dep[stn] < 0:
        ax.plot(lon[stn],
                lat[stn],
                'r+',
                markersize=7,
                transform=ccrs.Geodetic())
        ax.text(lon[stn], lat[stn], pcpn[stn], transform=ccrs.Geodetic())
예제 #16
0
with gzip.open("srtm_1240-1300E_4740-4750N.asc.gz") as fp:
    srtm = np.loadtxt(fp, skiprows=8)

# origin of data grid as stated in SRTM data file header
# create arrays with all lon/lat values from min to max and
lats = np.linspace(47.8333, 47.6666, srtm.shape[0])
lons = np.linspace(12.6666, 13.0000, srtm.shape[1])

# Prepare figure and Axis object with a proper projection and extent
projection = ccrs.PlateCarree()
fig = plt.figure(dpi=150)
ax = fig.add_subplot(111, projection=projection)
ax.set_extent((12.75, 12.95, 47.69, 47.81))

# create grids and compute map projection coordinates for lon/lat grid
grid = projection.transform_points(ccrs.Geodetic(),
                                   *np.meshgrid(lons, lats),  # unpacked x, y
                                   srtm)  # z from topo data

# Make contour plot
ax.contour(*grid.T, transform=projection, levels=30)

# Draw country borders with red
ax.add_feature(cfeature.BORDERS.with_scale('50m'), edgecolor='red')

# Draw a lon/lat grid and format the labels
gl = ax.gridlines(crs=projection, draw_labels=True)

gl.xlocator = mticker.FixedLocator([12.75, 12.8, 12.85, 12.9, 12.95])
gl.ylocator = mticker.FixedLocator([47.7, 47.75, 47.8])
gl.xformatter = LongitudeFormatter()
예제 #17
0
                latitude.append(float(row1[6]))
                IATA.append(row1[4])

#################
# map making part
#################

plt.figure(figsize=(15, 10))
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_title("Flights From Tallinn")

# add coastline, land and borders to the map
ax.add_feature(cfeat.COASTLINE)
ax.add_feature(cfeat.OCEAN)
ax.add_feature(cfeat.LAND)
ax.add_feature(cfeat.BORDERS)

# add airports to map with IATA
for i in range(len(IATA)):
    x = [src[1], longitude[i]]
    y = [src[2], latitude[i]]
    ax.plot(x, y, marker="o", transform=ccrs.Geodetic(), color="blue")
    ax.text(longitude[i] + 0.2, latitude[i] + 0.2, IATA[i], weight="bold")

# add IATA to tallinn airport
ax.text(src[1], src[2], src[0], weight="bold")

# save figure
plt.savefig("FFT_map.png", dpi=300)
plt.show()
예제 #18
0
    def _compute_extra_keys(self):
        """Compute our extra keys."""
        global unknown_string

        self.extra_keys = {}

        # work out stuff based on these values from the message
        edition = self.edition

        # time-processed forcast time is from reference time to start of period
        if edition == 2:
            forecastTime = self.forecastTime

            uft = np.uint32(forecastTime)
            BILL = 2**30

            # Workaround grib api's assumption that forecast time is positive.
            # Handles correctly encoded -ve forecast times up to one -1 billion.
            if hindcast_workaround:
                if 2 * BILL < uft < 3 * BILL:
                    msg = "Re-interpreting negative forecastTime from " \
                            + str(forecastTime)
                    forecastTime = -(uft - 2 * BILL)
                    msg += " to " + str(forecastTime)
                    warnings.warn(msg)

        else:
            forecastTime = self.startStep

        #regular or rotated grid?
        try:
            longitudeOfSouthernPoleInDegrees = self.longitudeOfSouthernPoleInDegrees
            latitudeOfSouthernPoleInDegrees = self.latitudeOfSouthernPoleInDegrees
        except AttributeError:
            longitudeOfSouthernPoleInDegrees = 0.0
            latitudeOfSouthernPoleInDegrees = 90.0

        centre = gribapi.grib_get_string(self.grib_message, "centre")

        #default values
        self.extra_keys = {
            '_referenceDateTime': -1.0,
            '_phenomenonDateTime': -1.0,
            '_periodStartDateTime': -1.0,
            '_periodEndDateTime': -1.0,
            '_levelTypeName': unknown_string,
            '_levelTypeUnits': unknown_string,
            '_firstLevelTypeName': unknown_string,
            '_firstLevelTypeUnits': unknown_string,
            '_firstLevel': -1.0,
            '_secondLevelTypeName': unknown_string,
            '_secondLevel': -1.0,
            '_originatingCentre': unknown_string,
            '_forecastTime': None,
            '_forecastTimeUnit': unknown_string,
            '_coord_system': None,
            '_x_circular': False,
            '_x_coord_name': unknown_string,
            '_y_coord_name': unknown_string,
            # These are here to avoid repetition in the rules files,
            # and reduce the very long line lengths.
            '_x_points': None,
            '_y_points': None,
            '_cf_data': None
        }

        # cf phenomenon translation
        if edition == 1:
            # Get centre code (N.B. self.centre has default type = string)
            centre_number = gribapi.grib_get_long(self.grib_message, "centre")
            # Look for a known grib1-to-cf translation (or None).
            cf_data = gptx.grib1_phenom_to_cf_info(
                table2_version=self.table2Version,
                centre_number=centre_number,
                param_number=self.indicatorOfParameter)
            self.extra_keys['_cf_data'] = cf_data
        elif edition == 2:
            # Don't attempt to interpret params if 'master tables version' is
            # 255, as local params may then have same codes as standard ones.
            if self.tablesVersion != 255:
                # Look for a known grib2-to-cf translation (or None).
                cf_data = gptx.grib2_phenom_to_cf_info(
                    param_discipline=self.discipline,
                    param_category=self.parameterCategory,
                    param_number=self.parameterNumber)
                self.extra_keys['_cf_data'] = cf_data

        #reference date
        self.extra_keys['_referenceDateTime'] = \
            datetime.datetime(int(self.year), int(self.month), int(self.day),
                              int(self.hour), int(self.minute))

        # forecast time with workarounds
        self.extra_keys['_forecastTime'] = forecastTime

        #verification date
        processingDone = self._get_processing_done()
        #time processed?
        if processingDone.startswith("time"):
            if self.edition == 1:
                validityDate = str(self.validityDate)
                validityTime = "{:04}".format(int(self.validityTime))
                endYear = int(validityDate[:4])
                endMonth = int(validityDate[4:6])
                endDay = int(validityDate[6:8])
                endHour = int(validityTime[:2])
                endMinute = int(validityTime[2:4])
            elif self.edition == 2:
                endYear = self.yearOfEndOfOverallTimeInterval
                endMonth = self.monthOfEndOfOverallTimeInterval
                endDay = self.dayOfEndOfOverallTimeInterval
                endHour = self.hourOfEndOfOverallTimeInterval
                endMinute = self.minuteOfEndOfOverallTimeInterval

            # fixed forecastTime in hours
            self.extra_keys['_periodStartDateTime'] = \
                (self.extra_keys['_referenceDateTime'] +
                 datetime.timedelta(hours=int(forecastTime)))
            self.extra_keys['_periodEndDateTime'] = \
                datetime.datetime(endYear, endMonth, endDay, endHour, endMinute)
        else:
            self.extra_keys[
                '_phenomenonDateTime'] = self._get_verification_date()

        #originating centre
        #TODO #574 Expand to include sub-centre
        self.extra_keys['_originatingCentre'] = CENTRE_TITLES.get(
            centre, "unknown centre %s" % centre)

        #forecast time unit as a cm string
        #TODO #575 Do we want PP or GRIB style forecast delta?
        self.extra_keys['_forecastTimeUnit'] = self._timeunit_string()

        #shape of the earth

        #pre-defined sphere
        if self.shapeOfTheEarth == 0:
            geoid = coord_systems.GeogCS(semi_major_axis=6367470)

        #custom sphere
        elif self.shapeOfTheEarth == 1:
            geoid = coord_systems.GeogCS(
                self.scaledValueOfRadiusOfSphericalEarth *
                10**-self.scaleFactorOfRadiusOfSphericalEarth)

        #IAU65 oblate sphere
        elif self.shapeOfTheEarth == 2:
            geoid = coord_systems.GeogCS(6378160, inverse_flattening=297.0)

        #custom oblate spheroid (km)
        elif self.shapeOfTheEarth == 3:
            geoid = coord_systems.GeogCS(
                semi_major_axis=self.scaledValueOfEarthMajorAxis *
                10**-self.scaleFactorOfEarthMajorAxis * 1000.,
                semi_minor_axis=self.scaledValueOfEarthMinorAxis *
                10**-self.scaleFactorOfEarthMinorAxis * 1000.)

        #IAG-GRS80 oblate spheroid
        elif self.shapeOfTheEarth == 4:
            geoid = coord_systems.GeogCS(6378137, None, 298.257222101)

        #WGS84
        elif self.shapeOfTheEarth == 5:
            geoid = \
                coord_systems.GeogCS(6378137, inverse_flattening=298.257223563)

        #pre-defined sphere
        elif self.shapeOfTheEarth == 6:
            geoid = coord_systems.GeogCS(6371229)

        #custom oblate spheroid (m)
        elif self.shapeOfTheEarth == 7:
            geoid = coord_systems.GeogCS(
                semi_major_axis=self.scaledValueOfEarthMajorAxis *
                10**-self.scaleFactorOfEarthMajorAxis,
                semi_minor_axis=self.scaledValueOfEarthMinorAxis *
                10**-self.scaleFactorOfEarthMinorAxis)

        elif self.shapeOfTheEarth == 8:
            raise ValueError("unhandled shape of earth : grib earth shape = 8")

        else:
            raise ValueError("undefined shape of earth")

        gridType = gribapi.grib_get_string(self.grib_message, "gridType")

        if gridType in [
                "regular_ll", "regular_gg", "reduced_ll", "reduced_gg"
        ]:
            self.extra_keys['_x_coord_name'] = "longitude"
            self.extra_keys['_y_coord_name'] = "latitude"
            self.extra_keys['_coord_system'] = geoid
        elif gridType == 'rotated_ll':
            # TODO: Confirm the translation from angleOfRotation to
            # north_pole_lon (usually 0 for both)
            self.extra_keys['_x_coord_name'] = "grid_longitude"
            self.extra_keys['_y_coord_name'] = "grid_latitude"
            southPoleLon = longitudeOfSouthernPoleInDegrees
            southPoleLat = latitudeOfSouthernPoleInDegrees
            self.extra_keys['_coord_system'] = \
                iris.coord_systems.RotatedGeogCS(
                                        -southPoleLat,
                                        math.fmod(southPoleLon + 180.0, 360.0),
                                        self.angleOfRotation, geoid)
        elif gridType == 'polar_stereographic':
            self.extra_keys['_x_coord_name'] = "projection_x_coordinate"
            self.extra_keys['_y_coord_name'] = "projection_y_coordinate"

            if self.projectionCentreFlag == 0:
                pole_lat = 90
            elif self.projectionCentreFlag == 1:
                pole_lat = -90
            else:
                raise TranslationError("Unhandled projectionCentreFlag")

            # Note: I think the grib api defaults LaDInDegrees to 60 for grib1.
            self.extra_keys['_coord_system'] = \
                iris.coord_systems.Stereographic(
                    pole_lat, self.orientationOfTheGridInDegrees, 0, 0,
                    self.LaDInDegrees, ellipsoid=geoid)

        elif gridType == 'lambert':
            self.extra_keys['_x_coord_name'] = "projection_x_coordinate"
            self.extra_keys['_y_coord_name'] = "projection_y_coordinate"

            if self.edition == 1:
                flag_name = "projectionCenterFlag"
            else:
                flag_name = "projectionCentreFlag"

            if getattr(self, flag_name) == 0:
                pole_lat = 90
            elif getattr(self, flag_name) == 1:
                pole_lat = -90
            else:
                raise TranslationError("Unhandled projectionCentreFlag")

            LambertConformal = iris.coord_systems.LambertConformal
            self.extra_keys['_coord_system'] = LambertConformal(
                self.LaDInDegrees,
                self.LoVInDegrees,
                0,
                0,
                secant_latitudes=(self.Latin1InDegrees, self.Latin2InDegrees),
                ellipsoid=geoid)
        else:
            raise TranslationError("unhandled grid type: {}".format(gridType))

        if gridType in ["regular_ll", "rotated_ll"]:
            self._regular_longitude_common()
            j_step = self.jDirectionIncrementInDegrees
            if not self.jScansPositively:
                j_step = -j_step
            self._y_points = (np.arange(self.Nj, dtype=np.float64) * j_step +
                              self.latitudeOfFirstGridPointInDegrees)

        elif gridType in ['regular_gg']:
            # longitude coordinate is straight-forward
            self._regular_longitude_common()
            # get the distinct latitudes, and make sure they are sorted
            # (south-to-north) and then put them in the right direction
            # depending on the scan direction
            latitude_points = gribapi.grib_get_double_array(
                self.grib_message, 'distinctLatitudes').astype(np.float64)
            latitude_points.sort()
            if not self.jScansPositively:
                # we require latitudes north-to-south
                self._y_points = latitude_points[::-1]
            else:
                self._y_points = latitude_points

        elif gridType in ["polar_stereographic", "lambert"]:
            # convert the starting latlon into meters
            cartopy_crs = self.extra_keys['_coord_system'].as_cartopy_crs()
            x1, y1 = cartopy_crs.transform_point(
                self.longitudeOfFirstGridPointInDegrees,
                self.latitudeOfFirstGridPointInDegrees, ccrs.Geodetic())

            if not np.all(np.isfinite([x1, y1])):
                raise TranslationError("Could not determine the first latitude"
                                       " and/or longitude grid point.")

            self._x_points = x1 + self.DxInMetres * np.arange(self.Nx,
                                                              dtype=np.float64)
            self._y_points = y1 + self.DyInMetres * np.arange(self.Ny,
                                                              dtype=np.float64)

        elif gridType in ["reduced_ll", "reduced_gg"]:
            self._x_points = self.longitudes
            self._y_points = self.latitudes

        else:
            raise TranslationError("unhandled grid type")
예제 #19
0
def PlateCarree_to_Orthographic(img,
                                llbd,
                                craters,
                                iglobe=None,
                                ctr_sub=False,
                                arad=1737.4,
                                origin="upper",
                                rgcoeff=1.2,
                                slivercut=0.):
    """Transform Plate Carree image and associated csv file into Orthographic.

    Parameters
    ----------
    img : PIL.Image.image or str
        File or filename.
    llbd : list-like
        Long/lat limits (long_min, long_max, lat_min, lat_max) of image.
    craters : pandas.DataFrame
        Craters catalogue.
    iglobe : cartopy.crs.Geodetic instance
        Globe for images.  If False, defaults to spherical Moon.
    ctr_sub : bool, optional
        If `True`, assumes craters dataframe includes only craters within
        image. If `False` (default_, llbd used to cut craters from outside
        image out of (copy of) dataframe.
    arad : float
        World radius in km.  Default is Moon (1737.4 km).
    origin : "lower" or "upper", optional
        Based on imshow convention for displaying image y-axis.  "upper"
        (default) means that [0,0] is upper-left corner of image; "lower" means
        it is bottom-left.
    rgcoeff : float, optional
        Fractional size increase of transformed image height.  By default set
        to 1.2 to prevent loss of fidelity during transform (though warping can
        be so extreme that this might be meaningless).
    slivercut : float from 0 to 1, optional
        If transformed image aspect ratio is too narrow (and would lead to a
        lot of padding, return null images).

    Returns
    -------
    imgo : PIL.Image.image
        Transformed, padded image in PIL.Image format.
    ctr_xy : pandas.DataFrame
        Craters with transformed x, y pixel positions and pixel radii.
    distortion_coefficient : float
        Ratio between the central heights of the transformed image and original
        image.
    centrallonglat_xy : pandas.DataFrame
        xy position of the central longitude and latitude.
    """

    # If user doesn't provide Moon globe properties.
    #pdb.set_trace()
    if not iglobe:
        iglobe = ccrs.Globe(semimajor_axis=arad * 1000.,
                            semiminor_axis=arad * 1000.,
                            ellipse=None)

    # Set up Geodetic (long/lat), Plate Carree (usually long/lat, but not when
    # globe != WGS84) and Orthographic projections.
    geoproj = ccrs.Geodetic(globe=iglobe)
    iproj = ccrs.PlateCarree(globe=iglobe)
    oproj = ccrs.Orthographic(central_longitude=np.mean(llbd[:2]),
                              central_latitude=np.mean(llbd[2:]),
                              globe=iglobe)

    # Create and transform coordinates of image corners and edge midpoints.
    # Due to Plate Carree and Orthographic's symmetries, max/min x/y values of
    # these 9 points represent extrema of the transformed image.
    xll = np.array([llbd[0], np.mean(llbd[:2]), llbd[1]])
    yll = np.array([llbd[2], np.mean(llbd[2:]), llbd[3]])
    xll, yll = np.meshgrid(xll, yll)
    xll = xll.ravel()
    yll = yll.ravel()

    # [:,:2] because we don't need elevation data.
    res = iproj.transform_points(x=xll, y=yll, src_crs=geoproj)[:, :2]
    iextent = [min(res[:, 0]), max(res[:, 0]), min(res[:, 1]), max(res[:, 1])]

    res = oproj.transform_points(x=xll, y=yll, src_crs=geoproj)[:, :2]
    oextent = [min(res[:, 0]), max(res[:, 0]), min(res[:, 1]), max(res[:, 1])]

    # Sanity check for narrow images; done before the most expensive part of
    # the function.
    oaspect = (oextent[1] - oextent[0]) / (oextent[3] - oextent[2])
    # if oaspect < slivercut:
    #     return [None, None]

    if type(img) != Image.Image:
        Image.MAX_IMAGE_PIXELS = None
        img = Image.open(img).convert("L")

    # Warp image.
    imgo, imgwshp, offset = WarpImagePad(img,
                                         iproj,
                                         iextent,
                                         oproj,
                                         oextent,
                                         origin=origin,
                                         rgcoeff=rgcoeff,
                                         fillbg="black")

    # Convert crater x, y position.
    if ctr_sub:
        llbd_in = None
    else:
        llbd_in = llbd
    ctr_xy = WarpCraterLoc(craters,
                           geoproj,
                           oproj,
                           oextent,
                           imgwshp,
                           llbd=llbd_in,
                           origin=origin)
    # Shift crater x, y positions by offset (origin doesn't matter for y-shift,
    # since padding is symmetric).
    ctr_xy.loc[:, "x"] += offset[0]
    ctr_xy.loc[:, "y"] += offset[1]

    # Pixel scale for orthographic determined (for images small enough that
    # tan(x) approximately equals x + 1/3x^3 + ...) by l = R_moon*theta,
    # where theta is the latitude extent of the centre of the image.  Because
    # projection transform doesn't guarantee central vertical axis will keep
    # its pixel resolution, we need to calculate the conversion coefficient
    #   C = (res[7,1]- res[1,1])/(oextent[3] - oextent[2]).
    #   C0*pix height/C = theta
    # Where theta is the latitude extent and C0 is the theta per pixel
    # conversion for the Plate Carree image).  Thus
    #   l_ctr = R_moon*C0*pix_ctr/C.
    distortion_coefficient = ((res[7, 1] - res[1, 1]) /
                              (oextent[3] - oextent[2]))
    if distortion_coefficient < 0.7:
        raise ValueError("Distortion Coefficient cannot be"
                         " {0:.2f}!".format(distortion_coefficient))
    pixperkm = trf.km2pix(imgo.size[1],
                          llbd[3] - llbd[2],
                          dc=distortion_coefficient,
                          a=arad)
    ctr_xy["Diameter (pix)"] = ctr_xy["Diameter (km)"] * pixperkm

    # Determine x, y position of central lat/long.
    centrallonglat = pd.DataFrame({"Long": [xll[4]], "Lat": [yll[4]]})
    centrallonglat_xy = WarpCraterLoc(centrallonglat,
                                      geoproj,
                                      oproj,
                                      oextent,
                                      imgwshp,
                                      llbd=llbd_in,
                                      origin=origin)

    # Shift central long/lat
    centrallonglat_xy.loc[:, "x"] += offset[0]
    centrallonglat_xy.loc[:, "y"] += offset[1]

    return [imgo, ctr_xy, distortion_coefficient, centrallonglat_xy]
예제 #20
0
def plot_cartopy(lons,
                 lats,
                 size,
                 color,
                 labels=None,
                 projection='global',
                 resolution='110m',
                 continent_fill_color='0.8',
                 water_fill_color='1.0',
                 colormap=None,
                 colorbar=None,
                 marker="o",
                 title=None,
                 colorbar_ticklabel_format=None,
                 show=True,
                 proj_kwargs=None,
                 **kwargs):  # @UnusedVariable
    """
    Creates a Cartopy plot with a data point scatter plot.

    :type lons: list/tuple of floats
    :param lons: Longitudes of the data points.
    :type lats: list/tuple of floats
    :param lats: Latitudes of the data points.
    :type size: float or list/tuple of floats
    :param size: Size of the individual points in the scatter plot.
    :type color: list/tuple of floats (or objects that can be
        converted to floats, like e.g.
        :class:`~obspy.core.utcdatetime.UTCDateTime`)
    :param color: Color information of the individual data points to be
        used in the specified color map (e.g. origin depths,
        origin times).
    :type labels: list/tuple of str
    :param labels: Annotations for the individual data points.
    :type projection: str, optional
    :param projection: The map projection.
        Currently supported are:

            * ``"global"`` (Will plot the whole world using
              :class:`~cartopy.crs.Mollweide`.)
            * ``"ortho"`` (Will center around the mean lat/long using
              :class:`~cartopy.crs.Orthographic`.)
            * ``"local"`` (Will plot around local events using
              :class:`~cartopy.crs.AlbersEqualArea`.)
            * Any other Cartopy :class:`~cartopy.crs.Projection`. An instance
              of this class will be created using the supplied ``proj_kwargs``.

        Defaults to "global"
    :type resolution: str, optional
    :param resolution: Resolution of the boundary database to use. Will be
        passed directly to the Cartopy module. Possible values are:

            * ``"110m"``
            * ``"50m"``
            * ``"10m"``

        Defaults to ``"110m"``. For compatibility, you may also specify any of
        the Basemap resolutions defined in :func:`plot_basemap`.
    :type continent_fill_color: Valid matplotlib color, optional
    :param continent_fill_color:  Color of the continents. Defaults to
        ``"0.9"`` which is a light gray.
    :type water_fill_color: Valid matplotlib color, optional
    :param water_fill_color: Color of all water bodies.
        Defaults to ``"white"``.
    :type colormap: str, any matplotlib colormap, optional
    :param colormap: The colormap for color-coding the events as provided
        in `color` kwarg.
        The event with the smallest `color` property will have the
        color of one end of the colormap and the event with the highest
        `color` property the color of the other end with all other events
        in between.
        Defaults to None which will use the default matplotlib colormap.
    :type colorbar: bool, optional
    :param colorbar: When left `None`, a colorbar is plotted if more than one
        object is plotted. Using `True`/`False` the colorbar can be forced
        on/off.
    :type title: str
    :param title: Title above plot.
    :type colorbar_ticklabel_format: str or function or
        subclass of :class:`matplotlib.ticker.Formatter`
    :param colorbar_ticklabel_format: Format string or Formatter used to format
        colorbar tick labels.
    :type show: bool
    :param show: Whether to show the figure after plotting or not. Can be used
        to do further customization of the plot before showing it.
    :type proj_kwargs: dict
    :param proj_kwargs: Keyword arguments to pass to the Cartopy
        :class:`~cartopy.ccrs.Projection`. In this dictionary, you may specify
        ``central_longitude='auto'`` or ``central_latitude='auto'`` to have
        this function calculate the latitude or longitude as it would for other
        projections. Some arguments may be ignored if you choose one of the
        built-in ``projection`` choices.
    """
    import matplotlib.pyplot as plt
    min_color = min(color)
    max_color = max(color)

    if isinstance(color[0], (datetime.datetime, UTCDateTime)):
        datetimeplot = True
        color = [date2num(getattr(t, 'datetime', t)) for t in color]
    else:
        datetimeplot = False

    scal_map = ScalarMappable(norm=Normalize(min_color, max_color),
                              cmap=colormap)
    scal_map.set_array(np.linspace(0, 1, 1))

    fig = plt.figure()

    # The colorbar should only be plotted if more then one event is
    # present.
    if colorbar is not None:
        show_colorbar = colorbar
    else:
        if len(lons) > 1 and hasattr(color, "__len__") and \
                not isinstance(color, (str, native_str)):
            show_colorbar = True
        else:
            show_colorbar = False

    if projection == "local":
        ax_x0, ax_width = 0.10, 0.80
    elif projection == "global":
        ax_x0, ax_width = 0.01, 0.98
    else:
        ax_x0, ax_width = 0.05, 0.90

    proj_kwargs = proj_kwargs or {}
    if projection == 'global':
        proj_kwargs['central_longitude'] = np.mean(lons)
        proj = ccrs.Mollweide(**proj_kwargs)
    elif projection == 'ortho':
        proj_kwargs['central_latitude'] = np.mean(lats)
        proj_kwargs['central_longitude'] = mean_longitude(lons)
        proj = ccrs.Orthographic(**proj_kwargs)
    elif projection == 'local':
        if min(lons) < -150 and max(lons) > 150:
            max_lons = max(np.array(lons) % 360)
            min_lons = min(np.array(lons) % 360)
        else:
            max_lons = max(lons)
            min_lons = min(lons)
        lat_0 = max(lats) / 2. + min(lats) / 2.
        lon_0 = max_lons / 2. + min_lons / 2.
        if lon_0 > 180:
            lon_0 -= 360
        deg2m_lat = 2 * np.pi * 6371 * 1000 / 360
        deg2m_lon = deg2m_lat * np.cos(lat_0 / 180 * np.pi)
        if len(lats) > 1:
            height = (max(lats) - min(lats)) * deg2m_lat
            width = (max_lons - min_lons) * deg2m_lon
            margin = 0.2 * (width + height)
            height += margin
            width += margin
        else:
            height = 2.0 * deg2m_lat
            width = 5.0 * deg2m_lon
        # Do intelligent aspect calculation for local projection
        # adjust to figure dimensions
        w, h = fig.get_size_inches()
        aspect = w / h
        if show_colorbar:
            aspect *= 1.2
        if width / height < aspect:
            width = height * aspect
        else:
            height = width / aspect

        proj_kwargs['central_latitude'] = lat_0
        proj_kwargs['central_longitude'] = lon_0
        proj = ccrs.AlbersEqualArea(**proj_kwargs)

    # User-supplied projection.
    elif isinstance(projection, type):
        if 'central_longitude' in proj_kwargs:
            if proj_kwargs['central_longitude'] == 'auto':
                proj_kwargs['central_longitude'] = mean_longitude(lons)
        if 'central_latitude' in proj_kwargs:
            if proj_kwargs['central_latitude'] == 'auto':
                proj_kwargs['central_latitude'] = np.mean(lats)
        if 'pole_longitude' in proj_kwargs:
            if proj_kwargs['pole_longitude'] == 'auto':
                proj_kwargs['pole_longitude'] = np.mean(lons)
        if 'pole_latitude' in proj_kwargs:
            if proj_kwargs['pole_latitude'] == 'auto':
                proj_kwargs['pole_latitude'] = np.mean(lats)

        proj = projection(**proj_kwargs)

    else:
        msg = "Projection '%s' not supported." % projection
        raise ValueError(msg)

    if show_colorbar:
        map_ax = fig.add_axes([ax_x0, 0.13, ax_width, 0.77], projection=proj)
        cm_ax = fig.add_axes([ax_x0, 0.05, ax_width, 0.05])
        plt.sca(map_ax)
    else:
        ax_y0, ax_height = 0.05, 0.85
        if projection == "local":
            ax_y0 += 0.05
            ax_height -= 0.05
        map_ax = fig.add_axes([ax_x0, ax_y0, ax_width, ax_height],
                              projection=proj)

    if projection == 'local':
        x0, y0 = proj.transform_point(lon_0, lat_0, proj.as_geodetic())
        map_ax.set_xlim(x0 - width / 2, x0 + width / 2)
        map_ax.set_ylim(y0 - height / 2, y0 + height / 2)
    else:
        map_ax.set_global()

    # Pick features at specified resolution.
    resolution = _CARTOPY_RESOLUTIONS[resolution]
    try:
        borders, land, ocean = _CARTOPY_FEATURES[resolution]
    except KeyError:
        borders = cfeature.NaturalEarthFeature(cfeature.BORDERS.category,
                                               cfeature.BORDERS.name,
                                               resolution,
                                               edgecolor='none',
                                               facecolor='none')
        land = cfeature.NaturalEarthFeature(cfeature.LAND.category,
                                            cfeature.LAND.name,
                                            resolution,
                                            edgecolor='face',
                                            facecolor='none')
        ocean = cfeature.NaturalEarthFeature(cfeature.OCEAN.category,
                                             cfeature.OCEAN.name,
                                             resolution,
                                             edgecolor='face',
                                             facecolor='none')
        _CARTOPY_FEATURES[resolution] = (borders, land, ocean)

    # Draw coast lines, country boundaries, fill continents.
    if MATPLOTLIB_VERSION >= [2, 0, 0]:
        map_ax.set_facecolor(water_fill_color)
    else:
        map_ax.set_axis_bgcolor(water_fill_color)
    map_ax.add_feature(ocean, facecolor=water_fill_color)
    map_ax.add_feature(land, facecolor=continent_fill_color)
    map_ax.add_feature(borders, edgecolor='0.75')
    map_ax.coastlines(resolution=resolution, color='0.4')

    # Draw grid lines - TODO: draw_labels=True doesn't work yet.
    if projection == 'local':
        map_ax.gridlines()
    else:
        # Draw lat/lon grid lines every 30 degrees.
        map_ax.gridlines(xlocs=range(-180, 181, 30), ylocs=range(-90, 91, 30))

    # Plot labels
    if labels and len(lons) > 0:
        with map_ax.hold_limits():
            for name, xpt, ypt, _colorpt in zip(labels, lons, lats, color):
                map_ax.text(xpt,
                            ypt,
                            name,
                            weight="heavy",
                            color="k",
                            zorder=100,
                            transform=ccrs.Geodetic(),
                            path_effects=[
                                PathEffects.withStroke(linewidth=3,
                                                       foreground="white")
                            ])

    scatter = map_ax.scatter(lons,
                             lats,
                             marker=marker,
                             s=size,
                             c=color,
                             zorder=10,
                             cmap=colormap,
                             transform=ccrs.Geodetic())

    if title:
        plt.suptitle(title)

    # Only show the colorbar for more than one event.
    if show_colorbar:
        if colorbar_ticklabel_format is not None:
            if isinstance(colorbar_ticklabel_format, (str, native_str)):
                formatter = FormatStrFormatter(colorbar_ticklabel_format)
            elif hasattr(colorbar_ticklabel_format, '__call__'):
                formatter = FuncFormatter(colorbar_ticklabel_format)
            elif isinstance(colorbar_ticklabel_format, Formatter):
                formatter = colorbar_ticklabel_format
            locator = MaxNLocator(5)
        else:
            if datetimeplot:
                locator = AutoDateLocator()
                formatter = AutoDateFormatter(locator)
                # Compat with old matplotlib versions.
                if hasattr(formatter, "scaled"):
                    formatter.scaled[1 / (24. * 60.)] = '%H:%M:%S'
            else:
                locator = None
                formatter = None
        cb = Colorbar(cm_ax,
                      scatter,
                      cmap=colormap,
                      orientation='horizontal',
                      ticks=locator,
                      format=formatter)
        # Compat with old matplotlib versions.
        if hasattr(cb, "update_ticks"):
            cb.update_ticks()

    if show:
        plt.show()

    return fig
예제 #21
0
def plot_trajectories_ens(traj, savepath, ls=None, config=None):
    """
    plot multiple trajectories into one scene

    Args:
        traj (:class:`.trajectory`): trajectory to plot instance to plot
        savepath (str): path to save
        ls (:class:`trace_source.land_sfc.land_sfc`, optional): pre loaded land surface information
        config (dict, optional): the toml derived config dict

    Returns:
        None
    """

    import matplotlib
    matplotlib.use('Agg')
    import cartopy.crs as ccrs
    import matplotlib.pyplot as plt

    if ls is None:
        ls = trace_source.land_sfc.land_sfc()

    colors = ['purple', 'darkorange', 'hotpink', 'dimgrey']
    c = 'purple'

    if not os.path.isdir(savepath):
        os.makedirs(savepath)

    ###
    # the map
    ###

    fig = plt.figure(figsize=(8, 10))
    if config is not None and "centerlon" in config['plotmap']:
        ax = plt.axes(projection=ccrs.Miller(
            central_longitude=config['plotmap']['centerlon']))
    else:
        ax = plt.axes(projection=ccrs.Miller(central_longitude=-170.))
        ax = plt.axes(projection=ccrs.Miller())
        # Projection for the north pole
        # ax = plt.axes(projection=ccrs.NorthPolarStereo())
        raise ValueError('provide plotmap.centerlon in the config file')

    ####
    # make a color map of fixed colors
    cmap = matplotlib.colors.ListedColormap([
        'lightskyblue', 'darkgreen', 'khaki', 'palegreen', 'red', 'white',
        'tan'
    ])
    bounds = [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]
    norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
    ####
    pcm = ax.pcolormesh(ls.longs,
                        ls.lats,
                        ls.land_sfc,
                        cmap=cmap,
                        norm=norm,
                        transform=ccrs.PlateCarree())
    ax.coastlines()

    for k, v in traj.data.items():
        ax.plot(v['longitude'],
                v['latitude'],
                linewidth=1.5,
                color=c,
                transform=ccrs.Geodetic())

        ax.plot(v['longitude'][::24],
                v['latitude'][::24],
                '.',
                color=c,
                transform=ccrs.Geodetic())

    ax.gridlines(linestyle=':')
    if config is not None and "bounds" in config['plotmap']:
        ax.set_extent(config['plotmap']['bounds'], crs=ccrs.PlateCarree())
    else:
        # bounds for punta arenas
        ax.set_extent([-180, 180, -75, 0], crs=ccrs.PlateCarree())
        # bounds for atlantic
        #ax.set_extent([-180, 80, -70, 75], crs=ccrs.PlateCarree())
        # bounds for the north pole
        #ax.set_extent([-180, 180, 50, 90], crs=ccrs.PlateCarree())
        raise ValueError('provide plotmap.bounds in the config file')
    ax.set_title('Trajectory {}UTC\n{} {} '.format(
        traj.info['date'].strftime('%Y-%m-%d %H'), traj.info['lat'],
        traj.info['lon']),
                 fontweight='semibold',
                 fontsize=13)

    savename = savepath + "/" + traj.info['date'].strftime("%Y%m%d_%H") \
        + '_' + '{:0>5.0f}'.format(traj.info['height']) + "_trajectories_map.png"
    fig.savefig(savename, dpi=250)
    plt.close()

    ###
    # the profile
    ###

    fig, ax = plt.subplots(4, 1, figsize=(6, 7), sharex=True)

    ax[0].grid(True, axis='y')
    for k, v in traj.data.items():
        ax[0].plot(v['time'], v['height'])
        ax[1].plot(v['time'], v['AIR_TEMP'][:] - 273.15)
        ax[2].plot(v['time'], v['RELHUMID'][:])
        ax[3].plot(v['time'], v['RAINFALL'][:])

    ax[0].set_ylim(0, 10000)
    ax[0].set_ylabel('Height [m]')
    ax[0].xaxis.set_major_locator(matplotlib.dates.DayLocator(interval=2))
    ax[0].xaxis.set_minor_locator(matplotlib.dates.HourLocator([0, 12]))
    ax[0].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%m-%d'))

    # ax[1].set_ylim(0,10000)
    ax[1].set_ylabel('Temperature [°C]')
    ax[1].set_ylim(-40, 10)
    ax[1].xaxis.set_major_locator(matplotlib.dates.DayLocator(interval=2))
    ax[1].xaxis.set_minor_locator(matplotlib.dates.HourLocator([0, 12]))
    ax[1].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%m-%d'))

    # ax[2].grid(True, axis='y')
    ax[2].set_ylim(0, 100)
    ax[2].set_ylabel('rel Humidity [%]')
    ax[2].xaxis.set_major_locator(matplotlib.dates.DayLocator(interval=2))
    ax[2].xaxis.set_minor_locator(matplotlib.dates.HourLocator([0, 12]))
    ax[2].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%m-%d'))

    # ax[3].grid(True, axis='y')
    ax[3].set_ylim(0, 20)
    ax[3].set_xlabel('Day')
    ax[3].set_ylabel('Precip [mm]')
    ax[3].xaxis.set_major_locator(matplotlib.dates.DayLocator(interval=2))
    ax[3].xaxis.set_minor_locator(matplotlib.dates.HourLocator([0, 12]))
    ax[3].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%m-%d'))

    for axis in ax:
        axis.tick_params(axis='both',
                         which='both',
                         right=True,
                         top=True,
                         direction='in')

    ax[0].set_title('Trajectory {}UTC\n{} {} '.format(
        traj.info['date'].strftime('%Y-%m-%d %H'), traj.info['lat'],
        traj.info['lon']),
                    fontweight='semibold',
                    fontsize=13)
    fig.tight_layout()

    savename = savepath + "/" + traj.info['date'].strftime("%Y%m%d_%H") \
        + '_' + '{:0>5.0f}'.format(traj.info['height']) + "_trajectories_prof.png"
    fig.savefig(savename, dpi=250)
    plt.close()
예제 #22
0
    def plot_all(self, out_path=None, Save = False, num_stations=1000):
    
        """
            Plotting all stations on a map, divided in color of stations with
            full observations in the reference period and not.
            
            Arguments:
            num_stations = 1000, selects the number of stations to construct the
            dataset.
            out_path, Path of the folder to save pdf of plots
            Save = False, choosing to hide plots and not saving them.
        """
        #plotting stations with full data in period 1960-1990:
        fig = plt.figure(figsize=(12,6))
        fig.suptitle("Stations with (red) and without (green) full interset period")
        
        ax = fig.add_subplot(1,1,1,projection=ccrs.PlateCarree())
        ax.set_global()
        ax.coastlines()
        ax.gridlines(draw_labels=True)
        ax.add_feature(cfeature.BORDERS, edgecolor='gray')
        ax.add_feature(cfeature.LAND)
        
        w_interest_lon = []
        w_interest_lat = []
        wo_interest_lon =[]
        wo_interest_lat =[]
        
        for i in tqdm(range(num_stations)):
            
            try:
                Obs = Observation(self.file_list[i])
                Obs.nan_interest_period()
                if Obs.interest:
                    w_interest_lon.append([Obs.lon_line])
                    w_interest_lat.append([Obs.lat_line])
                    ax.plot([Obs.lon_line], [Obs.lat_line], color='red', linewidth=1, marker='o', markersize=2, transform=ccrs.Geodetic())
                else:
                    wo_interest_lon.append([Obs.lon_line])
                    wo_interest_lat.append([Obs.lat_line])
                    ax.plot([Obs.lon_line], [Obs.lat_line], color='green', linewidth=1, marker='o', markersize=2, transform=ccrs.Geodetic())
            except:
                continue
                    
                    
        #plotting separately stations with interest period and without interest period
        fig1 = plt.figure(figsize=(12,6))
        fig1.suptitle("Stations with full interset period")

        ax1 = fig1.add_subplot(1,1,1,projection=ccrs.PlateCarree())
        ax1.set_global()
        ax1.coastlines()
        ax1.gridlines(draw_labels=True)
        ax1.add_feature(cfeature.BORDERS, edgecolor='gray')
        ax1.add_feature(cfeature.LAND)
        plt.scatter(w_interest_lon, w_interest_lat, color='red',s=3, linewidth=1, marker='o', transform=ccrs.Geodetic())

        fig2 = plt.figure(figsize=(12,6))
        fig2.suptitle("Stations without full interset period")
        
        ax2 = fig2.add_subplot(1,1,1,projection=ccrs.PlateCarree())
        ax2.set_global()
        ax2.coastlines()
        ax2.gridlines(draw_labels=True)
        ax2.add_feature(cfeature.BORDERS, edgecolor='gray')
        ax2.add_feature(cfeature.LAND)
        plt.scatter(wo_interest_lon, wo_interest_lat, color='green',s = 3, linewidth=1, marker='o', transform=ccrs.Geodetic())
        
            
        if Save:
            #Saving plot
            fig.savefig(out_path + '/All_Stations_Crutem.pdf')
            fig1.savefig(out_path + '/Stations_full_interest.pdf')
            fig2.savefig(out_path + '/Station_wo_full_interest.pdf')
            plt.close()
예제 #23
0
nc_fid = Dataset(
    'J:/REANALYSES/ERA5/SWE_Cumul_Nittasinan/climato/ERA5_Cumul_SWE_climatology_1990-2019.nc',
    'r')
data = nc_fid.variables['sd'][:].squeeze()
lons = nc_fid.variables['longitude'][:].squeeze()
lats = nc_fid.variables['latitude'][:].squeeze()
#sr_clim_90_2019 = data.mean(axis=0)
#sr_clim_90_2019.data[sr_clim_90_2019 == 0] = np.nan

fig = plt.figure(figsize=(28, 16))
crs = ccrs.LambertConformal()
#    crs=ccrs.PlateCarree()
ax = plt.axes(projection=crs)
plot_background(ax)

ax.plot(-69.72, 48.15, "bo", markersize=7, transform=ccrs.Geodetic())
ax.text(-69.5,
        48.17,
        "Tadoussac",
        color='blue',
        fontsize=20,
        fontweight='bold',
        transform=ccrs.Geodetic())

ax.plot(-66.4,
        50.21,
        "bo",
        markersize=7,
        color='blue',
        transform=ccrs.Geodetic())
ax.text(-66.2,
예제 #24
0
    def cleansing(self, out_path=None, Save = False, sliced = False):
        """
            cleaning the dataframe of stations keeping only the stations with a
            complete reference period 1960-1990. Subsequently it plots the result and
            updated self.metadata and self.df
            
            Arguments:
            out_path, Path to save plots.
            Save = False, Tell if the plots are going to be saved.
            verbosity = False, Show or not show plots of the cleaning.
        """
                            
        taxis = pd.date_range('1850-01', '2019-01', freq='M')
        dropped = pd.DataFrame({'time': taxis})
        dropped = dropped.set_index(['time'])
                        
        try:
            if sliced:
                self.sliced
                                        
            else:
                self.df
                                                
        except:
            print('Full_dataset object needs to be converted into dataframe before cleansing. You can type data = Full_stations(file_list).to_dataset()')
            return
                                                        
                                                        
        if sliced:
            for i in tqdm(self.meta_slice.index, desc = 'Cleaning df'):
                if any(np.isnan(self.sliced[i]['1960-01-31':'1990-01-31'])):
                    dropped = pd.merge(dropped, self.sliced[i], on='time', how = 'left')
                    self.sliced = self.sliced.drop(i, 1)
                    self.meta_slice = self.meta_slice.drop(index = i, axis = 0)
                    self.df = self.df.drop(i, 1)
                    self.metadata = self.metadata.drop(index = i, axis = 0)
                                                                        
        else:
            for i in tqdm(self.df.columns, desc = 'Cleaning df'):
                if any(np.isnan(self.df[i]['1960-01-31':'1990-01-31'])):
                    dropped = pd.merge(dropped, self.df[i], on='time', how = 'left')
                    self.df = self.df.drop(i, 1)
                    self.metadata = self.metadata.drop(index = i, axis = 0)
                                                                                        
        #Cleaning the gridded dataframe from dropped stations
                                                                                        
        try:
            #if grid exist we go on
            self.grid
            #retrieve indices to apply loc.
            df_indices = self.grid[self.grid['indices'] != 0].index
            for i in tqdm(df_indices, desc = 'Grid cleaning'):
                #redefine station_id indices of gridded dataset removing the ones dropped
                self.grid.loc[i].indices = [x for x in self.grid.loc[i].indices if x not in dropped.columns]
                self.grid.loc[i].number_station = len(self.grid.loc[i].indices)
                #if the list is empty after the cleansing then we set the entry to zero
                if len(self.grid.loc[i].indices) == 0:
                    self.grid.loc[i].indices = 0
                    self.grid.loc[i].number_station = 0
        except:
            pass
        
        if Save:
            fig = plt.figure(figsize=(12,6))
            fig.suptitle("Visualizing cleansing")
            ax = fig.add_subplot(1,1,1,projection=ccrs.PlateCarree())
            ax.gridlines(draw_labels=True)
            ax.coastlines()
            ax.stock_img()
            ax.add_feature(cfeature.LAND)
            ax.set_global()
            ax.add_feature(cfeature.BORDERS, edgecolor='gray')

            if sliced:
                ax.set_extent([self.ext_lon[0]-3, self.ext_lon[1]+3, self.ext_lat[0]-3, self.ext_lat[1]+3], ccrs.PlateCarree())
                ax.plot(self.meta_slice['lon'].values, self.meta_slice['lat'].values, 'bo', markersize=2, transform=ccrs.Geodetic())
                                                                                                                                
            else:
                count = 0
                while count < len(self.metadata):
                    ax.plot(self.metadata.lon.values[count], self.metadata.lat.values[count], color='blue', marker='o', markersize=2, transform=ccrs.Geodetic())
                    count += 1
                                                                                                                                                
            fig.savefig(out_path + "/Cleansing_slicing:{}.pdf".format(sliced))
예제 #25
0
 def as_cartopy_crs(self):
     return ccrs.Geodetic(self.as_cartopy_globe())
예제 #26
0
 def grid_contribution(self, grid, out_path=None, Save = False, sliced = False, verbosity = True):
     """
         Plotting which grids contribute with a station marked with an X.
         
         Arguments:
         grid, Takes the grid output of self.regridding to plot
         out_path, Path to save plots.
         Save = False, Tell if the plots are going to be saved.
         verbosity = False, Show or not show plots of the cleaning.
         
     """
     #plotting contribution cells along with point of the stations
     #it is defined as a self method of Full_Stations to be able to
     #record all the files simply. It still takes as input the grid which
     #needs to be defined outside
     
     #getting the steps of the grid
     grid_lon_step = grid.loc[0, :]['max_long'] - grid.loc[0, :]['min_long']
     grid_lat_step = grid.loc[0, :]['max_lat'] - grid.loc[0, :]['min_lat']
     
     #plotting the grid based on the grid step
     fig = plt.figure(figsize=(12,8))
     ax = fig.add_subplot(1,1,1,projection=ccrs.PlateCarree())
     ax.set_global()
     ax.add_feature(cfeature.LAND)
     if sliced:
         lat_ext = [int(grid_lat_step* mt.floor(self.ext_lat[0]/grid_lat_step)), int(grid_lat_step * mt.ceil(self.ext_lat[1]/grid_lat_step))]
         lon_ext = [int(grid_lon_step * mt.floor(self.ext_lon[0]/grid_lon_step)), int(grid_lon_step * mt.ceil(self.ext_lon[1]/grid_lon_step))]
         #ax.gridlines(xlocs=range(mt.floor(self.ext_lon[0]),mt.floor(self.ext_lon[1]),grid_lon_step), ylocs=range(mt.floor(self.ext_lat[0]),mt.floor(self.ext_lat[1]+1),grid_lat_step))
         #ax.set_extent([mt.floor(self.ext_lon[0]),mt.ceil(self.ext_lon[1]), mt.floor(self.ext_lat[0]),mt.ceil(self.ext_lat[1])], ccrs.PlateCarree())
         ax.gridlines(xlocs=range(lon_ext[0],lon_ext[1]+grid_lon_step,grid_lon_step), ylocs=range(lat_ext[0], lat_ext[1]+grid_lat_step,grid_lat_step))
         ax.set_extent([lon_ext[0], lon_ext[1], lat_ext[0], lat_ext[1]], ccrs.PlateCarree())
     else:
         ax.gridlines(xlocs=range(-180,181,grid_lon_step), ylocs=range(-90,91,grid_lat_step))
     
     ax.coastlines()
     ax.add_feature(cfeature.BORDERS, edgecolor='gray')
     
     #cycling on all grid entries and plotting
     for i in tqdm(range(len(grid))):
         
         #if the indices of the grid is not null (so the cell contains stations)
         if grid.loc[i, :]['indices'] != 0:
             
             #plots an x on the central latitude and longitude
             central_lat = grid.loc[i, :]['max_lat'] - (grid.loc[i, :]['max_lat'] - grid.loc[i, :]['min_lat'])/2.
             central_lon = grid.loc[i, :]['max_long'] - (grid.loc[i, :]['max_long'] - grid.loc[i, :]['min_long'])/2.
             ax.plot([central_lon], [central_lat], color='red', marker='x', markersize=7, transform=ccrs.Geodetic())
             
             for i in grid.loc[i, :]['indices']:
                 #for each station in the cell plots a point at its coordinate. Coordinates
                 #retrieved from the metadata dataset from self
                 if sliced:
                     ax.plot(self.meta_slice.loc[i]['lon'], self.meta_slice.loc[i]['lat'], color='blue', marker='o', markersize=1, transform=ccrs.Geodetic())
                 else:
                     ax.plot(self.metadata.loc[i]['lon'], self.metadata.loc[i]['lat'], color='blue', marker='o', markersize=1, transform=ccrs.Geodetic())
     
     if not verbosity:
         plt.close()
     
     if Save:
         fig.savefig(out_path + '/Contributing_Areas.pdf')
         plt.close()
예제 #27
0
bird_names = bird_data['bird_name'].unique()
bird_data['date_time'] = pd.to_datetime(bird_data['date_time'])
bird_data['date'] = bird_data['date_time'].dt.date
grouped_bird_data = bird_data.groupby(['bird_name', 'date'])

plt.figure(figsize=(6, 6))
ax = plt.axes(projection=ccrs.Mercator())
ax.set_extent((-25, 20, 52, 10))
ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.OCEAN)
ax.add_feature(cfeature.COASTLINE)
ax.add_feature(cfeature.BORDERS, linestyle=':')
for name in bird_names:
    ix = bird_data['bird_name'] == name
    x, y = bird_data['longitude'][ix], bird_data['latitude'][ix]
    plt.plot(x, y, '.', transform=ccrs.Geodetic(), label=name)
plt.title("Bird Routes")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend(loc='upper left')
plt.savefig('plots/bird_migration_1')

plt.figure(figsize=(10, 4))
for name in bird_names:
    ix = bird_data['bird_name'] == name
    bird_data['speed_2d'][ix].plot(kind='hist',
                                   histtype='step',
                                   bins=np.linspace(0, 20, 20),
                                   normed=True,
                                   label=name)
plt.title("Speed Histogram")
예제 #28
0
    def test_against_great_circle_and_gmt(self):
        ll.info('testing depth against gmt extracted depths')
        gmt = np.array([
            -0.648317,
            81.9962170001,
            -2574.32325995,
            -1.253283,
            81.9983000001,
            -2304.80896863,
            -1.856417,
            81.9994330001,
            -1992.40861882,
            -2.396967,
            81.9947830001,
            -2540.36409855,
            -3.130133,
            81.9987830001,
            -3509.64727122,
            -3.707333,
            81.9998670001,
            -4018.8108823,
            -4.296033,
            81.997083,
            -4011.25898682,
            -4.920717,
            81.9994000001,
            -3525.6963024,
            -5.50345000001,
            82.0028670001,
            -3023.12097893,
            -6.130917,
            82.0015830001,
            -3006.31591506,
            -6.69468300003,
            81.9966170001,
            -3190.38107675,
            -7.31206699999,
            81.9941330001,
            -3115.38103425,
            -7.93959999997,
            82.000267,
            -2982.875422,
            -8.19741700001,
            81.9721330001,
            -2911.32670751,
            -0.62855,
            81.9993830001,
            -2589.30052845,
            -0.051117,
            81.999717,
            -2822.43058789,
            0.56,
            82,
            -3006.25619309,
            1.705833,
            81.9945,
            -3435.51613899,
            2.310417,
            82.0015,
            -2030.92420387,
            2.89165,
            81.9971670001,
            -1309.44942805,
            3.48035,
            81.996817,
            -1136.05331727,
            4.093633,
            81.99945,
            -1098.94253697,
            4.6825,
            81.998917,
            -1275.39851465,
            5.290717,
            81.998917,
            -1345.6958582,
            5.878783,
            82.000133,
            -989.180725733,
            6.76653300003,
            82.0143830001,
            -796.276219227,
            7.07896700002,
            82.00315,
            -777.077539801,
        ])

        gmt = gmt.reshape(27, 3)

        gmtz = gmt[:, 2]
        lon = gmt[:, 0]
        lat = gmt[:, 1]

        xy = self.i.projection.transform_points(ccrs.Geodetic(), lon, lat)
        dz = self.i.interp_depth(xy[:, 0], xy[:, 1])
        mz = self.i.map_depth(xy[:, 0], xy[:, 1])

        plt.figure()
        plt.plot(lon, mz, label='map_depth')
        plt.plot(lon, dz, label='interp_depth')
        plt.plot(lon, gmtz, label='gmt')
        plt.legend()
        plt.title('depth')
        plt.xlabel('Longitude')
        plt.savefig(os.path.join(outdir, 'depth_vs_gmt.png'))

        # high atol = 22 needed for python 3.4
        np.testing.assert_allclose(gmtz, dz, atol=22)
        np.testing.assert_allclose(gmtz, mz, atol=22)
예제 #29
0
flow_feature = ShapelyFeature(
    Reader('../Structures_files/Shapefiles/UCRBstreams.shp').geometries(),
    ccrs.PlateCarree(),
    edgecolor='royalblue',
    facecolor='None')

fig = plt.figure(figsize=(18, 9))
ax = plt.axes(projection=tiles.crs)
#ax.add_feature(rivers_10m, facecolor='None', edgecolor='royalblue', linewidth=2, zorder=4)
ax.add_image(tiles, 9, interpolation='none', alpha=0.8)
ax.set_extent(extent)
ax.add_feature(shape_feature, facecolor='#a1a384', alpha=0.6)
ax.add_feature(flow_feature, alpha=0.6, linewidth=1.5, zorder=4)
points = ax.scatter(structures['X'],
                    structures['Y'],
                    marker='.',
                    s=50,
                    c='black',
                    transform=ccrs.Geodetic(),
                    zorder=5)

#geom = geometry.box(extent[0],extent[2], extent[1], extent[3])
#fig = plt.figure(figsize=(18, 9))
#ax = plt.axes(projection=tiles.crs)
#ax.add_feature(rivers_10m, facecolor='None', edgecolor='royalblue', linewidth=2, zorder=4)
#ax.add_image(tiles, 7, interpolation='none',alpha = 0.8)
#ax.set_extent(extent_large)
#ax.add_feature(cpf.STATES)
#ax.add_geometries([geom], crs=ccrs.PlateCarree(), facecolor='None', edgecolor='black', linewidth=2,)
#ax.add_feature(shape_feature, facecolor='#a1a384',alpha = 0.6)
예제 #30
0
D = pc.data().from_h5('ramp_pass_ll.h5')
latR = np.array([np.nanmin(D.latitude), np.nanmax(D.latitude)])
lonR = np.array([np.nanmin(D.longitude), np.nanmax(D.longitude)])

if True:
    # Create a Stamen terrain background instance.
    bg_image = cimgt.GoogleTiles(style='satellite')
    #Stamen('terrain-background')

    fig = plt.figure(figsize=(10, 10))

    # Create a GeoAxes in the tile's projection.
    ax = fig.add_subplot(1, 1, 1, projection=bg_image.crs)

    # Limit the extent of the map to a small longitude/latitude range.
    ax.set_extent([lonR[0], lonR[1], latR[0], latR[1]], crs=ccrs.Geodetic())

    # Add the Stamen data at zoom level 8.
    ax.add_image(bg_image, 10)
    #plt.plot(D.longitude.reshape([1, -1]), D.latitude.reshape([1, -1]), color='k', marker='.', transform=ccrs.Geodetic())
    plt.scatter(D.longitude,
                D.latitude,
                2,
                c=D.latitude,
                marker='.',
                transform=ccrs.Geodetic())

    #for lati, loni in zip(D.latitude, D.longitude):
    #    plt.plot(loni, lati, 'k.', transform=ccrs.Geodetic())