예제 #1
0
    def getViolations(self,g,lbg,ubg,reportThreshold=0):
        """
        Tests if g >= ubg + reportThreshold
                 g <= lbg - reportThreshold
        Positive reportThreshold supresses barely active bounds
        Negative reportThreshold reports not-quite-active bounds
        """
        violations = {}

        ubviols = g - ubg
        lbviols = lbg - g
        ubviolsIdx = np.where(C.logic_and(ubviols >= reportThreshold, ubg > lbg))[0]
        lbviolsIdx = np.where(C.logic_and(lbviols >= reportThreshold, ubg > lbg))[0]
        violations = {}
        for k in ubviolsIdx:
            (name,time,idx) = self._tags[k]
            viol = ('ub',(time,idx),float(ubviols[k]))#,g[k],ubg[k])
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        for k in lbviolsIdx:
            (name,time,idx) = self._tags[k]
            viol = ('lb',(time,idx),float(lbviols[k]))#,g[k],lbg[k])
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        return violations
예제 #2
0
    def boundsFeedback(self,x,lbx,ubx,reportThreshold=0):
        """
        Tests if x >= ub + reportThreshold
                 x <= lb - reportThreshold
        Positive reportThreshold supresses barely active bounds
        Negative reportThreshold reports not-quite-active bounds
        """
        violations = {}

        ubviols = x - ubx
        lbviols = lbx - x
        ubviolsIdx = np.where(CS.logic_and(ubviols >= reportThreshold, ubx > lbx))[0]
        lbviolsIdx = np.where(CS.logic_and(lbviols >= reportThreshold, ubx > lbx))[0]
        violations = {}
        for k in ubviolsIdx:
            (name,time) = self.bndtags[k]
            viol = ('ub',time,float(ubviols[k]))
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        for k in lbviolsIdx:
            (name,time) = self.bndtags[k]
            viol = ('lb',time,float(lbviols[k]))
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        return violations
예제 #3
0
    def __call__(self, x, y):
        """
        Evaluate the B-Spline at point (x, y).

        The support of this function is the half-open interval [tx[0], tx[-1]) x [ty[0], ty[-1]).

        :param x: The coordinate of the point at which to evaluate.
        :param y: The ordinate of the point at which to evaluate.

        :returns: The spline evaluated at the given point.
        """
        z = 0.0
        for i in range(len(self.__tx) - self.__kx - 1):
            bx = if_else(
                logic_and(x >= self.__tx[i],
                          x <= self.__tx[i + self.__kx + 1]),
                self.basis(self.__tx, x, self.__kx, i), 0.0)
            for j in range(len(self.__ty) - self.__ky - 1):
                by = if_else(
                    logic_and(y >= self.__ty[j],
                              y <= self.__ty[j + self.__ky + 1]),
                    self.basis(self.__ty, y, self.__ky, j), 0.0)
                z += self.__w[i *
                              (len(self.__ty) - self.__ky - 1) + j] * bx * by
        return z
예제 #4
0
    def getViolations(self,
                      g,
                      lbg,
                      ubg,
                      reportThreshold=0,
                      reportEqViolations=False):
        """
        Tests if g >= ubg + reportThreshold
                 g <= lbg - reportThreshold
        Positive reportThreshold supresses barely active bounds
        Negative reportThreshold reports not-quite-active bounds
        """
        violations = {}

        ubviols = g - ubg
        lbviols = lbg - g
        ubviolsIdx = np.where(
            C.logic_and(ubviols >= reportThreshold, ubg > lbg))[0]
        lbviolsIdx = np.where(
            C.logic_and(lbviols >= reportThreshold, ubg > lbg))[0]

        eqviolsIdx = []
        if reportEqViolations:
            eqviolsIdx = np.where(
                C.logic_and(C.fabs(ubviols) >= reportThreshold, ubg == lbg))[0]

        violations = {}
        for k in ubviolsIdx:
            (name, time, idx) = self._tags[k]
            viol = ('ub', (time, idx), float(ubviols[k]))  #,g[k],ubg[k])
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        for k in lbviolsIdx:
            (name, time, idx) = self._tags[k]
            viol = ('lb', (time, idx), float(lbviols[k]))  #,g[k],lbg[k])
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        for k in eqviolsIdx:
            (name, time, idx) = self._tags[k]
            viol = ('eq', (time, idx), float(ubviols[k]))  #,g[k],lbg[k])
            if name not in violations:
                violations[name] = [viol]
            else:
                violations[name].append(viol)
        return violations
예제 #5
0
    def get_in_tangent_cone_function_multidim(self, cnstr):
        """Returns a casadi function for the SetConstraint instance when the
        SetConstraint is multidimensional."""
        if not isinstance(cnstr, SetConstraint):
            raise TypeError("in_tangent_cone is only available for" +
                            " SetConstraint")
        time_var = self.skill_spec.time_var
        robot_var = self.skill_spec.robot_var
        list_vars = [time_var, robot_var]
        list_names = ["time_var", "robot_var"]
        robot_vel_var = self.skill_spec.robot_vel_var
        opt_var = [robot_vel_var]
        opt_var_names = ["robot_vel_var"]
        virtual_var = self.skill_spec.virtual_var
        virtual_vel_var = self.skill_spec.virtual_vel_var
        input_var = self.skill_spec.input_var
        expr = cnstr.expression
        set_min = cnstr.set_min
        set_max = cnstr.set_max
        dexpr = cs.jacobian(expr, time_var)
        dexpr += cs.jtimes(expr, robot_var, robot_vel_var)
        if virtual_var is not None:
            list_vars += [virtual_var]
            list_names += ["virtual_var"]
            opt_var += [virtual_vel_var]
            opt_var_names += ["virtual_vel_var"]
            dexpr += cs.jtimes(expr, virtual_var, virtual_vel_var)
        if input_var is not None:
            list_vars += [input_var]
            list_vars += ["input_var"]
        le = expr - set_min
        ue = expr - set_max
        le_good = le >= 1e-12
        ue_good = ue <= 1e-12
        above = cs.dot(le_good - 1, le_good - 1) == 0
        below = cs.dot(ue_good - 1, ue_good - 1) == 0
        inside = cs.logic_and(above, below)
        out_dir = (cs.sign(le) + cs.sign(ue)) / 2.0
        # going_in = cs.dot(out_dir, dexpr) <= 0.0
        same_signs = cs.sign(le) == cs.sign(ue)
        corner = cs.dot(same_signs - 1, same_signs - 1) == 0
        dists = (cs.norm_2(dexpr) + 1e-10) * cs.norm_2(out_dir)
        corner_handler = cs.if_else(
            cs.dot(out_dir, dexpr) < 0.0,
            cs.fabs(cs.dot(-out_dir, dexpr)) / dists < cs.np.cos(cs.np.pi / 4),
            False, True)
        going_in = cs.if_else(corner, corner_handler,
                              cs.dot(out_dir, dexpr) < 0.0, True)

        in_tc = cs.if_else(
            inside,  # Are we inside?
            True,  # Then true.
            going_in,  # If not, check if we're "going_in"
            True)
        return cs.Function("in_tc_" + cnstr.label.replace(" ", "_"),
                           list_vars + opt_var, [in_tc],
                           list_names + opt_var_names,
                           ["in_tc_" + cnstr.label])
예제 #6
0
def logical_and(x1, x2):
    """
    Compute the truth value of x1 AND x2 element-wise.

    See syntax here: https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html
    """
    if not is_casadi_type([x1, x2], recursive=True):
        return _onp.logical_and(x1, x2)

    else:
        return _cas.logic_and(x1, x2)
예제 #7
0
    def __call__(self, x):
        """
        Evaluate the B-Spline at point x.

        The support of this function is the half-open interval [t[0], t[-1]).

        :param x: The point at which to evaluate.

        :returns: The spline evaluated at the given point.
        """
        y = 0.0
        for i in range(len(self.__t) - self.__k - 1):
            y += if_else(logic_and(x >= self.__t[i], x <= self.__t[i + self.__k + 1]), self.__w[
                         i] * self.basis(self.__t, x, self.__k, i), 0.0)
        return y
예제 #8
0
파일: bspline.py 프로젝트: vdwees/rtc-tools
    def basis(self, t, x, k, i):
        """
        Evaluate the B-Spline basis function using Cox-de Boor recursion.

        :param x: Point at which to evaluate.
        :param k: Order of the basis function.
        :param i: Knot number.

        :returns: The B-Spline basis function of the given order, at the given knot, evaluated at the given point.
        """
        if k == 0:
            return if_else(logic_and(t[i] <= x, x < t[i + 1]), 1.0, 0.0)
        else:
            if t[i] < t[i + k]:
                a = (x - t[i]) / (t[i + k] - t[i]) * self.basis(t, x, k - 1, i)
            else:
                a = 0.0
            if t[i + 1] < t[i + k + 1]:
                b = (t[i + k + 1] - x) / (t[i + k + 1] - t[i + 1]) * \
                    self.basis(t, x, k - 1, i + 1)
            else:
                b = 0.0
            return a + b
예제 #9
0
파일: so3.py 프로젝트: jgoppert/pyecca
    def from_dcm(cls, R):
        assert R.shape == (3, 3)
        b1 = 0.5 * ca.sqrt(1 + R[0, 0] + R[1, 1] + R[2, 2])
        b2 = 0.5 * ca.sqrt(1 + R[0, 0] - R[1, 1] - R[2, 2])
        b3 = 0.5 * ca.sqrt(1 - R[0, 0] + R[1, 1] - R[2, 2])
        b4 = 0.5 * ca.sqrt(1 - R[0, 0] - R[1, 1] + R[2, 2])

        q1 = ca.SX(4, 1)
        q1[0] = b1
        q1[1] = (R[2, 1] - R[1, 2]) / (4 * b1)
        q1[2] = (R[0, 2] - R[2, 0]) / (4 * b1)
        q1[3] = (R[1, 0] - R[0, 1]) / (4 * b1)

        q2 = ca.SX(4, 1)
        q2[0] = (R[2, 1] - R[1, 2]) / (4 * b2)
        q2[1] = b2
        q2[2] = (R[0, 1] + R[1, 0]) / (4 * b2)
        q2[3] = (R[0, 2] + R[2, 0]) / (4 * b2)

        q3 = ca.SX(4, 1)
        q3[0] = (R[0, 2] - R[2, 0]) / (4 * b3)
        q3[1] = (R[0, 1] + R[1, 0]) / (4 * b3)
        q3[2] = b3
        q3[3] = (R[1, 2] + R[2, 1]) / (4 * b3)

        q4 = ca.SX(4, 1)
        q4[0] = (R[1, 0] - R[0, 1]) / (4 * b4)
        q4[1] = (R[0, 2] + R[2, 0]) / (4 * b4)
        q4[2] = (R[1, 2] + R[2, 1]) / (4 * b4)
        q4[3] = b4

        q = ca.if_else(
            ca.trace(R) > 0, q1,
            ca.if_else(ca.logic_and(R[0, 0] > R[1, 1], R[0, 0] > R[2, 2]), q2,
                       ca.if_else(R[1, 1] > R[2, 2], q3, q4)))
        return q
예제 #10
0
파일: parser.py 프로젝트: jgoppert/pymola
 def edge(self, c):
     """rising edge"""
     return ca.logic_and(c, ca.logic_not(self.pre_cond(c)))
예제 #11
0
    def ode_rhs(self):
        """Muscle Model ODE rhs.
        Returns
        ----------
        ode_rhs: list<cas.SX>
            description
        """

        #: Bandpass l_ce
        #b, a = signal.butter(2, 50, 'low', analog=True)
        #l_ce_filt = signal.lfilter(b, a, self._l_ce.sym)

        l_ce_tol = cas.fmax(self._l_ce.sym, 0.0)
        _stim = cas.fmax(0.01, cas.fmin(self._stim.sym, 1.))

        #: Algrebaic Equation
        l_mtc = self._l_slack.val + self._l_opt.val + self._delta_length.sym
        l_se = l_mtc - l_ce_tol

        #: Muscle Acitvation Dynamics
        self._dA.sym = (
            _stim - self._activation.sym)/GeyerMuscle.tau_act

        #: Muscle Dynamics
        #: Series Force
        _f_se = (self._f_max.val * (
            (l_se - self._l_slack.val) / (
                self._l_slack.val * self.e_ref))**2) * (
                    l_se > self._l_slack.val)

        #: Muscle Belly Force
        _f_be_cond = self._l_opt.val * (1.0 - self.w)

        _f_be = (
            (self._f_max.val * (
                (l_ce_tol - self._l_opt.val * (1.0 - self.w)) / (
                    self._l_opt.val * self.w / 2.0))**2)) * (
            l_ce_tol <= _f_be_cond)

        #: Force-Length Relationship
        val = cas.fabs(
            (l_ce_tol - self._l_opt.val) / (self._l_opt.val * self.w))
        exposant = GeyerMuscle.c * val**3
        _f_l = cas.exp(exposant)

        #: Force Parallel Element
        _f_pe_star = (self._f_max.val * (
            (l_ce_tol - self._l_opt.val) / (self._l_opt.val * self.w))**2)*(
                l_ce_tol > self._l_opt.val)

        #: Force Velocity Inverse Relation
        _f_v_eq = ((
            self._f_max.val * self._activation.sym * _f_l) + _f_pe_star)

        f_v_cond = cas.logic_and(
            _f_v_eq < self.tol, _f_v_eq > -self.tol)

        _f_v = cas.if_else(f_v_cond, 0.0, (_f_se + _f_be) / ((
            self._f_max.val * self._activation.sym * _f_l) + _f_pe_star))

        f_v = cas.fmax(0.0, cas.fmin(_f_v, 1.5))

        self._v_ce.sym = cas.if_else(
            f_v < 1.0, self._v_max.sym * self._l_opt.val * (
                1.0 - f_v) / (1.0 + f_v * GeyerMuscle.K),
            self._v_max.sym*self._l_opt.val * (f_v - 1.0) / (
                7.56 * GeyerMuscle.K *
                (f_v - GeyerMuscle.N) + 1.0 - GeyerMuscle.N
            ))

        #: Active, Passive, Tendon Force Computation
        _f_v_ce = cas.if_else(
            self._v_ce.sym < 0.,
            (self._v_max.sym*self._l_opt.val - self._v_ce.sym) /
            (self._v_max.sym*self._l_opt.val + GeyerMuscle.K * self._v_ce.sym),
            GeyerMuscle.N + (GeyerMuscle.N - 1) * (
                self._v_max.sym*self._l_opt.val + self._v_ce.sym
            ) / (
                7.56 * GeyerMuscle.K * self._v_ce.sym - self._v_max.sym*self._l_opt.val
            ))

        self._a_force = self._activation.sym * _f_v_ce * _f_l * self._f_max.val
        self._p_force = _f_pe_star*_f_v - _f_be
        self._t_force = _f_se

        self._alg_tendon_force.sym = self._z_tendon_force.sym - self._t_force
        self._alg_active_force.sym = self._z_active_force.sym - self._a_force
        self._alg_passive_force.sym = self._z_passive_force.sym - self._p_force
        self._alg_v_ce.sym = self._z_v_ce.sym - self._v_ce.sym
        self._alg_l_mtc.sym = self._z_l_mtc.sym - l_mtc
        self._alg_dact.sym = self._z_dact.sym - self._dA.sym

        return True
예제 #12
0
 def edge(self, c):
     """rising edge"""
     return ca.logic_and(c, ca.logic_not(self.pre_cond(c)))